Assessing the Onset of Regional Anaesthesia: The Role of Thermographic Imaging
Abstract
1. Introduction
2. The Assessment of Conduction Block in Regional Anaesthesia
3. Thermographic Imaging
4. Thermographic Imaging in Regional Anaesthesia
4.1. Skin Temperature Changes After Upper Limb Block
4.2. Skin Temperature Change After Lower Limb Blocks
4.3. Skin Temperature Change After Neuraxial Anaesthesia
4.4. Broader Clinical Application of IRT Beyond Regional Anaesthesia
5. Advantages, Limitations and Future Directions of IRT
5.1. Advantages of IRT
5.2. Limitations and Considerations of IRT
5.3. Future Directions
5.4. Cost of IRT Camera
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IRT | Infrared thermography |
| LIC | Lateral infraclavicular block |
| L/A | Local anaesthesia |
| SFIB | Supra-inguinal fascia iliaca block |
| TPVB | Thoracic paravertebral block |
| LSGB | Lumbar sympathetic ganglion block |
| AI | Artificial intelligence |
References
- Taylor, A.; McLeod, G. Basic pharmacology of local anaesthetics. BJA Educ. 2020, 20, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Z.; Zhou, H.; Yan, R.; Li, Y.; Zhang, X.; Bao, L.; Yang, Y.; Zhang, J.; Song, S. Advances in Structural Biology for Anesthetic Drug Mechanisms: Insights into General and Local Anesthesia. BioChem 2025, 5, 18. [Google Scholar] [CrossRef]
- Vinyes, D.; Muñoz-Sellart, M.; Fischer, L. Therapeutic Use of Low-Dose Local Anesthetics in Pain, Inflammation, and Other Clinical Conditions: A Systematic Scoping Review. J. Clin. Med. 2023, 12, 7221. [Google Scholar] [CrossRef]
- Folino, T.B.; Mahboobi, S.K. Regional Anesthetic Blocks. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563238/ (accessed on 29 January 2023).
- Olawin, A.M.; Das, J.M. Spinal Anesthesia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537299/ (accessed on 27 June 2022).
- Chang, A.; Dua, A. Peripheral Nerve Blocks. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459210/ (accessed on 4 May 2025).
- Dost, B.; De Cassai, A.; Amaral, S.; Balzani, E.; Karapinar, Y.E.; Beldagli, M.; Yalin, M.S.O.; Turunc, E.; Ahiskalioglu, A.; Tulgar, S. Regional anesthesia for pediatric cardiac surgery: A review. BMC Anesthesiol. 2025, 25, 77. [Google Scholar] [CrossRef]
- Curatolo, M.; Petersen-Felix, S.; Arendt-Nielsen, L. Sensory assessment of regional analgesia in humans: A review of methods and applications. Anesthesiology 2001, 93, 1517–1530. [Google Scholar] [CrossRef] [PubMed]
- Sumartono, C.; Soni Sunarso, S.; Wirabuana, B.; Putri, H.S.; Johansyah, A.; Hidayati, H.B. Relation of the successful block regional anesthesia with increased peripheral venous circumference and peripheral skin temperature at distal part of the block. Anaesth. Pain Intensive Care 2021, 25, 458–462. [Google Scholar] [CrossRef]
- Asghar, S.; LundstrØm, L.H.; Bjerregaard, L.S.; Lange, K.H.W. Ultrasound-guided lateral infraclavicular block evaluated by infrared thermography and distal skin temperature. Acta Anaesthesiol. Scand. 2014, 58, 867–874. [Google Scholar] [CrossRef] [PubMed]
- van Haren, F.G.; Kadic, L.; Driessen, J.J. Skin temperature measured by infrared thermography after ultrasound-guided blockade of the sciatic nerve. Acta Anaesthesiol Scand. 2013, 57, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, Y.; Liu, X.; Liu, T.; Li, P.; Mei, W. Infrared thermography for assessment of thoracic paravertebral block: A prospective observational study. BMC Anesthesiol. 2021, 21, 168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonawane, K.; Dixit, H.; Jayaraj, A.; Sekar, C.; Thota, N.R. “Knowing It Before Blocking It,” the ABCD of the Peripheral Nerves: Part A Nerve Anatomy and Physiology. Cureus 2023, 15, e41771. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, R.A.; Burke, D.; Skuse, N.F.; Lethlean, A.K. Fibre function and perception during cutaneous nerve block. J. Neurol. Neurosurg. Psychiatry 1975, 38, 865–873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arcilla, C.K.; Tadi, P. Neuroanatomy, Unmyelinated Nerve Fibers. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554461/?utm_source=chatgpt.com (accessed on 2 January 2023).
