Integration of Global Lipidomics and Gonad Histological Analysis via Multivariate Chemometrics and Machine Learning: Identification of Potential Lipid Markers of Ovarian Development in the Blue Mussel (Mytilus edulis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mussel Collection and Sample Preparation
2.2. Histological Analyses
2.3. Lipid Extraction
2.4. LC-MS Untargeted Lipidomics
2.5. Data Processing
2.6. Data Analysis
3. Results and Discussion
3.1. Multivariate Chemometrics
3.2. Comparison of the Outputs Obtained with the Different Statisatical Approaches
3.3. Ranking the Panel of Potential Biomarkers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lipid ID | AUC | Pval | FC | r | Volcano | OPLS-DA | RFclass | RFreg | Not Ripe | Ripe |
---|---|---|---|---|---|---|---|---|---|---|
Average ± CI (95%) | Average ± CI (95%) | |||||||||
CAEP.35.3 | 0.74 | <0.01 | 0.39 | −0.48 | x | x | 1855.96 ± 247.94 | 1393.62 ± 125.7 | ||
CAEP.42.2 | 0.81 | <0.01 | 1.58 | −0.60 | x | x | x | 47.59 ± 9.06 | 20.67 ± 7.5 | |
CAEP.42.3 | 0.8 | <0.01 | 3.13 | −0.56 | x | x | x | 36.95 ± 11.25 | 11.19 ± 6.08 | |
Cer.36.2a | 0.58 | 0.09 | 0.21 | −0.10 | x | 267.81 ± 60.62 | 224.45 ± 23.52 | |||
Cer.38.1 | 0.76 | <0.01 | −0.99 | 0.38 | x | 47.24 ± 13.18 | 75.37 ± 14.06 | |||
Cer.42.0 | 0.76 | <0.01 | −0.5 | 0.51 | x | 61.06 ± 8.32 | 87.2 ± 11.11 | |||
CerPE.34.1 | 0.76 | <0.01 | 0.57 | −0.43 | x | 450.48 ± 85.69 | 277.56 ± 41.11 | |||
CerPE.34.2b | 0.75 | <0.01 | 0.58 | −0.54 | x | 128.16 ± 22.58 | 84.28 ± 13.44 | |||
CerPE.34.3a | 0.84 | <0.01 | 0.98 | −0.67 | x | x | x | 95.62 ± 20.84 | 48.43 ± 8.13 | |
CerPE.35.3/2 | 0.87 | <0.01 | 1.08 | −0.67 | x | x | x | 132.82 ± 29.82 | 55.95 ± 7.87 | |
CerPE.40.1 | 0.81 | <0.01 | 1.17 | −0.57 | x | x | x | 34.15 ± 7.02 | 13.71 ± 5.25 | |
CerPE.40.2 | 0.9 | <0.01 | 1.48 | −0.74 | x | x | x | x | 46.4 ± 7.88 | 17.69 ± 4.48 |
CerPE.42.1 | 0.8 | 0.01 | 5.5 | −0.53 | x | x | x | 7.66 ± 5.08 | 0.23 ± 0.45 | |
CerPE.d44.2 | 0.79 | <0.01 | 0.73 | −0.52 | x | 52.96 ± 10.36 | 31.51 ± 4.19 | |||
CL.88.21 | 0.56 | 0.68 | −0.3 | −0.05 | x | 39.63 ± 15.32 | 44.23 ± 15.59 | |||
DG.32.1 | 0.59 | 0.2 | −0.21 | 0.17 | x | 1223.06 ± 217.88 | 1396.08 ± 272.03 | |||
DG.33.2 | 0.56 | 0.43 | −0.13 | 0.18 | x | 254.51 ± 47.85 | 270.76 ± 52.22 | |||
LPC.22.2 | 0.81 | <0.01 | −1.63 | 0.41 | x | x | 115.47 ± 39.6 | 308.4 ± 101.03 | ||
LPC.22.5 | 0.76 | <0.01 | −2.39 | 0.42 | x | 65.26 ± 37.91 | 244.7 ± 114.32 | |||
LPC.22.6 | 0.72 | <0.01 | −1.86 | 0.41 | x | x | 131.28 ± 61.4 | 497.37 ± 246.18 | ||
LPE.22.6 | 0.61 | 0.22 | −0.73 | 0.22 | x | x | 27 ± 10.79 | 38.01 ± 18.64 | ||
PA.38.6 | 0.82 | <0.01 | 5.66 | −0.54 | x | x | x | 12.45 ± 6.38 | 1.46 ± 1.54 | |
PA.40.6 | 0.86 | <0.01 | 2.85 | −0.70 | x | x | x | x | 33.14 ± 12.05 | 8.31 ± 3.64 |
PA.44.4 | 0.81 | <0.01 | −1.76 | 0.63 | x | x | 102.52 ± 41.73 | 226.25 ± 58.24 | ||
PA.O-38.2/P-38.1 | 0.74 | 0.01 | 1.36 | −0.48 | x | x | 32.04 ± 6.9 | 20.2 ± 7.86 | ||
PA.O-38.5/P-38.4 | 0.72 | <0.01 | 4.13 | −0.41 | x | x | 6.66 ± 3.71 | 1.22 ± 1.53 | ||
PA.O-38.6/P-38.5 | 0.85 | <0.01 | 2.12 | −0.68 | x | x | x | x | 46.5 ± 13.09 | 15.64 ± 4.86 |
PC.28.0 | 0.84 | <0.01 | 1.35 | −0.55 | x | x | x | x | 426.29 ± 119.56 | 140.95 ± 36.64 |
PC.29.0 | 0.79 | <0.01 | 0.94 | −0.42 | x | 326.9 ± 78.46 | 150.35 ± 29.08 | |||
PC.30.0 | 0.85 | <0.01 | 1.37 | −0.60 | x | x | x | x | 1149.26 ± 291.11 | 396.62 ± 108.82 |
PC.31.0 | 0.76 | <0.01 | 0.66 | −0.36 | x | x | 706.06 ± 121.33 | 419.14 ± 60.12 | ||
PC.32.0 | 0.78 | <0.01 | 0.95 | −0.51 | x | x | 1181.4 ± 230.72 | 572.94 ± 110.41 | ||
PC.42.3 | 0.73 | 0.1 | −0.49 | 0.40 | x | x | 435.88 ± 121.3 | 582.86 ± 82.68 | ||
PC.42.4 | 0.72 | <0.01 | −0.53 | 0.30 | x | x | 76.01 ± 13.45 | 104.97 ± 12.52 | ||
PC.O-29.0 | 0.8 | <0.01 | 1.57 | −0.51 | x | x | x | 274.36 ± 86.89 | 97.24 ± 36.48 | |
PC.O-30.0 | 0.8 | <0.01 | 1.48 | −0.54 | x | x | x | 862.53 ± 256.36 | 318.65 ± 112.49 | |
PC.O-30.1/P-30.0 | 0.72 | <0.01 | 0.6 | −0.39 | x | x | x | 479.19 ± 98.68 | 292.4 ± 56.3 | |
PC.O-30.2/P-30.1 | 0.69 | <0.01 | 0.68 | −0.31 | x | 489.48 ± 140.93 | 197.21 ± 62.1 | |||
PC.O-31.0 | 0.8 | <0.01 | 1.37 | −0.55 | x | x | x | 68.9 ± 21.25 | 41.64 ± 9.75 | |
PC.O-31.1/P-31.0 | 0.75 | <0.01 | 0.85 | −0.45 | x | 313.33 ± 66.93 | 170.76 ± 36.29 | |||
PC.O-32.0 | 0.8 | <0.01 | 1.35 | −0.56 | x | x | x | x | 923.78 ± 291.49 | 351.64 ± 111.32 |
PC.O-38.1/P-38.0 | 0.76 | <0.01 | −0.69 | 0.51 | x | 400.67 ± 74.02 | 634.91 ± 112.22 | |||
PC.O-38.5/P-38.4 | 0.68 | 0.02 | −0.37 | 0.33 | x | 3158.87 ± 452.94 | 4126.82 ± 599.14 | |||
PC.O-39.2/P-39.1 | 0.71 | 0.02 | −0.5 | 0.41 | x | 587.31 ± 109.84 | 964.5 ± 162.84 | |||
PC.O-40.2/P-40.1 | 0.78 | <0.01 | −0.73 | 0.51 | x | x | 587.31 ± 109.84 | 964.5 ± 162.84 | ||
PC.O-42.10/P-42.9a | 0.81 | <0.01 | −1.43 | 0.14 | x | x | x | x | 145.61 ± 41.99 | 341.56 ± 83.65 |
PE.36.3a | 0.65 | 0.05 | 0.16 | 0.26 | x | 33 ± 6.89 | 43.8 ± 10.85 | |||
PE.38.4a | 0.57 | 0.28 | 0.1 | −0.42 | x | x | 102.72 ± 14.62 | 96.79 ± 11.17 | ||
PE.37.4 | 0.72 | 0.01 | 1.19 | −0.37 | x | 33.96 ± 9.79 | 17.15 ± 5.86 | |||
PE.39.5 | 0.76 | <0.01 | 0.72 | −0.48 | x | x | 75.17 ± 13.77 | 39.58 ± 7.07 | ||
PE.41.5 | 0.64 | 0.01 | 0.62 | −0.28 | x | 33.31 ± 12.76 | 16.49 ± 4.91 | |||
PE.42.9c | 0.56 | 0.59 | −0.22 | 0.23 | x | 185.63 ± 49.07 | 193.23 ± 41.74 | |||
