Enigmatic Discoid and Elliptical Structures from Brioverian (Ediacaran-Fortunian) Deposits of Brittany (Armorican Massif, NW of France)
Abstract
:1. Introduction
2. Geological Setting
3. Material and Methods
4. Results
4.1. Clusters of “Nimbia-like” Structures
4.2. Clusters of “Beltanelliformis-like” Structures
4.3. Clusters of Micro-Elliptical Structures
4.4. The Isolated Pluricentimetric Discoid or Elliptical Structures
4.4.1. Elliptical Concentric Imprint
4.4.2. “Donut Shape” Specimen
4.4.3. “Concentric Dome” Specimen
5. Paleoenvironmental Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGabhann, B.A. Discoidal fossils of the Ediacarian biota: A review of current understanding. In The Rise and Fall of the Ediacarian Biota; Vickers-Rich, P., Komarower, P., Eds.; Geological Society of London: London, UK, 2007; Volume 286, pp. 297–313. [Google Scholar]
- Ivantsov, A.Y.; Gritsenko, V.P.; Konstantinenko, L.I.; Zakrevskaya, M.A. Revision of the Problematic Vendian Macrofossil Beltanelliformis (=Beltanelloides, Nemiana). Paleontol. J. 2014, 48, 1415–1440. [Google Scholar] [CrossRef]
- Bobrovskiy, I.; Hope, J.M.; Krasnova, A.; Ivantsov, I.; Brocks, J. Molecular fossils from organically preserved Ediacara biota reveal cyanobacterial origin for Beltanelliformis. Nat. Ecol. Evol. 2018, 2, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Fedonkin, M.A. Systematic description of Vendian Metazoa. In The Vendian System, Volume 1 Paleontology; Sokolov, B.S., Iwanowski, A.B., Eds.; Springer: Berlin, Germany, 1990; pp. 71–120. [Google Scholar]
- Gehling, J.G.; Narbonne, G.M.; Anderson, M.M. The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 2000, 43, 427–456. [Google Scholar] [CrossRef]
- Sun, W. Precambrian medusoids: The Cyclomedusa plexus and Cyclomedusa-like pseudofossils. Precambrian Res. 1986, 31, 325–360. [Google Scholar]
- Zhang, Z.; Li, G.; Emig, C.; Han, J.; Holmer, L.E.; Shu, D. Architecture and function of the lophophore in the problematic brachiopod Heliomedusa orienta (Early Cambrian, South China). Geobios 2009, 42, 649–661. [Google Scholar] [CrossRef]
- Grazhdankin, D.; Gerdes, G. Ediacaran microbial colonies. Lethaia 2007, 40, 201–210. [Google Scholar] [CrossRef]
- Banerjee, S.; Sarkar, S.; Eriksson, P.G.; Samanta, P. Microbially related structures in siliciclastic sediment resembling Ediacaran fossils: Examples from India, ancient and modern. In Microbial Mats. Modern and Ancient Microorganisms in Stratified Systems; Seckbach, J., Oren, A., Eds.; Springer: Berlin, Germany, 2010; pp. 111–129. [Google Scholar]
- Sprigg, R.C. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Trans. R. Soc. South Aust. 1947, 71, 212–224. [Google Scholar]
- Young, G.G.A.; Hagadorn, J.W. Evolving preservation and facies distribution of fossil jellyfish: A slowly closing taphonomic window. Boll. Della Soc. Paleontol. Ital. 2020, 59, 185–203. [Google Scholar]
- Ballèvre, M.; Bosse, V.; Dabard, M.P.; Ducassou, C.; Fourcade, S.; Paquette, J.L.; Peucat, J.J.; Pitra, P. Histoire géologique du massif Armoricain: Actualité de la recherche. Bull. Soc. Géol. Minér. Bretagne 2013, 10–11, 5–96. [Google Scholar]
- Chauvel, J.J.; Mansuy, C. Micropaléontologie du Protérozoïque du Massif armoricain (France). Precambrian Res. 1981, 15, 25–42. [Google Scholar] [CrossRef]
- Chauvel, J.J.; Schopf, J. Late Precambrian microfossils from Brioverian cherts and limestone’s of Brittany and Normandy, France. Nature 1978, 275, 640–642. [Google Scholar] [CrossRef]
- Deflandre, G. Sur l’existence, dès le Précambrien, d’Acritarches du type Acanthomorphitae: Eomocrhystridium nov.gen. Typification du genre Palaeocryptidium. Comptes Rendus Acad. Des. Sci. Paris 1968, 266, 2385–2389. [Google Scholar]
- Mansuy, C. Les Microsphères du Protérozoïque Supérieur Armoricain (Briovérien): Nature, Repartition Stratigraphique, Affinités Biologiques. Doctoral Dissertation, Université de Rennes I, Rennes, France, 1983; 140p. [Google Scholar]
- Roblot, M.M. Sporomorphes du Précambrien armoricain. Ann. Paléontol. 1964, 2, 105–110. [Google Scholar]
- Van Iten, H.; Marques, A.C.; Leme, J.M.; Pacheco, M.L.A.F.; Simões, M.G. Origin and early diversification of the phylum Cnidaria Verrill: Major developments in the analysis of the taxon’s Proterozoic–Cambrian history. Palaeontology 2014, 57, 677–690. [Google Scholar] [CrossRef]
- Dabard, M.P.; Néraudeau, D. Stratotype Briovérien. Collection Stratotypes, MNHN & BRGM, Ed.; 2024; in press.