- Ode, K.; Selvaraj, S.; Smith, A.F. Monitoring regional blockade. Anaesthesia 2017, 72, 70–75. [Google Scholar] [CrossRef]
- Curatolo, M.; Petersen-Felix, S.; Arendt-Nielsen, L. Assessment of regional analgesia in clinical practice and research. Br. Med Bull. 2005, 71, 61–76. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Herschel, W. Experiments on the refrangibility of the invisible rays of the sun. Philos. Trans. R. Soc. B Biol. Sci. 1800, 90, 284–292. [Google Scholar] [CrossRef]
- Czerny, M. Über Photographie im Ultraroten. Eur. Phys. J. A 1929, 53, 1–12. [Google Scholar] [CrossRef]
- Ring, E.F.J. The historical development of thermometry and thermal imaging in medicine. J. Med. Eng. Technol. 2006, 30, 192–198. [Google Scholar] [CrossRef]
- Ferlini Agne, G.; Adamson, K.; McGlinchey, L.; Kravchuk, O.; Santos, L.; Schumacher, J. Comparison of a hand-held high-end resolution infrared thermography (FLIR P640) and a smartphone infrared thermographic device (FLIR One) for the assessment of skin surface temperature after anaesthetising the median nerve in Healthy horses. PLoS ONE 2024, 19, e0309603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blazek, V.; Blanik, N.; Blazek, C.R.; Paul, M.; Pereira, C.; Koeny, M.; Venema, B.; Leonhardt, S. Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment. Anesth Analg. 2017, 124, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Priego Quesada, J.I.; Kunzler, M.R.; Carpes, F.P. Methodological Aspects of Infrared Thermography in Human Assessment. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Springer International Publishing: Cham, Switerland, 2017; pp. 49–79. ISBN 978-3-319-47410-6. [Google Scholar]
- Lahiri, B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Ammer, K.; Ring, E.F.J. The Thermal Human Body. A Practical Guide to Thermal Imaging; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-01998-2/978-981-4745-82-6. [Google Scholar]
- Ramirez-GarciaLuna, J.L.; Bartlett, R.; Arriaga-Caballero, J.E.; Fraser, R.D.J.; Saiko, G. Infrared Thermography in Wound Care, Surgery, and Sports Medicine: A Review. Front. Physiol. 2022, 13, 838528. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gungor, S.; Candan, B. OP013 Infrared (FLIR) imaging as a monitor for sympathetic blocks in complex regional pain syndrome (CRPS). Reg. Anesth. Pain Med. 2023, 48, A7–A8. [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Wang, W.; Jin, S.; Piao, H.; Jiang, Y.; Li, N.; Yao, H. Infrared thermography in clinical practice: A literature review. Eur. J. Med. Res. 2025, 30, 33. [Google Scholar] [CrossRef]
- Miglani, A.; Borkowska, A.; Murphy, B.; O’Flaherty, D.; McCaul, C.L. Infrared thermographic assessment of cutaneous temperature changes during labour epidural analgesia initiation: An observational pilot study. Int. J. Obs. Anesth. 2025, 62, 104304. [Google Scholar] [CrossRef] [PubMed]
- Borum, A.D.; Voogd, K.L.; Smith, M.A.; Gerlif, C.; Jensen, H.I. Relationship between Temperature and Pain Sensation Following a Peripheral Ulnar Block: An Exploratory Pilot Study. Open Anesth. J. 2024, 18, e25896458335716. [Google Scholar] [CrossRef]
- Zirnis, A.E.; Miščuks, A.; Golubovska, I.; Kopanceva, V.; Binde, E.; Sļepiha, V.; Rubīns, U. Thermography in Anesthetic Peripheral Nerve Blocks When Using Different Local Anesthetics. Diagnostics 2025, 15, 2743. [Google Scholar] [CrossRef] [PubMed]
