Electrospray Ionization—Mass Spectrometry Characterization of Pine Bark Extracts
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Seabra, I.J.; Chim, R.B.; Salgueiro, P.; Braga, M.E.M.; de Sousa, H.C. Influence of solvent additives on the aqueous extraction of tannins from pine bark: Potential extracts for leather tanning. J. Chem. Technol. 2018, 93, 919–1212. [Google Scholar] [CrossRef]
- Conde, M.; Combalia, F.; Ollé, L.; Bacardit, A. Pine tannin extraction from residues of pine forest exploitation. J. Am. Leather Chem. Assoc. 2020, 115, 215–221. [Google Scholar] [CrossRef]
- Conde, M.; Combalia, F.; Baquero, G.; Ollé, L.; Bacardit, A. Exploring the feasibility of substituting Mimosa tannin for pine bark powder. A LCA perspective. Clean. Eng. Technol. 2022, 7, 100425. [Google Scholar] [CrossRef]
- Das, R.K.; Mizan, A.; Zohra, F.; Ahmed, S.; Ahmed, K.S.; Hossain, H. Extraction of a novel tanning agent from indigenous plant bark and its application in leather processing. J. Leather Sci. Eng. 2022, 4, 18. [Google Scholar] [CrossRef]
- Hassan, M.M.; Harris, J.; Busfield, J.C.; Bilotti, E. A review of the green chemistry approaches to leather tanning in imparting sustainable leather manufacturing. Green Chem. 2023, 25, 7441–7469. [Google Scholar] [CrossRef]
- Krishnamoorthy, G.; Sadulla, S.; Sehgal, P.K.; Mandal, A.B. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids. J. Hazard. Mater. 2012, 215, 173–182. [Google Scholar] [CrossRef]
- China, C.R.; Maguta, M.M.; Nyandoro, S.S.; Hilonga, A.; Kanth, S.V.; Njau, K.N. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review. Chemosphere 2020, 254, 126804. [Google Scholar] [CrossRef] [PubMed]
- Facchin, M.; Gatto, V.; Samiolo, R.; Conca, S.; Santandrea, D.; Beghetto, V. May 1,3,5-Triazine derivatives be the future of leather tanning? A critical review. Environ. Pollut. 2024, 345, 23472. [Google Scholar] [CrossRef]
- Gatto, V.; Conca, S.; Bardella, N.; Beghetto, V. Efficient Triazine Derivatives for Collagenous Materials Stabilization. Materials 2021, 14, 3069. [Google Scholar] [CrossRef]
- Beghetto, V.; Gatto, V.; Conca, S.; Bardella, N.; Scrivanti, A. Polyamidoamide Dendrimers and Cross-Linking Agents for Stabilized Bioenzymatic Resistant Metal-Free Bovine Collagen. Molecules 2019, 24, 3611. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manage. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Turco, M.; Bedia, J.; Di Liberto, F.; Fiorucci, P.; von Hardenberg, J.; Koutsias, N.; Llasat, M.C.; Xystrakis, F.; Provenzale, A. Decreasing fires in mediterranean Europe. PLoS ONE 2016, 11, e0150663. [Google Scholar] [CrossRef]
- Sağlam, B.; Boyatan, M.; Sivrikaya, F. An innovative tool for mapping forest fire risk and danger: Case studies from eastern Mediterranean. Scott. Geogr. J. 2023, 139, 160–180. [Google Scholar] [CrossRef]
- Feria-Reyes, R.; Ramírez-Cruz, S.O.; Ruiz-Aquino, F.; Robledo-Taboada, L.H.; Sánchez-Medina, M.A.; Mijangos-Ricárdez, O.F.; Gabriel-Parra, R.; Suárez-Mota, M.E.; Puc-Kauil, R.; Porcallo-Vargas, J. Pine bark as a potential source of condensed tannin: Analysis through fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). Forests 2023, 14, 1433. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier–El Bouhtoury, F. Tannins extraction: A key point for their valorization and cleaner production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef]
- Aspé, E.; Fernández, K. The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Ind. Crops Prod. 2011, 34, 838–844. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J. Appl. Res. Med. Aromat. Plants 2018, 11, 12–17. [Google Scholar] [CrossRef]