- Coutret, B.; Néraudeau, D. Quantitative analysis of horizontal bioturbation from Brioverian (Ediacaran–Fortunian) deposits of Brittany (Armorican Massif, NW of France). Ann. Paléontol. 2022, 108, 102543. [Google Scholar] [CrossRef]
- Gougeon, R.; Néraudeau, D.; Dabard, M.P.; Pierson-Wickmann, A.C.; Polette, F.; Poujol, M.; Saint-Martin, J.P. Trace fossils from the Brioverian (Ediacaran-Fortunian) in Brittany (NW France). Ichnos 2018, 25, 11–24. [Google Scholar] [CrossRef]
- Gougeon, R.; Néraudeau, D.; Poujol, M.; Loi, A. Loops, spirals and the appearance of guided behaviors from the Ediacaran-Cambrian of Brittany, NW France. Estud. Geol. 2019, 75, 11–13. [Google Scholar]
- Gougeon, R.; Néraudeau, D.; Loi, A.; Poujol, M. New insights into the early evolution of horizontal spiral trace fossils and the age of the Brioverian series (Ediacaran-Cambrian) in Brittany, NW France. Geol. Mag. 2022, 159, 1284–1294. [Google Scholar] [CrossRef]
- Néraudeau, D. Algal megafossil Chuaria from the Brioverian (Ediacarn-Fortunian) of Britanny, NW France. Rev. Paléobiologie 2023, 42, 237–249. [Google Scholar]
- Néraudeau, D.; Dabard, M.P. Le Briovérien revisité. Bull. Soc. Géol. Minéral. Bretagne 2023, 21, 3–18. [Google Scholar]
- Néraudeau, D.; Dabard, M.P.; El Albani, A.; Gougeon, R.; Mazurier, A.; Pierson—Wickmann, A.C.; Poujol, M.; Saint Martin, J.P.; Saint Martin, S. First evidence of Ediacaran–Fortunian elliptical body fossils in the Brioverian series of Brittany, NW France. Lethaia 2018, 51, 513–522. [Google Scholar] [CrossRef]
- Néraudeau, D.; Coutret, B.; Gendry, D.; Lesage, B.; Loi, A.; Poujol, M. Elliptical body fossils from the Fortunian (Early Cambrian) of Normandy (NW France). CR Palevol 2023, 22, 439–453. [Google Scholar] [CrossRef]
- Landing, E.; Narbonne, G.M. Scenella and « a Chondrophorine (Medusoid HYdrozoan) from the Basal Cambrian (Placentian) of Newfoundland ». J. Paleontol. 1992, 66, 138. [Google Scholar] [CrossRef]
- Jensen, S. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integr. Comp. Biol. 2003, 43, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lebesconte, M. Constitution générale du Massif breton comparée à celle du Finistère. Bull. Soc. Géol. Fr. 1886, 14, 776–820. [Google Scholar]
- Hagadorn, J.W.; Waggoner, B. Ediacaran fossils from the southwestern Great Basin, United States. J. Paleontol. 2000, 74, 349–359. [Google Scholar] [CrossRef]
- Màngano, M.G.; Buatois, L.A. The Trace-Fossil Record of Major Evolutionary Events. Volume 1: Precambrian and Paleozoic. Top. Geobiol. 2016, 39, 358. [Google Scholar]
- Màngano, M.G.; Buatois, L.A. The rise and early evolution of animals: Where do we stand from a trace-fossil perspective? Interface Focus 2020, 10, 20190103. [Google Scholar] [CrossRef] [PubMed]
- Paquette, J.-L.; Piro, J.-L.; Devidal, J.-L.; Bosse, V.; Didier, A.; Sanac, S.; Abdelnous, Y. Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: Application to radiometric dating of U-Th-bearing minerals. Agil. ICP-MS J. 2014, 58, 4–5. [Google Scholar]
- Nosenzo, F.; Manzotti, P.; Poujol, M.; Ballèvre, M.; Langlade, J. A window into an older orogenic cycle: P–T conditions and timing of the pre-Alpine history of the Dora-Maira Massif (Western Alps). J. Metamorph. Geol. 2022, 40, 789–821. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Sláma, J.; Kosler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Whitehouse, M.J. Plešovice zircon—A new natura l reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Kahle, C.F.J. Subaerial gutter marks. Raindrop impressions, scour marks and other sedimentary structures, SiluriannTymochee Dolomite, Waterville, Ohio. Carbonates Evaporites 2009, 24, 33–44. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, K.S.; Kim, T.S. Raindrop imprints from the Late Proterozoic Sangwon System of the Socheong Island of Ongjin-gun, Incheon, Korea. J. Korean Earth Sci. Soc. 1999, 20, 55–60. [Google Scholar]