- Angrisani, L.; De Benedetto, E.; Duraccio, L.; Regio, F.L.; Ruggiero, R.; Tedesco, A. Infrared Thermography for Real-Time Assessment of the Effectiveness of Scoliosis Braces. Sensors 2023, 23, 8037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ilo, A.; Romsi, P.; Mäkelä, J. Infrared Thermography and Vascular Disorders in Diabetic Feet. J. Diabetes Sci. Technol. 2020, 14, 28–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, N.E.; Park, B.; Moon, Y.R.; Lee, S.Y.; Gil, H.Y.; Kim, S.; Lee, S.; Chang, H.S.; Jeong, H.W.; Park, H.; et al. Changes in facial temperature measured by digital infrared thermal imaging in patients after transnasal sphenopalatine ganglion block: Retrospective observational study. Medicine 2019, 98, e15084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orădan, A.V.; Georgescu, A.V.; Jolobai, A.N.; Pașca, G.I.; Corpodean, A.A.; Juncan, T.P.; Ilie-Ene, A.; Muntean, M.V. The Precision of Colour Doppler Ultrasonography Combined with Dynamic Infrared Thermography in Perforator Mapping for Deep Inferior Epigastric Perforator Flap Breast Reconstruction. J. Pers. Med. 2024, 14, 969. [Google Scholar] [CrossRef]
- Bovaira, M.; Cañada-Soriano, M.; García-Vitoria, C.; Calvo, A.; De Andrés, J.A.; Moratal, D.; Priego-Quesada, J.I. Clinical results of lumbar sympathetic blocks in lower limb complex regional pain syndrome using infrared thermography as a support tool. Pain Pract. 2023, 23, 713–723. [Google Scholar] [CrossRef]
- Asghar, S.; Bjerregaard, L.S.; Lundstrøm, L.; Lund, J.; Jenstrup, M.T.; Lange, K.H.W. Distal infrared thermography and skin temperature after ultrasound-guided interscalene brachial plexus block: A prospective observational study. Eur. J. Anaesthesiol. 2014, 31, 626–634. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Galvin, E.M.; Niehof, S.; Medina, H.J.; Zijlstra, F.J.; van Bommel, J.; Klein, J.; Verbrugge, S.J.C. Thermographic Temperature Measurement Compared with Pinprick and Cold Sensation in Predicting the Effectiveness of Regional Blocks. Anesth. Analg. 2006, 102, 598–604. [Google Scholar] [CrossRef]
- Lange, K.; Jansen, T.; Asghar, S.; Kristensen, P.; Skjønnemand, M.; Nørgaard, P. Skin temperature measured by infrared thermography after specific ultrasound-guided blocking of the musculocutaneous, radial, ulnar, and median nerves in the upper extremity. Br. J. Anaesth. 2011, 106, 887–895. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Minville, V.; Gendre, A.; Hirsch, J.; Silva, S.; Bourdet, B.; Barbero, C.; Fourcade, O.; Samii, K.; Bouaziz, H. The efficacy of skin temperature for block assessment after infraclavicular brachial plexus block. Anesth. Analg. 2009, 108, 1034–1036. [Google Scholar] [CrossRef] [PubMed]
- Gamal, M.; Hasanin, A.; Adly, N.; Mostafa, M.; Yonis, A.M.; Rady, A.; Abdallah, N.M.; Ibrahim, M.; Elsayad, M. Thermal Imaging to Predict Failed Supraclavicular Brachial Plexus Block: A Prospective Observational Study. Local Reg. Anesth. 2023, 16, 71–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stevens, M.F.; Werdehausen, R.; Hermanns, H.; Lipfert, P. Skin temperature during regional anesthesia of the lower extremity. Anesth. Analg. 2006, 102, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Werdehausen, R.; Braun, S.; Hermanns, H.; Freynhagen, R.; Lipfert, P.; Stevens, M. Uniform distribution of skin-temperature increase after different regional-anesthesia techniques of the lower extremity. Reg. Anesth. Pain Med. 2007, 32, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Shiramoto, H.; Koga, M.; Yoshimatsu, A.; Morimoto, Y. Skin temperature changes after ultrasound-guided supra-inguinal fascia iliaca block: A prospective observational study. JA Clin. Rep. 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Goda, Y.; Kemmotsu, O.; Shimada, Y. Regional differences in skin blood flow and temperature during total spinal anaesthesia. Can. J. Anaesth. 