PE.O-34.3/P-34.2 | 0.83 | 0.01 | 0.98 | −0.51 | x | x | 53.51 ± 20.01 | 24.5 ± 4.84 | ||
PE.O-35.3/P-35.2 | 0.77 | 0.01 | 0.97 | −0.46 | x | 40.95 ± 14.52 | 18.98 ± 4.37 | |||
PE.O-36.1/P-36.0b | 0.87 | <0.01 | 1.63 | −0.74 | x | x | x | x | 65.23 ± 19.65 | 21.09 ± 4.88 |
PE.O-36.1/P-36.0c | 0.77 | <0.01 | 0.88 | −0.58 | x | 91.33 ± 25.83 | 41.6 ± 7.31 | |||
PE.O-36.2/P-36.1b | 0.85 | <0.01 | 0.96 | −0.62 | x | x | x | 94.97 ± 22.76 | 47.13 ± 7.8 | |
PE.O-36.2/P-36.1c | 0.88 | <0.01 | 0.97 | −0.73 | x | x | 251.77 ± 50.85 | 121.82 ± 15.8 | ||
PE.O-36.3/P-36.2 | 0.85 | <0.01 | 0.61 | −0.58 | x | x | 308.04 ± 55.87 | 193.04 ± 19.3 | ||
PE.O-37.2/P-37.1 | 0.86 | <0.01 | 0.99 | −0.71 | x | x | x | 231.1 ± 39.56 | 121.75 ± 21.86 | |
PE.O-37.3/P-37.2 | 0.84 | <0.01 | 0.51 | −0.55 | x | x | x | 428.34 ± 49.7 | 300.34 ± 26.36 | |
PE.O-37.4/P-37.3 | 0.87 | <0.01 | 0.74 | −0.40 | x | x | x | 84.17 ± 14.05 | 50.25 ± 6.82 | |
PE.O-38.2/P-38.1 | 0.8 | <0.01 | 0.63 | −0.62 | x | x | 627.28 ± 92.01 | 407.74 ± 58.2 | ||
PE.O-38.3/P-38.2 | 0.78 | <0.01 | 0.38 | −0.52 | x | 1411.67 ± 151.08 | 1084.61 ± 86.66 | |||
PE.O-39.2/P-39.1 | 0.73 | <0.01 | 0.51 | −0.47 | x | 125.68 ± 18.84 | 92.57 ± 15.07 | |||
PE.O-39.3/P-39.2 | 0.8 | <0.01 | 0.45 | −0.56 | x | x | 360.03 ± 39.86 | 264.36 ± 23.89 | ||
PE.O-39.4/P-39.3 | 0.73 | <0.01 | 0.38 | −0.38 | x | x | 194.69 ± 27 | 146.64 ± 13.67 | ||
PE.O-40.7/P-40.6b | 0.67 | 0.07 | −0.24 | 0.35 | x | 886.89 ± 125.56 | 1034.58 ± 117.48 | |||
PE.O-41.4/P-41.3 | 0.65 | 0.04 | 0.25 | −0.33 | x | 110.58 ± 15.74 | 92.1 ± 9.6 | |||
PG.34.1 | 0.86 | <0.01 | 2.19 | −0.70 | x | x | x | x | 25.61 ± 8.8 | 7.32 ± 2.83 |
PI.40.3 | 0.62 | 0.05 | −0.28 | 0.21 | x | 294.18 ± 38.48 | 350.62 ± 36.02 | |||
PI.40.4 | 0.65 | 0.04 | −0.39 | 0.32 | x | 266.66 ± 45.88 | 331.8 ± 43.8 | |||
PI.40.8 | 0.71 | 0.01 | −0.39 | 0.47 | x | x | 118.42 ± 14.83 | 147.88 ± 16.72 | ||
PI.41.5 | 0.6 | 0.26 | −0.2 | 0.33 | x | 102.64 ± 16.24 | 115.25 ± 13.04 | |||
PI.41.6 | 0.74 | <0.01 | −0.49 | 0.54 | x | 103.73 ± 14.79 | 140.82 ± 13.95 | |||
PI.42.3 | 0.79 | <0.01 | −0.95 | 0.53 | x | x | 45.08 ± 10.05 | 78.71 ± 12.29 | ||
PI.42.10a | 0.71 | 0.02 | −0.71 | 0.43 | x | 27.67 ± 6.84 | 41.65 ± 10.88 | |||
PI.44.7 | 0.61 | 0.03 | −0.61 | 0.22 | x | 11.63 ± 4.06 | 26.72 ± 12.24 | |||
PI.O-38.5/P-38.4a | 0.76 | <0.01 | 1.03 | −0.59 | x | 55.34 ± 11.27 | 30.46 ± 8.17 | |||
PI.O-40.2/P-40.1 | 0.73 | 0.01 | −1.37 | 0.35 | x | 16.8 ± 6.25 | 44.17 ± 17.7 | |||
PS.34.1 | 0.8 | <0.01 | 6.82 | −0.54 | x | x | x | 13.17 ± 7.65 | 0.53 ± 0.75 | |
PS.36.2 | 0.81 | <0.01 | 7.06 | −0.56 | x | x | x | 16.21 ± 10.11 | 0.14 ± 0.22 | |
PS.38.2a | 0.64 | 0.1 | −0.42 | 0.32 | x | 55.04 ± 12.89 | 68.49 ± 13.29 | |||
PS.38.4 | 0.64 | 0.03 | 1.55 | −0.35 | x | 27.56 ± 19.08 | 5.6 ± 1.94 | |||
PS.38.5 | 0.89 | <0.01 | 1.61 | −0.71 | x | x | x | x | 215.46 ± 51.5 | 66.38 ± 17.26 |
PS.38.6a | 0.84 | <0.01 | 1.23 | −0.60 | x | x | x | 164.04 ± 40.39 | 66.94 ± 16.21 | |
PS.39.6 | 0.82 | <0.01 | 1.21 | −0.55 | x | x | 96.45 ± 35.18 | 39.88 ± 10.52 | ||
PS.40.2 | 0.83 | <0.01 | 0.75 | −0.68 | x | x | 157.85 ± 32.77 | 91.97 ± 13.65 | ||
PS.40.5 | 0.82 | <0.01 | 1.52 | −0.67 | x | 41.86 ± 11.05 | 18.17 ± 5.55 | |||
PS.40.6 | 0.89 | <0.01 | 1.06 | −0.74 | x | x | x | 329.08 ± 66.25 | 155.36 ± 27.89 | |
PS.40.8a | 0.78 | <0.01 | 4 | −0.46 | x | x | 46.14 ± 17.07 | 9.88 ± 4.45 | ||
PS.42.3b | 0.6 | 0.26 | 0.11 | −0.25 | x | 82.48 ± 17.25 | 72.17 ± 12.55 | |||
PS.42.4 | 0.61 | 0.03 | 0.3 | −0.23 | x | 265.25 ± 70.08 | 188.69 ± 29.82 | |||
PS.O-34.0 | 0.78 | <0.01 | 1.45 | −0.58 | x | x | 41.47 ± 14.23 | 15.36 ± 4.76 | ||
PS.O-38.1/P-38.0 | 0.58 | 0.15 | −0.41 | 0.03 | x | 49.83 ± 10.01 | 59.14 ± 5.8 | |||
PS.O-38.2/P-38.1 | 0.7 | 0.04 | 0.41 | −0.44 | x | 403.79 ± 54.5 | 327.41 ± 58.89 | |||
PS.O-38.5/P-38.4 | 0.88 | <0.01 | 0.82 | −0.74 | x | x | x | 163.08 ± 24.44 | 94.22 ± 13.23 | |
PS.O-38.6/P-38.5 | 0.86 | <0.01 | 0.99 | −0.67 | x | x | x | 361.75 ± 74.27 | 168.69 ± 30.8 | |
PS.O-40.0 | 0.7 | 0.01 | −0.6 | 0.36 | x | 66.34 ± 12.97 | 88.35 ± 13.27 | |||
PS.O-40.6/P-40.5 | 0.75 | <0.01 | 0.36 | −0.46 | x | x | 372.13 ± 29.19 | 294.14 ± 34.19 | ||
PS.O-42.5/P-42.4b | 0.79 | <0.01 | 0.44 | −0.57 | x | x | x | 313.53 ± 31.31 | 233.07 ± 24.54 | |
PS.O-42.6/P-42.5b | 0.79 | <0.01 | 0.45 | −0.52 | x | x | 226.36 ± 26.28 | 165.82 ± 14.05 | ||
TG.44.0 | 0.76 | <0.01 | −0.77 | 0.49 | x | 371.86 ± 72.65 | 620.47 ± 120.92 | |||
TG.46.4 | 0.78 | <0.01 | −0.91 | 0.52 | x | x | 389.78 ± 87.09 | 641.69 ± 122.92 | ||
TG.47.4 | 0.78 | <0.01 | −1.01 | 0.56 | x | 233.64 ± 57.24 | 399.27 ± 78.14 | |||
TG.49.4 | 0.74 | 0.01 | −0.61 | 0.55 | x | 898.38 ± 176.02 | 1280.61 ± 184.12 | |||
TG.49.5 | 0.73 | 0.01 | −0.58 | 0.51 | x | 967.3 ± 181.85 | 1356.58 ± 186.94 | |||
TG.50.1 | 0.73 | 0.01 | −0.56 | 0.46 | x | 3679.66 ± 783.32 | 4970.1 ± 532.03 | |||
TG.51.7 | 0.68 | 0.05 | −0.43 | 0.46 | x | 803.73 ± 148.86 | 1007.24 ± 129.46 | |||
TG.52.1b | 0.72 | <0.01 | −0.62 | 0.45 | x | 2349.98 ± 497.12 | 3209.19 ± 324.5 | |||
TG.52.2 | 0.73 | 0.01 | −0.5 | 0.47 | x | 5644.84 ± 1125.16 | 7359.71 ± 769.69 | |||
TG.52.3 | 0.67 | 0.08 | −0.41 | 0.38 | x | 5871.8 ± 1225.93 | 7209.96 ± 967.84 | |||
TG.54.1b | 0.75 | <0.01 | −0.69 | 0.52 | x | 1119.48 ± 233.54 | 1650.3 ± 207.51 | |||
TG.54.6 | 0.71 | 0.02 | −0.44 | 0.51 | x | 10750.34 ± 1936.83 | 13813.28 ± 1289.65 | |||