- Van Der Westhuizen, W.A.; Grobler, N.J.; Loock, J.C.; Tordiffe, E.A.W. Raindrops imprints in the Late Archaean—Early Proterozoic Ventersdorp Supergroup, South Africa. Sediment. Geol. 1989, 61, 303–309. [Google Scholar] [CrossRef]
- Collinson, J.D.; Thompson, D.B. Sedimentary Structures, 2nd ed.; Unwin Hyman: London, UK, 1989; 207p. [Google Scholar]
- Twenhofel, W.H. Principles of Sedimentation, 2nd ed.; McGraw Hill Book Company, Inc.: New York, NY, USA, 1950; 673p. [Google Scholar]
- Arrouy, M.J.; Gomez-Peral, L.E.; Penzo, V.; Ferreyra, C.; Poiré, D.G. Fossil bubble structure related to microbial activity coeval with the Middle Ediacaran oceanic oxygénation évent in the Tandilia system. Lat. Am. J. Sedimentol. Basin Anal. 2021, 28, 99–118. [Google Scholar]
- Bosak, T.; Bush, J.W.M.; Flynn, M.; Liang, B.; Ono, S.; Petroff, A.P.; Sim, M.S. Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 2010, 8, 45–55. [Google Scholar] [CrossRef]
- Fedonkin, M.A. New representatives of the Precambrian coelenterates in the northern Russian platform. Paleontol. Zhurnal 1980, 2, 7–15. (In Russian) [Google Scholar]
- Fedonkin, M.A.; Gehling, J.G.; Grey, K.; Narbonne, G.M.; Vickers-Rich, P. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia; The Johns Hopkins University Press: Baltimore, MD, USA, 2007; 327p. [Google Scholar]
- Meert, J.G.; Gibsher, A.S.; Levashova, N.M.; Grice, W.C.; Kamenov, G.D.; Ryabinin, A.B. Glaciation and 770 Ma Ediacara (?) Fossils from the Lesser Karatau Microcontinent, Kazakhstan. Gondwana Res. 2011, 19, 867–880. [Google Scholar] [CrossRef]
- Sepkoski, J.J., Jr. A compendium of fossil marine animal genera. Bull. Am. Paleontol. 2002, 363, 1–560. [Google Scholar]
- Liu, A.G.; Brasier, M.D.; Bogolepova, O.K.; Raevskaya, E.G.; Gubanov, A.P. First report of a newly discovered Ediacaran biota from the Irkineeva Uplift, East Siberia. Newsl. Stratigr. 2013, 46, 95–110. [Google Scholar] [CrossRef]
- Jensen, S.; Gehlin, G.J.G.; Droser, M.L.; Grant, S.W.F. A scratch circle origin for the medusoid fossil Kullingia. Lethaia 2002, 35, 291–299. [Google Scholar] [CrossRef]
- Bertrand-Sarfati, I.; Moussine-Pouchkine, A.; Amard, B.; Ait Kaci, A.A. First Ediacaran fauna found in Western Africa and evidence for an Early Cambrian glaciation. Geology 1995, 23, 133–136. [Google Scholar] [CrossRef]
- Buatois, L. Treptichnus pedum and the Ediacaran-Cambrian boundary: Significance and caveats. Geol. Mag. 2018, 155, 174–180. [Google Scholar] [CrossRef]
- Narbonne, G.M.; Myrow, P.M.; Landing, E.; Anderson, M.M. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern New-Foundland. Can. J. Earth Sci. 1987, 24, 1277–1293. [Google Scholar] [CrossRef]
- Ram, H.; Harsh, A.; Kumar, P.; Parihar, V.S. Nimbia: The discoid organisms from Ediacaran Sonia Dansstone of Jodhpur Group, Marwar Supergroup, western India. Curr. Sci. 2023, 125, 999–1004. [Google Scholar]
- Brasier, M.D.; Perejon, A.; San Jose, M.A. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estud. Geol. 1979, 35, 379–383. [Google Scholar]