1992, 39, 123–127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- van Haren, F.G.A.M.; Driessen, J.J.; Kadic, L.; Van Egmond, J.; Booij, L.H.D.J.; Scheffer, G.J. The relation between skin temperature increase and sensory block height in spinal anaesthesia using infrared thermography. Acta Anaesthesiol. Scand. 2010, 54, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; McCaul, C.C.L.; O’Flaherty, D. Infrared thermographic assessment of spinal anaesthesia-related cutaneous temperature changes during caesarean section. Int. J. Obstet. Anesth. 2022, 49, 103245. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, L.; Roukhomovsky, M.; Desgranges, F.-P.; Allaouchiche, B.; Chassard, D. Infrared thermography to assess dermatomal levels of labor epidural analgesia with 1 mg/mL ropivacaine plus 0.5 µg/mL sufentanil: A prospective cohort study. Int. J. Obstet. Anesth. 2020, 41, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Bahk, J.H.; Lee, S.C.; Lee, Y.W. Infrared Thermographic Imaging in the Assessment of Successful Block on Lumbar Sympathetic Ganglion. Yonsei Med J. 2003, 44, 119–124. [Google Scholar] [CrossRef]
- Hermanns, H.; Werdehausen, R.; Hollmann, M.W.; Stevens, M.F. Assessment of skin temperature during regional anaesthesia What the anaesthesiologist should know. Acta Anaesthesiol. Scand. 2018, 62, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Romanovsky, A.A. Skin temperature: Its role in thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kessack, L.; Davenport, G.; McGlennan, C.; Bamber, J. Observational study of peripheral skin temperature changes following spinal anaesthesia for caesarean birth. Int. J. Obstet. Anesth. 2024, 58, 103970. [Google Scholar] [CrossRef] [PubMed]
- Cañada-Soriano, M.; Priego-Quesada, J.I.; Bovaira, M.; García-Vitoria, C.; Salvador Palmer, R.; Cibrián Ortiz de Anda, R.; Moratal, D. Quantitative Analysis of Real-Time Infrared Thermography for the Assessment of Lumbar Sympathetic Blocks: A Preliminary Study. Sensors 2021, 21, 3573. [Google Scholar] [CrossRef] [PubMed]
- Eisenach, J.H.; Pike, T.L.; Wick, D.E.; Dietz, N.M.; Fealey, R.D.; Atkinson, J.L.D.; Charkoudian, N. A comparison of peripheral skin blood flow and temperature during endoscopic thoracic sympathotomy. Anesth. Analg. 2005, 100, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, V.; Baccarani, U.; Vetrugno, L.; Pravisani, R.; Bove, T.; Meroi, F.; Terrosu, G.; Adani, G.L. Early Graft Dysfunction Following Kidney Transplantation: Can Thermographic Imaging Play a Predictive Role? Semin. Cardiothorac. Vasc. Anesth. 2021, 25, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, J.H.; Kim, E.; Yoo, S.K.; Shin, C.-S. Respiratory measurement using infrared thermography and respiratory volume monitor during sedation in patients undergoing endoscopic urologic procedures under spinal anesthesia. J. Clin. Monit. Comput. 2019, 33, 647–656, Erratum in J. Clin. Monit. Comput. 2021, 35, 675. https://doi.org/10.1007/s10877-020-00643-3. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, A.M.; Linnet, K.E.; Asghar, S.; Rothe, C.; Rosenstock, C.V.; Lange, K.H.W.; Lundstrøm, L.H. “Eyeball test” of thermographic patterns for predicting a successful lateral infraclavicular block. Can J Anaesth. Can. J. Anaesth. 2017, 64, 1111–1118. (In English) [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gohad, R.; Jain, S. Regional Anaesthesia, Contemporary Techniques, and Associated Advancements: A Narrative Review. Cureus 2024, 16, e65477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Możański, M.; Rustecki, B.; Kalicki, B.; Jung, A. Thermal imaging evaluation of paravertebral block for mastectomy in high risk patient: Case report. J. Clin. Monit. Comput. 2015, 29, 297–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central][Green Version]