TG.55.5 | 0.69 | 0.03 | −0.41 | 0.48 | x | 1918.8 ± 352.6 | 2479.95 ± 257.98 | |||
TG.56.8 | 0.76 | <0.01 | −0.98 | 0.58 | x | x | 150.5 ± 34.36 | 263.58 ± 60.64 | ||
TG.58.2a | 0.74 | <0.01 | −0.69 | 0.35 | x | 350.25 ± 73.99 | 476.86 ± 48.03 | |||
TG.62.13 | 0.64 | 0.03 | 0.34 | −0.21 | x | 3162.55 ± 736.72 | 2296.29 ± 325.35 | |||
TG.63.13 | 0.64 | 0.03 | 0.53 | −0.24 | x | x | 539.74 ± 170.8 | 348.6 ± 78.85 | ||
TG.64.16b | 0.7 | 0.01 | 0.58 | −0.33 | x | 740.92 ± 199.04 | 464.71 ± 88.7 | |||
TG.66.15 | 0.61 | 0.07 | 1.33 | −0.22 | x | 332.46 ± 148.58 | 180.21 ± 61.03 | |||
TG.66.18 | 0.62 | 0.03 | 0.47 | −0.22 | x | 910.13 ± 314.41 | 524.17 ± 151.27 | |||
TG.O-52.1 | 0.76 | <0.01 | −0.93 | 0.46 | x | x | 369.81 ± 102.77 | 637.06 ± 140.8 |
References
- van den Burg, S.W.K.; Termeer, E.E.W.; Skirtun, M.; Poelman, M.; Veraart, J.A.; Selnes, T. Exploring mechanisms to pay for ecosystem services provided by mussels, oysters and seaweeds. Ecosyst. Serv. 2022, 54, 101407. [Google Scholar] [CrossRef]
- Sea, M.A.; Hillman, J.R.; Thrush, S.F. The influence of mussel restoration on coastal carbon cycling. Glob. Chang. Biol. 2022, 28, 5269–5282. [Google Scholar] [CrossRef] [PubMed]
- Nijdam, D.; Rood, T.; Westhoek, H. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 2012, 37, 760–770. [Google Scholar] [CrossRef]
- Yaghubi, E.; Carboni, S.; Snipe, R.M.J.; Shaw, C.S.; Fyfe, J.J.; Smith, C.M.; Kaur, G.; Tan, S.Y.; Hamilton, D.L. Farmed Mussels: A Nutritive Protein Source, Rich in Omega-3 Fatty Acids, with a Low Environmental Footprint. Nutrients 2021, 13, 1124. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Bellagamba, F.; Moretti, V.M. Nutritional quality traits of Mediterranean mussels (Mytilus galloprovincialis): A sustainable aquatic food product available on Italian market all year round. Food Sci. Technol. Int. 2022, 29, 718–728. [Google Scholar] [CrossRef]
- Krause, G.; Le Vay, L.; Buck, B.H.; Costa-Pierce, B.A.; Dewhurst, T.; Heasman, K.G.; Nevejan, N.; Nielsen, P.; Nielsen, K.N.; Park, K.; et al. Prospects of Low Trophic Marine Aquaculture Contributing to Food Security in a Net Zero-Carbon World. Front. Sustain. Food Syst. 2022, 6, 875509. [Google Scholar] [CrossRef]
- Avdelas, L.; Avdic-Mravlje, E.; Borges Marques, A.C.; Cano, S.; Capelle, J.J.; Carvalho, N.; Cozzolino, M.; Dennis, J.; Ellis, T.; Fernández Polanco, J.M.; et al. The decline of mussel aquaculture in the European Union: Causes, economic impacts and opportunities. Rev. Aquac. 2020, 13, 91–118. [Google Scholar] [CrossRef]
- Stewart-Sinclair, P.J.; Last, K.S.; Payne, B.L.; Wilding, T.A. A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification. Ecol. Evol. 2020, 10, 3518–3534. [Google Scholar] [CrossRef]
- Navarro, E.; Iglesias, J.I.P. Energetics of reproduction related to evironmental variability in bivalve molluscs. Haliotis 1995, 24, 43–55. [Google Scholar]
- Duinker, A.; Håland, L.; Hovgaard, P.; Mortensen, S. Gonad development and spawning in one and two year old mussels (Mytilus edulis) from Western Norway. J. Mar. Biol. Assoc. UK 2008, 88, 1465–1473. [Google Scholar] [CrossRef]
- Murray, H.M.; Gallardi, D.; Mills, T. Effect of culture depth and season on the condition and reproductive indices of blue mussels (Mytilus edulis L.) cultured in a cold-water coastal environment. J. Shellfish. Res. 2019, 38, 351–362, 312. [Google Scholar]
- Seed, R.; Brown, R.A. A comparison of the reproductive cycles of Modiolus modiolus (L.), Cerastoderma (=Cardium) edule (L.), and Mytilus edulis L. in Strangford Lough, Northern Ireland. Oecologia 1977, 30, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Villalba, A. Gametogenic cycle of cultured mussel, Mytilus galloprovincialis, in the bays of Galicia (NW Spain). Aquaculture 1995, 130, 269–277. [Google Scholar]
- Pieters, H.; Kluytmans, J.H.; Zandee, D.I. Tissue composition and reproduction of Mytilus edulis in relation to food availability. Neth. J. Sea Res. 1980, 14, 349–361. [Google Scholar]
- Pipe, R.K. Ultrastructural and cytochemical study on interactions between nutrient storage cells and gametogenesis in the mussel Mytilus Edulis. Mar. Biol. 1987, 96, 519–528. [Google Scholar]
- Pipe, R.K. oogenesis in the marine mussel Mytilus edulis: An ultrastructural study. Mar. Biol. 1987, 95, 405–414. [Google Scholar]
- Zandee, D.I.; Kluytmans, J.H.; Zurburg, W.; Pieters, H. Seasonal variations in biochemical composition of Mytilus edulis with reference to energy metabolism and gametogenesis. Neth. J. Sea Res. 1980, 14, 1–29. [Google Scholar]
- Martínez-Pita, I.; Sánchez-Lazo, C.; Ruíz-Jarabo, I.; Herrera, M.; Mancera, J.M. Biochemical composition, lipid classes, fatty acids and sexual hormones in the mussel Mytilus galloprovincialis from cultivated populations in south Spain. Aquaculture 2012, 358–359, 274–283. [Google Scholar] [CrossRef]
- Dagorn, F.; Couzinet-Mossion, A.; Kendel, M.; Beninger, P.G.; Rabesaotra, V.; Barnathan, G.; Wielgosz-Collin, G. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast. Mar. Drugs 2016, 14, 104. [Google Scholar] [CrossRef]
- Pazos, A.J.; Ruiz, C.; Garcia-Martin, O.; Abad, M.; Sanchez, J.L. Seasonal variations of the lipid content and fatty acid composition of Crassostrea gigas cultured in E1 Grove, Galicia, n.W. Spain. Comp. Biochem. Physiol. 1996, 114, 171–179. [Google Scholar]
