Does the ENSO Cycle Impact the Grass Pollen Season in Auckland New Zealand, with Implications for Allergy Management?
Abstract
1. Introduction
2. Background
2.1. Trends in Allergic Disease in New Zealand
2.2. What Climate Factors Determine Grass Pollen Season Dynamics?
2.3. ENSO Climate Variability in Auckland
3. Materials and Methods
3.1. 1988/90 Pollen Monitoring
3.2. 2023/24 Pollen Monitoring
3.3. Analysis and Comparability of Pollen Monitoring Data
3.4. ENSO Characterisation of the Pollen Seasons
3.5. ENSO and Auckland Climate Data
4. Results
4.1. Auckland Grass Pollen Season 2023/24
4.2. Auckland Grass Pollen Season 1988/89
4.3. Auckland Grass Pollen Season 1989/90
5. Discussion
5.1. How Does Rainfall Influence Short-Term Grass Pollen Levels in Auckland?
5.2. Grass Pollen Variation Across the ENSO Cycle
5.3. Implications for Allergy Prevalence and Management
5.4. Climate Change Implications
5.5. Regional Heterogeneity of ENSO and Other Modes of Climate Variability
5.6. Limitations
5.6.1. Sparsity of New Zealand Pollen Data
5.6.2. Land Use Change
5.6.3. Treatment of the Missing Days for 1988/89
5.6.4. Determination of 1988/89 Pollen Season Onset
6. Conclusions and Further Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beggs, P.J.; Katelaris, C.H.; Medek, D.; Johnston, F.H.; Burton, P.K.; Campbell, B.; Jaggard, A.K.; Vicendese, D.; Bowman, D.M.; Godwin, I. Differences in grass pollen allergen exposure across Australia. Aust. N. Z. J. Public Health 2015, 39, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, W.R.; Abatzoglou, J.T.; Anderegg, L.D.; Bielory, L.; Kinney, P.L.; Ziska, L. Anthropogenic climate change is worsening North American pollen seasons. Proc. Natl. Acad. Sci. USA 2021, 118, e2013284118. [Google Scholar] [CrossRef]
- Beggs, P.J. Impacts of climate change on aeroallergens: Past and future. Clin. Exp. Allergy 2004, 34, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Beggs, P.J. Impacts of Climate Change on Allergens and Allergic Diseases; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- d’Amato, G.; Chong-Neto, H.J.; Monge Ortega, O.P.; Vitale, C.; Ansotegui, I.; Rosario, N.; Haahtela, T.; Galan, C.; Pawankar, R.; Murrieta-Aguttes, M. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 2020, 75, 2219–2228. [Google Scholar] [CrossRef]
- Haberle, S.G.; Bowman, D.M.; Newnham, R.M.; Johnston, F.H.; Beggs, P.J.; Buters, J.; Campbell, B.; Erbas, B.; Godwin, I.; Green, B.J. The macroecology of airborne pollen in Australian and New Zealand urban areas. PLoS ONE 2014, 9, e97925. [Google Scholar] [CrossRef]
- Ziska, L.H.; Makra, L.; Harry, S.K.; Bruffaerts, N.; Hendrickx, M.; Coates, F.; Saarto, A.; Thibaudon, M.; Oliver, G.; Damialis, A. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet. Health 2019, 3, e124–e131. [Google Scholar] [CrossRef]
- Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R. Climate change and future pollen allergy in Europe. Environ. Health Perspect. 2017, 125, 385–391. [Google Scholar] [CrossRef]
- Newnham, R.M. Monitoring biogeographical response to climate change: The potential role of aeropalynology. Aerobiologia 1999, 15, 87–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Steiner, A.L. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nat. Commun. 2022, 13, 1234. [Google Scholar] [CrossRef]