- Kondo, Y.; Sato, S.; Takahashi, S. Changes in skin temperature following spinal and epidural anesthesia. Masui 1991, 40, 1456–1462. [Google Scholar][Green Version]
- Ginosar, Y.; Weiniger, C.F.; Kurz, V.; Babchenko, A.; Nitzan, M.; Davidson, E. Sympathectomy-mediated vasodilatation: A randomized concentration ranging study of epidural bupivacaine. Can. J. Anaesth. 2009, 56, 213–221, Erratum in Can. J. Anaesth. 2010, 57, 626. [Google Scholar] [CrossRef] [PubMed]
- Adiantara, K.R.; Kristianto, H.; Yueniwati, Y. Infrared Thermography in Detecting Peripheral Arterial Disease in Diabetic Foot: A Scoping Review. J. Health Sains 2024, 5, 154–163. [Google Scholar] [CrossRef]
- Frank, S.M.; El-Rahmany, H.K.; Tran, K.M.; Vu, B.; Raja, S.N. Comparison of lower extremity cutaneous temperature changes in patients receiving lumbar sympathetic ganglion blocks versus epidural anesthesia. J. Clin. Anesth. 2000, 12, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Bruins, A.A.; Kistemaker, K.R.J.; Boom, A.; Klaessens, J.H.G.M.; Verdaasdonk, R.M.; Boer, C. Thermographic skin temperature measurement compared with cold sensation in predicting the efficacy and distribution of epidural anesthesia. J. Clin. Monit. Comput. 32, 335–341. [CrossRef] [PubMed] [PubMed Central]
- Wang, Q.; Zhou, Y.; Ghassemi, P.; McBride, D.; Casamento, J.P.; Pfefer, T.J. Infrared Thermography for Measuring Elevated Body Temperature: Clinical Accuracy, Calibration, and Evaluation. Sensors 2022, 22, 215. [Google Scholar] [CrossRef] [PubMed]
- Politi, S.; Aloisi, A., Jr.; Bartoli, V.; Guglietta, A.; Magnifica, F. Infrared Thermography Images Acquisition for a Technical Perspective in Screening and Diagnostic Processes: Protocol Standardized Acquisition. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Campanile, L.; Marulli, F.; Mastroianni, M.; Palmiero, G.; Sanghez, C. Machine Learning-aided Automatic Calibration of Smart Thermal Cameras for Health Monitoring Applications. IoTBDS 2021, 1, 343–353. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Z.; Jin, X.; Huang, P. The diagnostic accuracy of infrared thermography in lumbosacral radicular pain: A prospective study. J. Orthop. Surg. Res. 2024, 19, 409. [Google Scholar] [CrossRef] [PubMed]
- Helmy, M.A.; Mohamed, I.H.; Mostafa, M.; Hasanin, A.; Mahmoud, M.; Elsonbaty, M.; Kamel, M.M. The Ability of Infrared Thermography to Detect Successful Caudal Block in Children Undergoing Infra-Umbilical Surgery. Paediatr. Anaesth. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.Z.; Kaczmarek, M. Artificial Intelligence in IR Thermal Imaging and Sensing for Medical Applications. Sensors 2025, 25, 891. [Google Scholar] [CrossRef]
- Asano, H.; Hirakawa, E.; Hayashi, H.; Hamada, K.; Asayama, Y.; Oohashi, M.; Uchiyama, A.; Higashino, T. A method for improving semantic segmentation using thermographic images in infants. BMC Med. Imaging 2022, 22, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| Nerve Fibre Type | Myelinated/Unmyelinated | Function |
|---|---|---|
| A-alpha | Large myelinated | Proprioception |
| A-beta | Large myelinated | Touch |
| A-gamma | Large myelinated | Motor |
| A-delta | Small myelinated | Pain and temperature |
| C-fibres | Small unmyelinated | Pain and temperature |
| Researcher Name | Number of Patients | Conduction Block Type | Technique of L/A Infiltration | Drug and Volume of L/A Used | Skin Temperature Change (Min) Predicting Successful Block |
|---|---|---|---|---|---|
| Galvin et al. [38] | 25 | Axillary brachial plexus | Nerve stimulation | 40 mL of mepivacaine 1.5% | 10 min |