- Chin, F.S.; Chong, K.P.; Markus, A.; Wong, N.K. Tea polyphenols and alkaloids content using soxhlet and direct extraction methods. World J. Agric. Sci. 2013, 9, 266–270. [Google Scholar]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat-and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef]
- Safdar, M.N.; Kausar, T.; Nadeem, M. Comparison of ultrasound and maceration techniques for the extraction of polyphenols from the mango peel. J. Food Process. Preserv. 2017, 41, e13028. [Google Scholar] [CrossRef]
- Shang, A.; Gan, R.Y.; Zhang, J.R.; Xu, X.Y.; Luo, M.; Liu, H.Y.; Li, H.B. Optimization and characterization of microwave-assisted hydro-distillation extraction of essential oils from Cinnamomum camphora leaf and recovery of polyphenols from extract fluid. Molecules 2020, 25, 3213. [Google Scholar] [CrossRef]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction kinetics of phenolic antioxidants from the hydro distillation residues of rosemary and effect of pretreatment and extraction parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef]
- Alice, G.; Corina, B.; Lucia, P.; Sultana, N.; Bazdoaca, C.; Nicoleta, D. Polyphenol content dynamics in hydrodistillation water residues of lamiaceae species. J. Essent. Oil-Bear. Plants 2019, 22, 858–864. [Google Scholar] [CrossRef]
- Farías-Campomanes, A.M.; Rostagno, M.A.; Coaquira-Quispe, J.J.; Meireles, M.A.A. Supercritical fluid extraction of polyphenols from lees: Overall extraction curve, kinetic data and composition of the extracts. Bioresour. Bioprocess 2015, 2, 45. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluid 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Konkol, M.; Rój, E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef]
- Caballero, A.S.; Romero-García, J.M.; Castro, E.; Cardona, C.A. Supercritical fluid extraction for enhancing polyphenolic compounds production from olive waste extracts. J. Chem. Technol. 2020, 95, 356–362. [Google Scholar] [CrossRef]
- d’Alessandro, L.G.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Both, S.; Chemat, F.; Strube, J. Extraction of polyphenols from black tea–conventional and ultrasound assisted extraction. Ultrason. Sonochem. 2014, 21, 1030–1034. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef]
- Casazza, A.A.; Pettinato, M.; Perego, P. Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Sep. Purif. Technol. 2020, 240, 116640. [Google Scholar] [CrossRef]
- ISO 14088:2020; Leather—Chemical Tests—Quantitative Analysis of Tanning Agents by Filter Method. AENOR: Madrid, Spain, 2020.
- Arbenz, A.; Avérous, L. Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 2015, 17, 2626. [Google Scholar] [CrossRef]
- Sinkkonen, J.; Karonen, M.; Liimantainen, J.; Pihlaja, K. Lignans from the bark extract of Pinus sylvestris L. Magn. Reson. Chem. 2006, 44, 633–636. [Google Scholar] [CrossRef]
Parameter | Units | Pine Bark Powder | Pine Bark Extract |
---|---|---|---|
Non-tannins | % | 4.9 | 33.5 |
Soluble substances | % | 31.0 | 78.6 |
Tannins | % | 26.2 | 45.1 |
Insoluble substances | % | 62.2 | 14.0 |
Water | % | 6.8 | 7.4 |
pH solution | 6.0 | 4.5 |
Formula | Sample | Retention Time (minutes) | [M-H]− Theoretical | [M-H]− Experimental | Error (ppm) | Compound Defined by [M-H]− | |
---|---|---|---|---|---|---|---|
1 | C7H6O4 | Powder | 5.38 | 153.0193 | 153.0196 | 1.88 | Protocatechuic acid |
Extract | 5.46 | 153.0193 | 153.0193 | 0.33 | Protocatechuic acid | ||
2 | C15H14O6 | Powder | 12.22 | 289.0718 | 289.0719 | 0.36 | (+)-catechin |
Extract | 12.33 | 289.0718 | 289.0714 | 1.09 | (+)-catechin | ||
3 | C15H14O6 | Powder | 16.08 | 289.0718 | 289.0718 | 0.08 | (−)-epicatechin |
Extract | 16.77 | 289.0718 | 289.0715 | 0.85 | (−)-epicatechin | ||
4 | C30H26O12 | Powder | 11.58 | 577.1351 | 577.1357 | 0.99 | Procyanidin B1 |