- Bonomo, S.; Ferrante, G.; Palazzi, E.; Pelosi, N.; Lirer, F.; Viegi, G.; La Grutta, S. Evidence for a link between the Atlantic Multidecadal Oscillation and annual asthma mortality rates in the US. Sci. Rep. 2019, 9, 11683. [Google Scholar] [CrossRef]
- Avolio, E.; Pasqualoni, L.; Federico, S.; Fornaciari, M.; Bonofiglio, T.; Orlandi, F.; Bellecci, C.; Romano, B. Correlation between large-scale atmospheric fields and the olive pollen season in Central Italy. Int. J. Biometeorol. 2008, 52, 787–796. [Google Scholar] [CrossRef]
- D’Odorico, P.; Yoo, J.C.; Jaeger, S. Changing seasons: An effect of the North Atlantic Oscillation? J. Clim. 2002, 15, 435–445. [Google Scholar] [CrossRef]
- Smith, M.; Emberlin, J. A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int. J. Biometeorol. 2006, 50, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Emberlin, J.; Stach, A.; Rantio-Lehtimäki, A.; Caulton, E.; Thibaudon, M.; Sindt, C.; Jäger, S.; Gehrig, R.; Frenguelli, G. Influence of the North Atlantic Oscillation on grass pollen counts in Europe. Aerobiologia 2009, 25, 321–332. [Google Scholar] [CrossRef]
- Stach, A.; Emberlin, J.; Smith, M.; Adams-Groom, B.; Myszkowska, D. Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London). Int. J. Biometeorol. 2008, 52, 311–321. [Google Scholar] [CrossRef]
- García-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- L’Heureux, M.L.; Levine, A.F.; Newman, M.; Ganter, C.; Luo, J.J.; Tippett, M.K.; Stockdale, T.N. ENSO prediction. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union: Washington, DC, USA, 2020; pp. 227–246. [Google Scholar] [CrossRef]
- McGregor, G.R.; Ebi, K. El Niño Southern Oscillation (ENSO) and health: An overview for climate and health researchers. Atmosphere 2018, 9, 282. [Google Scholar] [CrossRef]
- Newnham, R.M. Monitoring airborne pollen in New Zealand. J. R. Soc. N. Z. 2022, 52, 192–211. [Google Scholar] [CrossRef]
- NOAA. Working Group on Surface Pressure: Southern Oscillation Index; NOAA: Silver Spring, MA, USA, 2024. [Google Scholar]
- NIWA. Virtual Climate Station Network; NIWA: Auckland, New Zealand, 2024. [Google Scholar]
- Viegi, G.; Maio, S.; Fasola, S.; Baldacci, S. Global burden of chronic respiratory diseases. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 171–177. [Google Scholar] [CrossRef]
- Chan, A.H.Y.; Tomlin, A.; Beyene, K.; Harrison, J. Asthma exacerbations in New Zealand 2010–2019: A national population-based study. Respir. Med. 2023, 217, 107365. [Google Scholar] [CrossRef] [PubMed]
- Biagioni, B.; Annesi-Maesano, I.; D’Amato, G.; Cecchi, L. The rising of allergic respiratory diseases in a changing world: From climate change to migration. Expert Rev. Respir. Med. 2020, 14, 973–986. [Google Scholar] [CrossRef]
- Moyes, C.D.; Clayton, T.; Pearce, N.; Asher, M.I.; Ellwood, P.; Mackay, R.; Mitchell, E.; Pattemore, P.; Stewart, A.W.; Crane, J. Time trends and risk factors for rhinoconjunctivitis in New Zealand children: An International Study of Asthma and Allergies in Childhood (ISAAC) survey. J. Paediatr. Child Health 2012, 48, 913–920. [Google Scholar] [CrossRef]
- Chan, A.H.Y.; Bhalla, R.; Mcdonald, L.; Ngadi, N.; Misra, S.; Newnham, R.; Holt, K. Airborne pollen and hospital admissions for asthma: Daily time series. Eur. Respir. J. 2024, 64 (Suppl. 68), PA3125. [Google Scholar] [CrossRef]