- Soudant, P.; Van Ryckeghem, K.; Marty, Y.; Moal, J.; Samain, J.F.; Sorgeloos, P. Comparison of the lipid class and fatty acid composition between a reproductive cycle in nature and a standard hatchery conditioning of the Pacific Oyster Crassostrea Gigas. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 1999, 123, 209–222. [Google Scholar] [CrossRef]
- Abad, M.; Ruiz, C.; Martinez, D.; Mosquera, G.; Sanchez, J.L. Seasonal variations of lipid classes and fatty acids in flat oyster, Ostrea edulis, from San Cibran (Galicia, Spain). Camp. Biochem. Physiol. 1995, 110, 109–118. [Google Scholar] [CrossRef]
- Alkanani, T.; Parrish, C.C.; Thompson, R.J.; McKenzie, C.H. Role of fatty acids in cultured mussels, Mytilus edulis, grown in Notre Dame Bay, Newfoundland. J. Exp. Mar. Biol. Ecol. 2007, 348, 33–45. [Google Scholar] [CrossRef]
- Orban, E.; Di Lena, G.; Nevigato, T.; Casini, I.; Marzetti, A.; Caproni, R. Seasonal changes in meat content, condition index and chemical composition of mussels (Mytilus galloprovincialis) cultured in two different Italian sites. Food Chem. 2002, 77, 57–65. [Google Scholar] [CrossRef]
- Mladimeo, I.; Peharda, M.; Orhanović, S.; Bolotin, J.; Pavela-Vrančić, M.; Treursić, B. The reproductive cycle, condition index and biochemical composition of the horse-bearded mussel Modiolus barbatus. Helgol. Mar. Res. 2007, 61, 183–192. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Liu, H.; Liu, W.; Sun, Z.; Li, S.; Zhang, T. Cloning and expression of vitellogenin (Vg) gene and its correlations with total carotenoids content and total antioxidant capacity in noble scallop Chlamys nobilis (Bivalve: Pectinidae). Aquaculture 2012, 366–367, 46–53. [Google Scholar] [CrossRef]
- Beninger, P.G. Seasonal variations of the major lipid classes in relation to the reproductive activity of two species of clams raised in a common habitat: Tapes decussatus L. (Jeffreys, 1863) and T. philippinarum (Adams & Reeve, 1850). J. Exp. Mar. Biol. Ecol. 1984, 79, 79–90. [Google Scholar]
- Beninger, P.G. Caveat observator: The many faces of pre-spawning atresia in marine bivalve reproductive cycles. Mar. Biol. 2017, 164, 163. [Google Scholar] [CrossRef]
- Fearman, J.; Moltschaniwskyj, N.A. Warmer temperatures reduce rates of gametogenesis in temperate mussels, Mytilus galloprovincialis. Aquaculture 2010, 305, 20–25. [Google Scholar] [CrossRef]
- Helm, M.M.; Bourne, N. Hatchery Culture of Bivalves: A Practical Manual; FAO Fisheries technical paper 471; Lovatelli, A., Ed.; FAO, Food and Agriculture Organization: Rome, Otaly, 2004. [Google Scholar]
- Lucas, A.; Beninger, P.G. The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 1985, 44, 187–200. [Google Scholar] [CrossRef]
- Toro, J.E.; Thompson, R.J.; Innes, D.J. Reproductive isolation and reproductive output in two sympatric mussel species (Mytilus edulis, M. trossulus) and their hybrids from Newfoundland. Mar. Biol. 2002, 141, 897–909. [Google Scholar] [CrossRef]
- Chipperfield, P.N.J. Observations on the breeding and settlement of Mytilus edulis (L.) in British waters. J. Mar. Biol. Assoc. UK 1953, 32, 449–476. [Google Scholar] [CrossRef]
- Seed, R. Ecology. In Marine Mussels: Their Ecology and Physiology; Bayne, B.L., Ed.; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Gosling, E. Bivalve Mollusc, Biology, Ecology and Culture; Fishing New Books, Blakwell Science: Hoboken, NJ, USA, 2004. [Google Scholar]
- Beninger, P.G. A qualitative and quantitative study of the reproductive cycle of the giant scallop, Placopecten magellanicus, in the Bay of Fundy (New Brunswick, Canada). Can. J. Zool. 1987, 65, 495–498. [Google Scholar] [CrossRef]
- Fraser, M.; Fortier, M.; Roumier, P.-H.; Parent, L.; Brousseau, P.; Fournier, M.; Surette, C.; Vaillancourt, C. Sex determination in blue mussels: Which method to choose? Mar. Environ. Res. 2016, 120, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Bayne, B.L.; Holland, D.L.; Moore, M.N.; Lowe, D.M.; Widdows, J. Further studies on the effects of stress in the adult on the eggs of Mytilus edulis. J. Mar. Biol. Assoc. UK 1978, 58, 825–841. [Google Scholar] [CrossRef]
- Newell, R.; Bayne, B. Seasonal changes in the physiology, reproductive condition and carbohydrate content of the cockle Cardium (= Cerastoderma) edule (Bivalvia: Cardiidae). Mar. Biol. 1980, 56, 11–19. [Google Scholar] [CrossRef]
- Pipe, R. Seasonal cycles in and effects of starvation on egg development in Mytilus edulis. Mar. Ecol. Prog. Ser. 1985, 24, 121–128. [Google Scholar] [CrossRef]
- Murray, H.M.; Ollerhead, L.M.N. A comparison of ArcGIS and Image J software tools for calculation of gonad volume fraction (GVF) froom histological sections of blue mussel cultured in deep and shallow sites on the Nortehrn coast of Newfoundland. Can. Tech. Rep. Fish. Aquat. Sci. 2018, 3275, vi-17. [Google Scholar]
- Hines, A.; Yeung, W.H.; Craft, J.; Brown, M.; Kennedy, J.; Bignell, J.; Stentiford, G.D.; Viant, M.R. Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Anal. Biochem. 2007, 369, 175–186. [Google Scholar] [CrossRef]
- Duinker, A.; Torstersen, B.E.; Lie, Ø. Lipid classes and fatty acid composition of female gonads of great scallops: A selective field study. J. Shellfish. Res. 2004, 23, 507–514. [Google Scholar]