- Vidal, G.; Palacios, T.; Gamez-Vintaned, J.A.; Diez Balda, M.A.; Grant, S.W.F. Neoproterozoic-early Cambrian geology and palaeontology of Iberia. Geol. Mag. 1994, 131, 729–765. [Google Scholar] [CrossRef]
- McCall, G.J.H. The Vendian (Ediacaran) in the geological record: Enigmas in geology’s prelude to the Cambrian explosion. Earth-Sci. Rev. 2006, 77, 1–229. [Google Scholar] [CrossRef]
- Jensen, S.; Palacios, T.; Marti Mus, M. A brief review of the fossil record of the Ediacaran-Cambrian transition in the area of Montes de Toledo-Guadalupe, Spain. In The Rise and Fall of the Ediacaran Biota; Vickers-Rich, P., Komarower, P., Eds.; Geological Society, London, Special Publications: London, UK, 2007; Volume 286, pp. 223–235. [Google Scholar]
- Saint Martin, J.-P.; Saint Martin, S. Beltanelliformis brunsae Menner in Keller, Menner, Stepanov & Chumakov, 1974: And Ediacaran fossil from Neoproterozoic of Dobrogea (Romanian). Geodiversitas 2018, 40, 537–548. [Google Scholar]
- Ivantsov, A.Y. Finds of Ediacaran-Type Fossils in Vendian Deposits of the Yudoma Group, Eastern Siberia. Dokl. Akad. Nauk 2017, 472, 542–545. [Google Scholar] [CrossRef]
- Palij, V.M. Remains of a skeletonless fauna and traces of life ability from deposits of the Upper Precambrian and Lower Cambrian of Podolia. In Paleontology and Stratigraphy of the Upper Precambrian and Lower Paleozoic of the southwestern East European Platform; Naukova Dumka: Kiev, Ukraine, 1976; pp. 63–77. [Google Scholar]
- Sokolov, B.S. Vendian stage in the history of the Earth. In XXIV Session of the International Geological Congress: Reports of Soviet Geologists; Nauka: Moscow, Russia, 1972; pp. 114–125. [Google Scholar]
- Jensen, S.; Högström, A.E.S.; Almond, J.; Taylor, W.L.; Meinhold, G.; Hoyberget, M.; Ebbestad, J.O.R.; Agic, H.; Palacios, T. Scratch circles from the Ediacaran and Cambrian of Arctic Norway and southern Africa, with a review of scratch circle occurrences. Bull. Geosci. 2018, 93, 287–304. [Google Scholar] [CrossRef]
- Tarhan, L.G.; Droser, M.L.; Gehling, J.G. Taphonomic controls on Ediacaran diversity: Uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 2010, 25, 823–830. [Google Scholar] [CrossRef]
- Young, G.G.A.; Hagadorn, J.W. The fossil record of cnidarian medusae. Palaeoworld 2010, 19, 212–221. [Google Scholar] [CrossRef]
- Arrouy, M.J.; Warren, L.V.; Quaglio, F.; Poiré, D.G.; Guimaraes Simoes, M.; Boselli Rosa, M.; Gomez-Peral, L.E. Ediacaran discs from South America: Probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Sci. Rep. 2016, 6, 30590. [Google Scholar] [CrossRef] [PubMed]
- Boyce, W.D.; Reynolds, K. The Ediacaran fossil Aspidella terranovica Billings, 1872 from St John’s Convention Centre test pit CjAe-33. Curr. Res. 2008, 8, 55–61. [Google Scholar]
- Tarhan, L.G.; Droser, M.L.; Gehling, J.G.; Dzaugis, M.P. Taphonomy and morphology of the Ediacaran form Genus Aspidella. Precambrian Res. 2015, 257, 124–136. [Google Scholar] [CrossRef]
- Hagadorn, J.W.; Miller, R.F. Hypothesized Cambrian medusae from Saint John, New Brunswick, reinterpreted as sedimentary structures. Atl. Geol. 2011, 47, 66–80. [Google Scholar] [CrossRef]
- Farmer, J.; Vidal, G.; Moczydlowska, M.; Strauss, H.; Ahlberg, P.; Siedlecka, A. Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark. Geol. Mag. 1991, 129, 181–195. [Google Scholar] [CrossRef]
- Lerner, A.J.; Lucas, S.P. The pseudofossil Astropolithon from the Lower Permian Abo Formation of Socorro County, Central New Mexico. Carbonif.-Permian Transit. Socorro Cty. N. M. 2017, 77, 225–231. [Google Scholar]