| Lange et al. [39] | 46 | Individual nerve block of upper limb musculocutaneous, radial, ulnar, median | Ultrasound guidance | 6 mL of ropivacaine 0.75% | 22 min |
| Miniville et al. [40] | 30 | Infraclavicular nerve block | Nerve stimulator | Lidocaine 1.5% with 1:400,000 epinephrine 10 mL for musculocutaneous nerve response and 30 mL for radial, ulnar or medial nerve response was injected | 10 min |
| Asghar et al. [10] | 45 | Lateral infraclavicular nerve block | Ultrasound guidance | 20 mL of 0.75% ropivacaine | 30 min |
| Gamal et al. [41] | 80 | Supraclavicular nerve block | Ultrasound guidance | 25 mL of mixture of 0.5% bupicaine and 2% lidocaine in ratio of 1:1 | 10 min |
| Markus F Stevens et al. [42] | 33 | Combined femoral and sciatic nerve block | Nerve stimulator | 30 mL 0.75% prilocaine and 10 mL ropivacaine in femoral 20 mL 0.75% prilocaine and 10 mL of mepivacaine in sciatic nerve block | 10 min |
| Markus F Stevens et al. [42] | 10 | Epidural at L3/4 or L4/5 | N/A | 3 mL lidocaine 1% and 10 mL 0.75% ropivacaine | 5 min |
| Wardehausen et al. [43] | 24 | Combined femoral and sciatic nerve block, spinal or epidural anaesthesia at L4/5 | Nerve stimulator | In femoral nerve block, 30 mL 1% prilocaine and 10 mL 0.75% ropivacaine; in sciatic nerve block, 20 mL 1% prilocaine and 10 mL 0.75% ropivacaine; in epidural, 10 mL 0.75% ropivacaine; in spinal, 3 mL of 0.5% hyperbaric bupicaine used | 8.6 min after combined femoral sciatic nerve block, 4.2 min after epidural, 3.2 min after spinal anaesthesia |
| Van Harren et al. [11] | 18 | Subgluteal sciatic nerve block | Ultrasound guidance | 30 mL 0.75% ropivacaine | Temperature increased at 10 min at toes and foot |
| Yoshimura et al. [44] | 20 | SFIB nerve block | Ultrasound guidance | 30 mL of 0.25% levobupicaine | >0 °C at 5 min |
| Van Haren et al. [46] | 12 | Spinal anaesthesia at L3/4 | N/A | 3 mL 0.5% bupicaine or 3.5 mL 2% lidocaine | |
| Murphy et al. [47] | 30 | Spinal anaesthesia level at discretion of anaesthetist | N/A | Bupicaine 10–12 mg + fentanyl 15–20 mcg (n = 30) + morphine 100 mcg (n = 10) | Researcher did not mention the time |
| Bouvet et al. [48] | 53 | Lumbar epidural at L3–4 or L4–5 | Landmark technique | Test dose of 3 mL of 2% lidocaine with adrenaline (0.25%), 10–15 mL bolus of 0.1% ropivacaine with sufentanil 0.05% and infusion at 3 mL/hr with patient controlled boluses of 5 mL with a lockout time of 10 min | Skin temperature change of +0.4 to +0.9 °C measured at 20 min |
| Zhang et al. [12] | 61 | TPVB at T4 and T5 | Ultrasound guidance | 10 mL of 0.4% ropivacaine | Temperature increase at 15 min at T4 level |
| Yong chul Kim et al. [49] | 26 | LSGB at L3 and L4 | 1.5 mL of contrast (Omnipaque) and 1.5 mL of 0.75% ropivacaine | Temperature assessed after 30 min of block |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Z.U.; Iohom, G.; O’Donnell, B. Assessing the Onset of Regional Anaesthesia: The Role of Thermographic Imaging. Anesth. Res. 2025, 2, 27. https://doi.org/10.3390/anesthres2040027
Khan ZU, Iohom G, O’Donnell B. Assessing the Onset of Regional Anaesthesia: The Role of Thermographic Imaging. Anesthesia Research. 2025; 2(4):27. https://doi.org/10.3390/anesthres2040027
Chicago/Turabian StyleKhan, Zafar Ullah, Gabriella Iohom, and Brian O’Donnell. 2025. "Assessing the Onset of Regional Anaesthesia: The Role of Thermographic Imaging" Anesthesia Research 2, no. 4: 27. https://doi.org/10.3390/anesthres2040027
APA StyleKhan, Z. U., Iohom, G., & O’Donnell, B. (2025). Assessing the Onset of Regional Anaesthesia: The Role of Thermographic Imaging. Anesthesia Research, 2(4), 27. https://doi.org/10.3390/anesthres2040027