Extract | 11.71 | 577.1351 | 577.1353 | 0.93 | Procyanidin B1 | ||
5 | C30H26O12 | Powder | 12.59 | 577.1351 | 577.1350 | 0.18 | Procyanidin B2 |
Extract | 12.64 | 577.1351 | 577.1362 | 1.79 | Procyanidin B2 | ||
6 | C15H12O7 | Powder | 22.71 | 303.0510 | 303.0505 | 1.84 | (+)-taxifolin |
Extract | 22.83 | 303.0510 | 303.0509 | 0.44 | (+)-taxifolin | ||
7 | C15H12O7 | Powder | 23.75 | 303.0510 | 303.0505 | 1.61 | (−)-taxifolin |
Extract | 23.87 | 303.0510 | 303.0508 | 0.66 | (−)-taxifolin | ||
8 | C15H10O7 | Powder | - - - | 301.0354 | n.d. | n.d. | - - - |
Extract | 32.21 | 301.0354 | 301.0352 | 0.69 | Quercetin | ||
9 | C19H22O5 | Powder | 30.44 (1) | 329.1394 | 329.1392 | 0.69 | 4-[3-hydroxymethyl-5-(3-hydroxypropyl)-2,3-dihydroxyben-zofuran-2-yl]-2-methoxyphenol |
Extract | 30.55 (1) | 329.1394 | 329.1391 | 1.01 | 4-[3-hydroxymethyl-5-(3-hydroxypropyl)-2,3-dihydroxyben-zofuran-2-yl]-2-methoxyphenol | ||
10 | C20H26O7 | Powder | n.d. | 377.1606 | n.d. | n.d. | 1-[-4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypro-pyl)-2-ethoxypheno-xy]-propane-1,3-diol |
Extract | n.d | 377.1606 | n.d. | n.d. | 1-[-4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypro-pyl)-2-ethoxypheno-xy]-propane-1,3-diol | ||
11 | C20H22O7 | Powder | 31.76 (1) | 373.1293 | 373.1296 | 1.32 | Pinopalustrin |
Extract | 31.87 (1) | 373.1293 | 373.1298 | 1.82 | Pinopalustrin | ||
12 | C9H12 | Powder | n.d. | 119.0866 | n.d. | n.d. | Phenylpropane |
Extract | n.d. | 119.0866 | n.d. | n.d. | Phenylpropane | ||
13 | C11H14O4 | Powder | n.d. | 209.0819 | n.d. | n.d. | Sinapic alcohol |
Extract | n.d. | 209.0819 | n.d. | n.d. | Sinapic alcohol | ||
14 | C10H12O3 | Powder | n.d. | 179.0714 | n.d. | n.d. | Coniferyl alcohol |
Extract | n.d. | 179.0714 | n.d. | n.d. | Coniferyl alcohol | ||
15 | C9H10O2 | Powder | n.d. | 149.0608 | n.d. | n.d. | p-Coumaric alcohol |
Extract | n.d. | 149.0608 | n.d. | n.d. | p-Coumaric alcohol |
Polyphenol | Sample | Retention Time (min) | R2 Calibration Curve | Concentration mg/kg |
---|---|---|---|---|
Protocatechuic acid | Powder | 5.10 | 0.9995 | 68.4 |
Protocatechuic acid | Extract | 5.17 | 0.9995 | 1214.3 |
(+)-catechin | Powder | 11.78 | 0.9996 | 98.4 |
(+)-catechin | Extract | 11.74 | 0.9996 | 2098.0 |
(+)-taxifolin | Powder | 21.84 | 0.9994 | 242.2 |
(+)-taxifolin | Extract | 21.81 | 0.9994 | 4017.0 |
(−)-epicatechin | Powder | 16.13 | 0.9979 | 360.3 |
(−)-epicatechin | Extract | 16.02 | 0.9979 | 2163.0 |
Procyanidin A1 | Powder | 21.57 | 0.9999 | 19.47 |
Procyanidin A1 | Extract | n.d. | 0.9999 | n.d. |
Procyanidin A2 | Powder | n.d. | 0.9999 | n.d. |
Procyanidin A2 | Extract | n.d. | 0.9999 | n.d. |
Procyanidin B1 | Powder | 11.13 | 1.0000 | 59.3 |
Procyanidin B1 | Extract | 11.13 | 1.0000 | 917.0 |
Procyanidin B2 | Powder | 15.76 | 1.0000 | 85.9 |
Procyanidin B2 | Extract | 15.66 | 1.0000 | 101.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde, M.; Solé, M.M.; Sorolla, S.; Casas, C.; Bacardit, A. Electrospray Ionization—Mass Spectrometry Characterization of Pine Bark Extracts. NDT 2024, 2, 143-159. https://doi.org/10.3390/ndt2020009
Conde M, Solé MM, Sorolla S, Casas C, Bacardit A. Electrospray Ionization—Mass Spectrometry Characterization of Pine Bark Extracts. NDT. 2024; 2(2):143-159. https://doi.org/10.3390/ndt2020009
Chicago/Turabian StyleConde, Mireia, Maria Mercè Solé, Sílvia Sorolla, Concepció Casas, and Anna Bacardit. 2024. "Electrospray Ionization—Mass Spectrometry Characterization of Pine Bark Extracts" NDT 2, no. 2: 143-159. https://doi.org/10.3390/ndt2020009
APA StyleConde, M., Solé, M. M., Sorolla, S., Casas, C., & Bacardit, A. (2024). Electrospray Ionization—Mass Spectrometry Characterization of Pine Bark Extracts. NDT, 2(2), 143-159. https://doi.org/10.3390/ndt2020009