- Martínez-Pita, I.; Hachero-Cruzado, I.; Sánchez-Lazo, C.; Moreno, O. Effect of diet on the lipid composition of the commercial clam Donax trunculus (Mollusca: Bivalvia): Sex-related differences. Aquac. Res. 2012, 43, 1134–1144. [Google Scholar] [CrossRef]
- Soudant, P.; Moal, J.; Marty, Y.; Samain, J.F. Impact of the quality of dietary fatty acids on metabolism and the composition of polar lipid classes in female gonads of Pecten maximus (L.). J. Exp. Mar. Biol. Ecol. 1996, 205, 149–163. [Google Scholar] [CrossRef]
- Chérel, D.; Beninger, P.G. Oocyte atresia characteristics and effect on reproductive effort of Manila clam Tapes philippinarum (Adams and Reeve, 1850). J. Shellfish. Res. 2017, 36, 549–557. [Google Scholar] [CrossRef]
- Laudicella, V.A.; Whitfield, P.D.; Carboni, S.; Doherty, M.K.; Hughes, A.D. Application of lipidomics in bivalve aquaculture, a review. Rev. Aquac. 2020, 12, 678–702. [Google Scholar] [CrossRef]
- Chansela, P.; Goto-Inoue, N.; Zaima, N.; Hayasaka, T.; Sroyraya, M.; Kornthong, N.; Engsusophon, A.; Tamtin, M.; Chaisri, C.; Sobhon, P.; et al. Composition and localization of lipids in Penaeus merguiensis ovaries during the ovarian maturation cycle as revealed by imaging mass spectrometry. PLoS ONE 2012, 7, e33154. [Google Scholar] [CrossRef]
- Laudicella, V.A.; Carboni, S.; Whitfield, P.D.; Doherty, M.K.; Hughes, A.D. Sexual dimorphism in the gonad lipidome of blue mussels (Mytilus sp.): New insights from a global lipidomics approach. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2023, 48, 101150. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- Bayne, B.L. Marine Mussels: Their Ecology and Physiology; Cambridge University Press: Cambridge, UK, 1976; Volume 10. [Google Scholar]
- Alfaro, A.C.; Jeffs, A.G.; Hooker, S.H. Reproductive behavior of the green-lipped mussel, Perna canaliculus, in northern New Zealand. Bull. Mar. Sci. 2001, 69, 1095–1108. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. biol Chem. 1957, 226, 497–509. [Google Scholar]
- Facchini, L.; Losito, I.; Cataldi, T.R.; Palmisano, F. Ceramide lipids in alive and thermally stressed mussels: An investigation by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass. Spectrom. 2016, 51, 768–781. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr.; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A comprehensive classification system for lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef]
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.; Dennis, E.A. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Boselli, E.; Pacetti, D.; Lucci, P.; Frega, N.G. Characterization of phospholipid molecular species in the edible parts of bony fish and shellfish. J. Agric. Food Chem. 2012, 60, 3234–3245. [Google Scholar] [CrossRef]
- Chen, S.; Belikova, N.A.; Subbaiah, P.V. Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry. Anal. Chim. Acta 2012, 735, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Zhou, D.Y.; Zhao, Q.; Yin, F.W.; Hu, X.P.; Song, L.; Qin, L.; Zhang, J.R.; Zhu, B.W.; Shahidi, F. Characterization of glycerophospholipid molecular species in six species of edible clams by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 2017, 219, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.W.; Zhou, D.Y.; Zhao, Q.; Liu, Z.Y.; Hu, X.P.; Liu, Y.F.; Song, L.; Zhou, X.; Qin, L.; Zhu, B.W.; et al. Identification of glycerophospholipid molecular species of mussel (Mytilus edulis) lipids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Food Chem. 2016, 213, 344–351. [Google Scholar] [CrossRef]
- Facchini, L.; Losito, I.; Cataldi, T.R.I.; Palmisano, F. Seasonal variations in the profile of main phospholipids in Mytilus galloprovincialis mussels: A study by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry. J. Mass. Spectrom. 2018, 53, 1–20. [Google Scholar] [CrossRef]
- Facchini, L.; Losito, I.; Cianci, C.; Cataldi, T.R.; Palmisano, F. Structural characterization and profiling of lyso-phospholipids in fresh and in thermally stressed mussels by hydrophilic interaction liquid chromatography-electrospray ionization-Fourier transform mass spectrometry. Electrophoresis 2016, 37, 1823–1838. [Google Scholar] [CrossRef]
- Losito, I.; Facchini, L.; Valentini, A.; Cataldi, T.R.I.; Palmisano, F. Fatty acidomics: Evaluation of the effects of thermal treatments on commercial mussels through an extended characterization of their free fatty acids by liquid chromatography—Fourier transform mass spectrometry. Food Chem. 2018, 255, 309–322. [Google Scholar] [CrossRef]
- Guercia, C.; Cianciullo, P.; Porte, C. Analysis of testosterone fatty acid esters in the digestive gland of mussels by liquid chromatography-high resolution mass spectrometry. Steroids 2017, 123, 67–72. [Google Scholar] [CrossRef]
- Donato, P.; Micalizzi, G.; Oteri, M.; Rigano, F.; Sciarrone, D.; Dugo, P.; Mondello, L. Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection. Anal. Bioanal. Chem. 2018, 410, 3297–3313. [Google Scholar] [CrossRef] [PubMed]
- Yurekten, O.; Payne, T.; Tejera, N.; Amaladoss, F.X.; Martin, C.; Williams, M.; O’Donovan, C. MetaboLights: Open data repository for metabolomics. Nucleic Acids Res. 2024, 52, D640–D646. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Chong, J. MetaboanlystR: An R Package for Comprehensive Analysis of Metabolomics Data., 0.0.0.9000. 2018. Available online: https://www.metaboanalyst.ca/docs/RTutorial.xhtml (accessed on 20 September 2019).