- Osborne, N.J.; Alcock, I.; Wheeler, B.W.; Hajat, S.; Sarran, C.; Clewlow, Y.; McInnes, R.N.; Hemming, D.; White, M.; Vardoulakis, S. Pollen exposure and hospitalization due to asthma exacerbations: Daily time series in a European city. Int. J. Biometeorol. 2017, 61, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Tobias, A.; Galan, I.; Banegas, J.; Aranguez, E. Short term effects of airborne pollen concentrations on asthma epidemic. Thorax 2003, 58, 708–710. [Google Scholar] [CrossRef]
- Witonsky, J.; Abraham, R.; Toh, J.; Desai, T.; Shum, M.; Rosenstreich, D.; Jariwala, S.P. The association of environmental, meteorological, and pollen count variables with asthma-related emergency department visits and hospitalizations in the Bronx. J. Asthma 2019, 56, 927–937. [Google Scholar] [CrossRef]
- An, Y.; Ouyang, Y.; Zhang, L. Impact of airborne pollen concentration and meteorological factors on the number of outpatients with allergic rhinitis. World Allergy Organ. J. 2023, 16, 100762. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-W.; Fu, J.; Liu, X.-F.; Chen, W.-W.; Hao, J.-L.; Li, X.-L.; Pant, O.P. Air pollution and meteorological conditions significantly contribute to the worsening of allergic conjunctivitis: A regional 20-city, 5-year study in Northeast China. Light Sci. Appl. 2021, 10, 190. [Google Scholar] [CrossRef]
- Motreff, Y.; Golliot, F.; Calleja, M.; Le Pape, A.; Fuhrman, C.; Farrera, I.; Plaisant, I. Short-term effect of pollen exposure on drug consumption for allergic rhinitis and conjunctivitis. Aerobiologia 2014, 30, 35–44. [Google Scholar] [CrossRef]
- Sheng, W.; Liu, A.; Peng, H.; Wang, J.; Guan, L. A time-series analysis on generalized additive model for atmospheric pollen concentration and the number of visits of allergic conjunctivitis, Beijing, China. Environ. Sci. Pollut. Res. 2022, 29, 61522–61533. [Google Scholar] [CrossRef]
- Emberlin, J.; Mullins, J.; Corden, J.; Jones, S.; Millington, W.; Brooke, M.; Savage, M. Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clin. Exp. Allergy 1999, 29, 347–356. [Google Scholar] [CrossRef]
- Newnham, R.M.; Fountain, D.W.; Cornford, C.C.; Forde, M.B. A national survey of airborne pollen and grass flowering in New Zealand, with implications for respiratory disorder. Aerobiologia 1995, 11, 239–252. [Google Scholar] [CrossRef]
- Schramm, P.; Brown, C.; Saha, S.; Conlon, K.; Manangan, A.; Bell, J.; Hess, J. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Int. J. Biometeorol. 2021, 65, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Emberlin, J. The effects of patterns in climate and pollen abundance on allergy. Allergy 1994, 49, 15–20. [Google Scholar] [CrossRef]
- Khwarahm, N.; Dash, J.; Atkinson, P.M.; Newnham, R.M.; Skjøth, C.; Adams-Groom, B.; Caulton, E.; Head, K. Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. Int. J. Biometeorol. 2014, 58, 529–545. [Google Scholar] [CrossRef]
- Sánchez Mesa, J.A.; Smith, M.; Emberlin, J.; Allitt, U.; Caulton, E.; Galan, C. Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia 2003, 19, 243–250. [Google Scholar] [CrossRef]
- Kevat, A. Thunderstorm asthma: Looking back and looking forward. J. Asthma Allergy 2020, 13, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J. The enhancement of the practice of clinical allergy with daily pollen and spore counts. Immunol Allergy Pr. 1982, 4, 13–18. [Google Scholar]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Beggs, P.; Davies, J.; Milic, A.; Haberle, S.; Johnston, F.; Jones, P.; Katelaris, C.; Newbigin, E. Australian Airborne Pollen and Spore Monitoring Network Interim Standard and Protocols; Australasian Society of Clinical Immunology and Allergy: Brookvale, NSW, Australia, 2018. [Google Scholar]