- Lucas, S.G.; Lerner, A.J. The rare unusual pseudofossil Astropolithon from the Lower Permian Abo Formation near Socorro, New Mexico. New Mex. Geol. 2017, 39, 40–42. [Google Scholar] [CrossRef]
- Babcock, L.E.; Robison, R.A. Taxonomy and paleobiology of some Middle Cambrian Scenella (cnidaria) and hyolithids (Mollusca) from western North America. The University of Kansas Paleontological Contributions 1988, 121, 1–22. [Google Scholar]
- Chapman, F. New or little known Victorian fossils in the National Museum. Proc. R. Soc. Vic. 1911, 23, 305–324. [Google Scholar]
- Alvaro, J.-J.; Valverde-Vaquero, P.; Jensen, S. Multidisciplinary re-assessment of the Ediacaran-Cambrian interval in south-western Europe. Newsl. Stratigr. 2024. [CrossRef]
- Peel, J.S. An enigmatic cap-shaped fossil from the Middle Cambrian of North Greenland. Bull. Grønl. Geol. Unders. 1994, 169, 149–155. [Google Scholar] [CrossRef]
- Skovsted, C.B.; Brock, G.A.; Lindström, A.; Peel, J.S.; Paterson, J.R.; Fuller, M.K. Early Cambrian record of failed durophagy and shell repair in an epibenthic mollusk. Biol. Lett. 2007, 3, 314–317. [Google Scholar] [CrossRef]
- Narbonne, G.M.; Myrow, P.M.; Landing, E.; Anderson, M.M. A Chondrophorine (Medusoid Hydrozoan) from the Basal Cambrian (Placentian) of Newfoundland. J. Paleontol. 1991, 65, 186–191. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.; Jiang, G.; Liu, J.; Wang, Y.; Liu, D. Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform and their potential for hydrocarbon generation. J. China Univ. Geosci. 2008, 19, 549–566. [Google Scholar]
- Martinsen, O.J. Slide and slump structures. In Encyclopedia of Sediments and Sedimentary Rocks; Encyclopedia of Earth Sciences Series Middleton; Church, M., Hardie, L.A., Longstaffe, F.J., Middleton, V., Coniglio, M.A., Eds.; Springer: Dordrecht, The Netherlands, 1978; 821p. [Google Scholar]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11, Q0AA06. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Košler, J.; Gehrels , G.; Jackson, S.E.; McLean , N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.; Sylvester, P.; Vermeesch, P.; et al. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology—Uncertainty Propagation, Age Interpretation and Data Reporting. Geostand. Geoanal. Res. 2016, 40, 311–332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Néraudeau, D.; Poujol, M.; Loi, A.; Charrondière, J. Enigmatic Discoid and Elliptical Structures from Brioverian (Ediacaran-Fortunian) Deposits of Brittany (Armorican Massif, NW of France). Foss. Stud. 2024, 2, 123-140. https://doi.org/10.3390/fossils2030006
Néraudeau D, Poujol M, Loi A, Charrondière J. Enigmatic Discoid and Elliptical Structures from Brioverian (Ediacaran-Fortunian) Deposits of Brittany (Armorican Massif, NW of France). Fossil Studies. 2024; 2(3):123-140. https://doi.org/10.3390/fossils2030006
Chicago/Turabian StyleNéraudeau, Didier, Marc Poujol, Alfredo Loi, and Jules Charrondière. 2024. "Enigmatic Discoid and Elliptical Structures from Brioverian (Ediacaran-Fortunian) Deposits of Brittany (Armorican Massif, NW of France)" Fossil Studies 2, no. 3: 123-140. https://doi.org/10.3390/fossils2030006
APA StyleNéraudeau, D., Poujol, M., Loi, A., & Charrondière, J. (2024). Enigmatic Discoid and Elliptical Structures from Brioverian (Ediacaran-Fortunian) Deposits of Brittany (Armorican Massif, NW of France). Fossil Studies, 2(3), 123-140. https://doi.org/10.3390/fossils2030006