- Kassambara, A.; Mudt, F. Package ’factoextra’, 1.0.5. 2017. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 10 November 2024).
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling., R package version 1.4.0. 2019. Available online: https://github.com/kevinblighe/EnhancedVolcano (accessed on 12 November 2024).
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant analysis--a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef]
- Brieuc, M.S.O.; Waters, C.D.; Drinan, D.P.; Naish, K.A. A practical introduction to Random Forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour. 2018, 18, 755–766. [Google Scholar] [CrossRef]
- Liaw, A.; Wieiner, M. Package ’randomForest’. 2018. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 12 March 2020).
- Molenaar, M.R.; Jeucken, A.; Wassenaar, T.A.; van de Lest, C.H.A.; Brouwers, J.F.; Helms, J.B. LION/web: A web-based ontology enrichment tool for lipidomic data analysis. Gigascience 2019, 8, giz061. [Google Scholar] [CrossRef]
- Wagner, F. GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge. PLoS ONE 2015, 10, e0143196. [Google Scholar] [CrossRef]
- Newell, R.I.; Hilbish, T.J.; Koehn, R.K.; Newell, C.J. Temporal variation in the reproductive cycle of Mytilus edulis L.(Bivalvia, Mytilidae) from localities on the east coast of the United States. Biol. Bull. 1982, 162, 299–310. [Google Scholar] [CrossRef]
- Pernet, F.; Gauthier-Clerc, S.; Mayrand, E. Change in lipid composition in eastern oyster (Crassostrea virginica Gmelin) exposed to constant or fluctuating temperature regimes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Hinzman, A.A.; Kang, E.L.; Szczesniak, R.D.; Lu, L.J. Computational and statistical analysis of metabolomics data. Metabolomics 2015, 11, 1492–1513. [Google Scholar] [CrossRef]
- Checa, A.; Bedia, C.; Jaumot, J. Lipidomic data analysis: Tutorial, practical guidelines and applications. Anal. Chim. Acta 2015, 885, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, P.; Giordan, M.; Wehrens, R. Multiple comparisons in mass-spectrometry-based -omics technologies. TrAC Trends Anal. Chem. 2013, 50, 11–21. [Google Scholar] [CrossRef]
- Pazos, A.J.; Román, G.; Acosta, C.P.; Sánchez, J.L.; Abad, M. Lipid Classes and Fatty Acid Composition in the Female Gonad of Pecten maximus in Relation to Reproductive Cycle and Environmental Variables. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 1997, 117, 393–402. [Google Scholar] [CrossRef]
- Zeng, X.; Li, Z.; Zhang, Z.; Shi, X.; Wang, Y. Variations in lipid composition of ovaries and hepatopancreas during vitellogenesis in the mud crab Scylla paramamosain: Implications of lipid transfer from hepatopancreas to ovaries. Aquac. Rep. 2024, 35, 102008. [Google Scholar] [CrossRef]
- Koutsouveli, V.; Balgoma, D.; Checa, A.; Hedeland, M.; Riesgo, A.; Cardenas, P. Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767). Sci. Rep. 2022, 12, 6317. [Google Scholar] [CrossRef] [PubMed]
- Merrill, A.H.; Schmelz, E.-M.; Dillehay, D.L.; Spiegel, S.; Shayman, J.A.; Schroeder, J.J.; Riley, Ø.R.T.; Voss, K.A.; Wang, E. Sphingolipids—The enigmatic lipid class: Biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 1997, 142, 208–225. [Google Scholar] [CrossRef]
- Alexaki, A.; Clarke, B.A.; Gavrilova, O.; Ma, Y.; Zhu, H.; Ma, X.; Xu, L.; Tuymetova, G.; Larman, B.C.; Allende, M.L.; et al. De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. J. Biol. Chem. 2017, 292, 3929–3939. [Google Scholar] [CrossRef]
- Dudek, J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front. Cell Dev. Biol. 2017, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Kraffe, E.; Grall, J.; Le Duff, M.; Soudant, P.; Marty, Y. A striking parallel between cardiolipin fatty acid composition and phylogenetic belonging in marine bivalves: A possible adaptative evolution? Lipids 2008, 43, 961. [Google Scholar] [CrossRef]
- Fernández-Reiriz, M.J.; Garrido, J.L.; Irisarri, J. Fatty acid composition in Mytilus galloprovincialis organs: Trophic interactions, sexual differences and differential anatomical distribution. Mar. Ecol. Prog. Ser. 2015, 528, 221–234. [Google Scholar] [CrossRef]
- Kraffe, E.; Tremblay, R.; Belvin, S.; LeCoz, J.-R.; Marty, Y.; Guderley, H. Effect of reproduction on escape responses, metabolic rates and muscle mitochondrial properties in the scallop Placopecten magellanicus. Mar. Biol. 2008, 156, 25–38. [Google Scholar] [CrossRef]
- Fan, J.; Upadhye, S.; Worster, A. Understanding receiver operating characteristic (ROC) curves. CJEM 2006, 8, 19–20. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Liu, J.; Zhou, J.; Liang, H.; Wang, Y.; Sun, Y.; Ma, B.; Yin, Y. Lipidomic analysis of serum samples from migraine patients. Lipids Health Dis. 2018, 17, 22. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zong, W.-J.; Zhang, A.-H.; Zhang, H.-M.; Luan, Y.-H.; Sun, H.; Cao, H.-X.; Wang, X.-J. Lipidomic characterisation discovery for coronary heart disease diagnosis based on high-throughput ultra-performance liquid chromatography and mass spectrometry. RSC Adv. 2018, 8, 647–654. [Google Scholar] [CrossRef]