- Davies, J.M.; Smith, B.A.; Milic, A.; Campbell, B.; Van Haeften, S.; Burton, P.; Keaney, B.; Lampugnani, E.R.; Vicendese, D.; Medek, D. The AusPollen partnership project: Allergenic airborne grass pollen seasonality and magnitude across temperate and subtropical eastern Australia, 2016–2020. Environ. Res. 2022, 214, 113762. [Google Scholar] [CrossRef]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Peel, R.G.; Kennedy, R.; Smith, M.; Hertel, O. Relative efficiencies of the Burkard 7-Day, Rotorod and Burkard Personal samplers for Poaceae and Urticaceae pollen under field conditions. Ann. Agric. Environ. Med. 2014, 21, 745–752. [Google Scholar] [CrossRef]
- Hugg, T.T.; Tuokila, M.; Korkonen, S.; Weckström, J.; Jaakkola, M.S.; Jaakkola, J.J. The effect of sampling height on grass pollen concentrations in different urban environments in the Helsinki Metropolitan Area, Finland. PLoS ONE 2020, 15, e0239726. [Google Scholar] [CrossRef]
- Rayner, N.; Parker, D.E.; Horton, E.; Folland, C.K.; Alexander, L.V.; Rowell, D.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- NIWA. NIWA National Climate Database; NIWA: Auckland, New Zealand, 2024. [Google Scholar]
- Kluska, K.; Piotrowicz, K.; Kasprzyk, I. The impact of rainfall on the diurnal patterns of atmospheric pollen concentrations. Agric. For. Meteorol. 2020, 291, 108042. [Google Scholar] [CrossRef]
- NIWA. El Niño and La Niña. Available online: https://niwa.co.nz/climate-and-weather/el-nino-and-la-nina (accessed on 6 December 2024).
- Devadas, R.; Huete, A.R.; Vicendese, D.; Erbas, B.; Beggs, P.J.; Medek, D.; Haberle, S.G.; Newnham, R.M.; Johnston, F.H.; Jaggard, A.K. Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen. Sci. Total Environ. 2018, 633, 441–451. [Google Scholar] [CrossRef]
- Khwarahm, N.R.; Dash, J.; Skjøth, C.; Newnham, R.; Adams-Groom, B.; Head, K.; Caulton, E.; Atkinson, P.M. Mapping the birch and grass pollen seasons in the UK using satellite sensor time-series. Sci. Total Environ. 2017, 578, 586–600. [Google Scholar] [CrossRef]
- Tossavainen, T.; Kivimäenpää, M.; Martikainen, M.-V.; Leskinen, A.; Heinonen, T.; Pessi, A.-M.; Louna-Korteniemi, M.; Pätsi, S.; Komppula, M.; Saarto, A. Impact of rising CO2 and temperature on grass phenology, physiology, and pollen release patterns in northern latitudes. Environ. Exp. Bot. 2024, 228, 105995. [Google Scholar] [CrossRef]
- Bodeker, G.; Tait, A.; Morgenstern, O.; Noone, D.; Revell, L.; McDonald, A.; Cullen, N.; Renwick, J.; Katurji, M. Aotearoa New Zealand Climate Change Projections Guidance: Interpreting the Latest IPCC WG1 Report Findings; Report number CR 501; Ministry for the Environment: Wellington, New Zealand, 2022. [Google Scholar]
- Davies, J.M.; Beggs, P.J.; Medek, D.E.; Newnham, R.M.; Erbas, B.; Thibaudon, M.; Katelaris, C.H.; Haberle, S.G.; Newbigin, E.J.; Huete, A.R. Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia. Sci. Total Environ. 2015, 534, 85–96. [Google Scholar] [CrossRef]
- Medek, D.E.; Beggs, P.J.; Erbas, B.; Jaggard, A.K.; Campbell, B.C.; Vicendese, D.; Johnston, F.H.; Godwin, I.; Huete, A.R.; Green, B.J. Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand. Aerobiologia 2016, 32, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