- Kariotoglou, D.M.; Mastronicolis, S.K. Phosphonolipids in the mussel Mytilus galloprovincialis. Z. Naturforsch. 1998, 53, 888–896. [Google Scholar] [CrossRef]
- Kariotoglou, D.M.; Mastronicolis, S.K. Sphingophosphonolipid molecular species from edible mollusks and a jellyfish. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2003, 136, 27–44. [Google Scholar] [CrossRef]
- Losito, I.; Facchini, L.; Catucci, R.; Calvano, C.D.; Cataldi, T.R.I.; Palmisano, F. Tracing the Thermal History of Seafood Products through Lysophospholipid Analysis by Hydrophilic Interaction Liquid Chromatography(-)Electrospray Ionization Fourier Transform Mass Spectrometry. Molecules 2018, 23, 2212. [Google Scholar] [CrossRef] [PubMed]
- Le Grand, F.; Kraffe, E.; Marty, Y.; Donaghy, L.; Soudant, P. Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011, 159, 383–391. [Google Scholar] [CrossRef]
- Vacaru, A.M.; van den Dikkenberg, J.; Ternes, P.; Holthuis, J.C. Ceramide phosphoethanolamine biosynthesis in Drosophila is mediated by a unique ethanolamine phosphotransferase in the Golgi lumen. J. Biol. Chem. 2013, 288, 11520–11530. [Google Scholar] [CrossRef] [PubMed]
- Pauletto, M.; Milan, M.; de Sousa, J.T.; Huvet, A.; Joaquim, S.; Matias, D.; Leitao, A.; Patarnello, T.; Bargelloni, L. Insights into molecular features of Venerupis decussata oocytes: A microarray-based study. PLoS ONE 2014, 9, e113925. [Google Scholar] [CrossRef]
- Tilly, J.L.; Kolesnick, R.N. Sphingolipid signaling in gonadal development and function. Chem. Phys. Lipids 1999, 102, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Vance, D.E. Glycerolipids biosynthesis in eukaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes; Vance, D.E., Vance, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 153–180. [Google Scholar]
- Zhu, J.; Hu, N.; Xiao, Y.; Lai, X.; Wang, L.; Song, Y. Characterization of Ovarian Lipid Composition in the Largemouth Bronze Gudgeon (Coreius guichenoti) at Different Development Stages. Fishes 2024, 9, 291. [Google Scholar] [CrossRef]
- Fadok, V.A.; Bratton, D.L.; Rose, D.M.; Pearson, A.; Ezekewitz, R.A.B.; Henson, P.M. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 2000, 405, 85–90. [Google Scholar] [CrossRef]
- Segawa, K.; Nagata, S. An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure. Trends Cell Biol. 2015, 25, 639–650. [Google Scholar] [CrossRef]
- Gervais, O.; Renault, T.; Arzul, I. Induction of apoptosis by UV in the flat oyster, Ostrea edulis. Fish. Shellfish. Immunol. 2015, 46, 232–242. [Google Scholar] [CrossRef]
- Meehan, T.L.; Serizier, S.B.; Kleinsorge, S.E.; McCall, K. Analysis of phagocytosis in the Drosophila ovary. In Oogenesis: Methods and Protocols; Nezis, I.P., Ed.; Springer: New York, NY, USA, 2016; pp. 79–95. [Google Scholar] [CrossRef]
- Serizier, S.B.; McCall, K. Scrambled eggs: Apoptotic cell clearance by non-professional phagocytes in the Drosophila ovary. Front. Immunol. 2017, 8, 1642. [Google Scholar] [CrossRef]
- Mostafa, S.; Nader, N.; Machaca, K. Lipid Signaling During Gamete Maturation. Front. Cell Dev. Biol. 2022, 10, 814876. [Google Scholar] [CrossRef]
- Soudant, P.; Marty, Y.; Moal, J.; Samain, J.F. Separation of major polar lipids in Pecten maximus by highperformance liquid chromatography and subsequent determination of their fatty acids using gas chromatography. J. Chromatogr. B 1995, 673, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Laudicella, V.A.; Beveridge, C.; Carboni, S.; Franco, S.C.; Doherty, M.K.; Long, N.; Mitchell, E.; Stanley, M.S.; Whitfield, P.D.; Hughes, A.D. Lipidomics analysis of juveniles’ blue mussels (Mytilus edulis L. 1758), a key economic and ecological species. PLoS ONE 2020, 15, e0223031. [Google Scholar] [CrossRef]
- Rey, F.; Alves, E.; Melo, T.; Domingues, P.; Queiroga, H.; Rosa, R.; Domingues, M.R.; Calado, R. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep. 2015, 5, 14549. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J.N.C.; Boume, N.; Hodgson, C.A. Assessment of biochemical composition and energy reserves in larvae of the scallop Patinopecten yessoensis. J. Exp. Mar. Biol. Ecol. 1987, 113, 113–124. [Google Scholar] [CrossRef]
- Yamashita, A.; Hayashi, Y.; Nemoto-Sasaki, Y.; Ito, M.; Oka, S.; Tanikawa, T.; Waku, K.; Sugiura, T. Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog. Lipid Res. 2014, 53, 18–81. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J. The spawning of the mussel (Mytilus edulis). Proceeding Trans. Livrpool Biol. Soc. 1898, 13, 104–121. [Google Scholar]
- Cuevas, N.; Zorita, I.; Costa, P.M.; Franco, J.; Larreta, J. Development of histopathological indices in the digestive gland and gonad of mussels: Integration with contamination levels and effects of confounding factors. Aquat. Toxicol. 2015, 162, 152–164. [Google Scholar] [CrossRef]
Lipid ID 1 | AUC | 95% CI | p-Value 2 | FC | Volcano | OPLS-DA | RFClass | RFreg | Not Ripe Average ± CI (95%) | Ripe Average ± CI (95%) |
---|---|---|---|---|---|---|---|---|---|---|
CAEP(42:2) | 0.808 | 0.671–0.925 | 3.63 × 10−4 | 1.57 | X | X | X | 47.59 ± 9.06 | 20.67 ± 7.5 | |
CAEP(42:3) | 0.804 | 0.683–0.916 | 9 × 10−3 | 3.13 | X | X | X | 36.95 ± 11.25 | 11.19 ± 6.08 | |