January | February | March | April | May | June | July | August | September | October | November | December | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1988 | 0.69 | 0.35 | 0.29 | −0.49 | −1.05 | −1.46 | −1.54 | −1.44 | −1.33 | −2.09 | −2.18 | −1.98 |
1989 | −1.95 | −1.37 | −1.33 | −1.11 | −0.8 | −0.64 | −0.47 | −0.58 | −0.38 | −0.4 | −0.3 | −0.13 |
1990 | 0.02 | 0.36 | 0.2 | 0.26 | 0.32 | 0 | 0.15 | 0.17 | 0.12 | 0.13 | 0.08 | 0.32 |
2023 | −0.78 | −0.62 | −0.13 | 0.24 | 0.47 | 0.95 | 1.2 | 1.56 | 1.65 | 1.59 | 2.01 | 1.81 |
2024 | 1.71 | 1.47 | 1.1 | 0.93 | 0.41 | 0.25 | 0.2 | 0.02 | −0.11 | - | - |
Summer | 1988/89 | 1989/90 | 2023/24 |
---|---|---|---|
ENSO Cycle | La Niña | El Niño (minor) | El Niño |
Site Location, latitude and longitude | War Memorial Museum −36.86201, 174.77793 | Alfred St, Onehunga −36.91755, 174.793635 | War Memorial Museum −36.86201, 174.77793 |
Pollen Sampling Method | Rotorod Cyclone | Rotorod Cyclone | Burkhard Hirst |
Height of sampler | 20 m | 2 m | 20 m |
Pollen Unit of Measurement | Grains/m3 air | Grains/m3 air | Grains/m3 air |
Sampling interval | 14/11/88–17/2/89 | 28/10/89–4/4/90 | 3/7/23–30/6/2024 |
Missing data in grass pollen season | 10 days * | 0 | 0 |
Grass Season Parameters | |||
Onset (date) | 17/11/88 | 8/11/89 | 16/11/23 |
End (date) | 27/12/88 | 1/2/90 | 31/1/24 |
Length (no days) | 42 | 86 | 77 |
Severity (SPIn) | 576 *–685 ** | 1169 | 862 |
Climate | |||
December total rainfall (mm) | 201.8 | 58.0 | 146.8 |
January total rainfall (mm) | 172.8 | 66.5 | 28.4 |
November mean temperature (℃) | 16.9 | 17.3 | 16.7 |
December mean temperature (℃) | 18.9 | 18.2 | 19.6 |
January mean temperature (℃) | 20.2 | 20.1 | 21.6 |
Temperature (°C) | 1988 | 2023 | Change | Range |
---|---|---|---|---|
November | 16.7 | 17.6 | +0.9 | 3.2 |
December | 18.5 | 19.8 | +1.3 | 5.1 |
January | 19.8 | 20.7 | +0.9 | 3.9 |
November–January total | 18.3 | 19.4 | 1.1 | |
Rainfall (mm) | 1988 | 2023 | Change | Range |
November | 100.4 | 85.8 | −14.6 | 63.2 |
December | 97.8 | 108.4 | +10.6 | 61.5 |
January | 69.8 | 101.0 | +31.2 | 71.6 |
November–January total | 89.3 | 98.4 | 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newnham, R.M.; McDonald, L.; Holt, K.; Misra, S.L.; Ngadi, N.; Ngadi, C.L.; Chan, A.H.Y. Does the ENSO Cycle Impact the Grass Pollen Season in Auckland New Zealand, with Implications for Allergy Management? Aerobiology 2025, 3, 8. https://doi.org/10.3390/aerobiology3030008
Newnham RM, McDonald L, Holt K, Misra SL, Ngadi N, Ngadi CL, Chan AHY. Does the ENSO Cycle Impact the Grass Pollen Season in Auckland New Zealand, with Implications for Allergy Management? Aerobiology. 2025; 3(3):8. https://doi.org/10.3390/aerobiology3030008
Chicago/Turabian StyleNewnham, Rewi M., Laura McDonald, Katherine Holt, Stuti L. Misra, Natasha Ngadi, Calista Liviana Ngadi, and Amy H. Y. Chan. 2025. "Does the ENSO Cycle Impact the Grass Pollen Season in Auckland New Zealand, with Implications for Allergy Management?" Aerobiology 3, no. 3: 8. https://doi.org/10.3390/aerobiology3030008
APA StyleNewnham, R. M., McDonald, L., Holt, K., Misra, S. L., Ngadi, N., Ngadi, C. L., & Chan, A. H. Y. (2025). Does the ENSO Cycle Impact the Grass Pollen Season in Auckland New Zealand, with Implications for Allergy Management? Aerobiology, 3(3), 8. https://doi.org/10.3390/aerobiology3030008