CerPE(34:3)a | 0.845 | 0.729–0.939 | 2.08 × 10−3 | 0.98 | X | X | X | 95.62 ± 20.84 | 48.43 ± 8.13 | |
CerPE(35:3/2) | 0.874 | 0.771–0.954 | 2.08 × 10−3 | 1.08 | X | X | X | 132.82 ± 29.82 | 55.95 ± 7.87 | |
CerPE(40:1) | 0.806 | 0.668–0.93 | 3.62 × 10−3 | 1.17 | X | X | X | 34.15 ± 7.02 | 13.71 ± 5.25 | |
CerPE(40:2) | 0.905 | 0.799–0.981 | 3.04 × 10−4 | 1.48 | X | X | X | X | 46.4 ± 7.88 | 17.69 ± 4.48 |
LPC(22:2) | 0.806 | 0.673–0.922 | 7.42 × 10−3 | −1.62 | X | 115.47 ± 39.6 | 308.4 ± 101.03 | |||
PA(38:6) | 0.815 | 0.69–0.917 | 0.023 | 5.66 | X | X | X | 12.45 ± 6.38 | 1.46 ± 1.54 | |
PA(40:6) | 0.861 | 0.749–0.958 | 7.42 × 10−3 | 2.85 | X | X | X | X | 33.14 ± 12.05 | 8.31 ± 3.64 |
PA(44:4) | 0.811 | 0.685–0.925 | 0.014 | −1.75 | X | X | 102.52 ± 41.73 | 226.25 ± 58.24 | ||
PA(O-38:6/P-38:5) | 0.851 | 0.735–0.94 | 2.62 × 10−3 | 2.12 | X | X | X | X | 46.5 ± 13.09 | 15.64 ± 4.86 |
PC(28:0) | 0.842 | 0.732–0.939 | 3.62 × 10−3 | 1.35 | X | X | X | X | 426.29 ± 119.56 | 140.95 ± 36.64 |
PC(30:0) | 0.848 | 0.717–0.943 | 2.36 × 10−3 | 1.37 | X | X | X | X | 1149.26 ± 291.11 | 396.62 ± 108.82 |
PC(O-30:0) | 0.803 | 0.672–0.927 | 0.012 | 1.48 | X | X | X | 862.53 ± 256.36 | 318.65 ± 112.49 | |
PC(O-31:0) | 0.8 | 0.664–0.902 | 0.014 | 1.37 | X | X | X | 68.9 ± 21.25 | 41.64 ± 9.75 | |
PC(O-32:0) | 0.802 | 0.668–0.919 | 0.016 | 1.35 | X | X | X | X | 923.78 ± 291.49 | 351.64 ± 111.32 |
PC(O-46:10/P-46:9)a | 0.811 | 0.68–0.915 | 2.25 × 10−3 | −1.42 | X | X | X | X | 145.61 ± 41.99 | 341.56 ± 83.65 |
PE(O-34:3/P-34:2) | 0.828 | 0.717–0.942 | 0.059 | 0.98 | X | X | 53.51 ± 20.01 | 24.5 ± 4.84 | ||
PE(O-36:1/P-36:0)b | 0.868 | 0.748–0.962 | 2.66 × 10−3 | 1.63 | X | X | X | X | 65.23 ± 19.65 | 21.09 ± 4.88 |
PE(O-36:2/P-36:1)b | 0.848 | 0.719–0.949 | 3.62 × 10−3 | 0.96 | X | X | X | 94.97 ± 22.76 | 47.13 ± 7.8 | |
PE(O-36:2/P-36:1)c | 0.875 | 0.772–0.948 | 2.08 × 10−3 | 0.97 | X | X | 251.77 ± 50.85 | 121.82 ± 15.8 | ||
PE(O-36:3/P-36:2) | 0.851 | 0.737–0.95 | 7.42 × 10−3 | 0.61 | X | X | 308.04 ± 55.87 | 193.04 ± 19.3 | ||
PE(O-37:2/P-37:1) | 0.858 | 0.749–0.948 | 1.32 × 10−3 | 0.99 | X | X | X | 231.1 ± 39.56 | 121.75 ± 21.86 | |
PE(O-37:3/P-37:2) | 0.845 | 0.719–0.938 | 2.08 × 10−3 | 0.51 | X | X | X | 428.34 ± 49.7 | 300.34 ± 26.36 | |
PE(O-37:4/P-37:3) | 0.868 | 0.752–0.964 | 3.26 × 10−3 | 0.74 | X | X | X | 84.17 ± 14.05 | 50.25 ± 6.82 | |
PE(O-39:3/P-39:2) | 0.8 | 0.692–0.905 | 3.62 × 10−3 | 0.45 | X | X | 360.03 ± 39.86 | 264.36 ± 23.89 | ||
PG(34:1) | 0.86 | 0.735–0.96 | 7.29 × 10−3 | 2.19 | X | X | X | X | 25.61 ± 8.8 | 7.32 ± 2.83 |
PS(36:2) | 0.81 | 0.65–0.913 | 3.0 × 10−3 | 7.06 | X | X | X | 16.21 ± 10.11 | 0.14 ± 0.22 | |
PS(38:5) | 0.894 | 0.79–0.962 | 1.32 × 10−3 | 1.61 | X | X | X | X | 215.46 ± 51.5 | 66.38 ± 17.26 |
PS(38:6)a | 0.84 | 0.728–0.935 | 3.62 × 10−3 | 1.23 | X | X | X | 164.04 ± 40.39 | 66.94 ± 16.21 | |
PS(39:6) | 0.823 | 0.695–0.926 | 0.033 | 1.21 | X | X | 96.45 ± 35.18 | 39.88 ± 10.52 | ||
PS(40:2) | 0.828 | 0.72–0.926 | 7.94 × 10−3 | 0.75 | X | X | 157.85 ± 32.77 | 91.97 ± 13.65 | ||
PS(40:5) | 0.82 | 0.691–0.92 | 5.49 × 10−3 | 1.52 | X | 41.86 ± 11.05 | 18.17 ± 5.55 | |||
PS(40:6) | 0.889 | 0.785–0.981 | 2.08 × 10−3 | 1.06 | X | X | X | 329.08 ± 66.25 | 155.36 ± 27.89 | |
PS(O-38:5/P-38:4) | 0.875 | 0.777–0.957 | 1.29 × 10−3 | 0.82 | X | X | X | 163.08 ± 24.44 | 94.22 ± 13.23 | |
PS(O-38:6/P-38:5) | 0.855 | 0.732–0.956 | 2.36 × 10−3 | 0.99 | X | X | X | 361.75 ± 74.27 | 168.69 ± 30.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudicella, V.A.; Carboni, S.; De Vittor, C.; Whitfield, P.D.; Doherty, M.K.; Hughes, A.D. Integration of Global Lipidomics and Gonad Histological Analysis via Multivariate Chemometrics and Machine Learning: Identification of Potential Lipid Markers of Ovarian Development in the Blue Mussel (Mytilus edulis). Lipidology 2025, 2, 5. https://doi.org/10.3390/lipidology2010005
Laudicella VA, Carboni S, De Vittor C, Whitfield PD, Doherty MK, Hughes AD. Integration of Global Lipidomics and Gonad Histological Analysis via Multivariate Chemometrics and Machine Learning: Identification of Potential Lipid Markers of Ovarian Development in the Blue Mussel (Mytilus edulis). Lipidology. 2025; 2(1):5. https://doi.org/10.3390/lipidology2010005
Chicago/Turabian StyleLaudicella, Vincenzo Alessandro, Stefano Carboni, Cinzia De Vittor, Phillip D. Whitfield, Mary K. Doherty, and Adam D. Hughes. 2025. "Integration of Global Lipidomics and Gonad Histological Analysis via Multivariate Chemometrics and Machine Learning: Identification of Potential Lipid Markers of Ovarian Development in the Blue Mussel (Mytilus edulis)" Lipidology 2, no. 1: 5. https://doi.org/10.3390/lipidology2010005
APA StyleLaudicella, V. A., Carboni, S., De Vittor, C., Whitfield, P. D., Doherty, M. K., & Hughes, A. D. (2025). Integration of Global Lipidomics and Gonad Histological Analysis via Multivariate Chemometrics and Machine Learning: Identification of Potential Lipid Markers of Ovarian Development in the Blue Mussel (Mytilus edulis). Lipidology, 2(1), 5. https://doi.org/10.3390/lipidology2010005