Sustainability Assessment in Recombinant Human Insulin Production—Evaluating the Environmental Impacts of Microbial Growth Medium Components and Formulations
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Understanding the Environmental Impact of Different Pre-Cultivation Growth Medium Preparations Used for E. coli
3.2. Understanding the Environmental Impact of Different Pre-Cultivation Growth Medium Preparations Used for Yeast
3.3. Comparative Assessment of Growth Media and Gene Expression Induction Strategies for E. coli and Yeast
3.4. Towards Designing More Sustainable Growth Medium Formulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LCA | Life Cycle Assessment |
E. coli | Escherichia coli |
S. cerevisiae | Saccharomyces cerevisiae |
P. pastoris | Pichia pastoris |
MO | Microorganism |
LCI | Life Cycle Inventory |
IPTG | Isopropyl β-D-thiogalactopyranoside |
IBCG | Isobutyl-C-galactoside |
CFC-113 | 1,1,2-Trichloro-1,2,2-trifluoroethane |
CFC-10 | Tetrachloromethane |
EDTA | Ethylenediaminetetraacetic acid |
PM | Particulate Matter |
References
- Dağaşan, S.; Erbaş, O. Insulin structure, function and diabetes models in animals. J. Exp. Basic Med. Sci. 2020, 1, 96–101. [Google Scholar] [CrossRef]
- Ladisch, M.R.; Kohlmann, K.L. Recombinant human insulin. Biotechnol. Prog. 1992, 8, 469–478. [Google Scholar] [CrossRef]
- Schmidt, M.; Babu, K.; Khanna, N.; Marten, S.; Rinas, U. Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J. Biotechnol. 1999, 68, 71–83. [Google Scholar] [CrossRef]
- Baeshen, N.A.; Baeshen, M.N.; Sheikh, A.; Bora, R.S.; Ahmed, M.M.M.; Ramadan, H.A.; Saini, K.S.; Redwan, E.M. Cell factories for insulin production. Microb. Cell Factories 2014, 13, 1–9. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Website. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 12 March 2025).
- Health Action International (HAI) Website. Available online: https://haiweb.org/ (accessed on 12 March 2025).
- Basu, S.; Yudkin, J.S.; Kehlenbrink, S.; Davies, J.I.; Wild, S.H.; Lipska, K.J.; Sussman, J.B.; Beran, D. Estimation of global insulin use for type 2 diabetes, 2018–2030: A microsimulation analysis. Lancet Diabetes Endocrinol. 2019, 7, 25–33. [Google Scholar] [CrossRef] [PubMed]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef]
- Quianzon, C.C.; Cheikh, I. History of insulin. J. Community Hosp. Intern. Med. Perspect. 2012, 2, 18701. [Google Scholar] [CrossRef]
- Nielsen, J. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering. Bioengineered 2013, 4, 207–211. [Google Scholar] [CrossRef]
- Kaki, S.B.; Naga Prasad, A.; Chintagunta, A.D.; Dirisala, V.R.; Sampath Kumar, N.S.; Naidu, S.J.K.; Ramesh, B. Industrial scale production of recombinant human insulin using Escherichia coli BL-21. Iran. J. Sci. Technol. Trans. A Sci. 2022, 46, 373–383. [Google Scholar] [CrossRef]
- Bhoria, S.; Yadav, J.; Yadav, H.; Chaudhary, D.; Jaiwal, R.; Jaiwal, P.K. Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Biotechnol. Lett. 2022, 44, 643–669. [Google Scholar] [CrossRef]
- Liu, M.; Hodish, I.; Rhodes, C.J.; Arvan, P. Proinsulin maturation, misfolding, and proteotoxicity. Proc. Natl. Acad. Sci. USA 2007, 104, 15841–15846. [Google Scholar] [CrossRef]
- Landreh, M.; Johansson, J.; Wahren, J.; Jörnvall, H. The structure, molecular interactions and bioactivities of proinsulin C-peptide correlate with a tripartite molecule. Biomol. Concepts 2014, 5, 109–118. [Google Scholar] [CrossRef]
- Sahoo, A.; Das, P.K.; Dasu, V.V.; Patra, S. Insulin evolution: A holistic view of recombinant production advancements. Int. J. Biol. Macromol. 2024, 277, 133951. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.K.; Lee, S.B.; Son, Y.J. Large-scale refolding and enzyme reaction of human preproinsulin for production of human insulin. J. Microbiol. Biotechnol. 2015, 25, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Savelski, M.J.; Slater, C.S.; Tozzi, P.V.; Wisniewski, C.M. On the simulation, economic analysis, and life cycle assessment of batch-mode organic solvent recovery alternatives for the pharmaceutical industry. Clean Technol. Environ. Policy 2017, 19, 2467–2477. [Google Scholar] [CrossRef]
- Ayafor, C.; Burton, T.; George, N.; Morose, G.; Wong, H.W. Safer Solvents for Active Pharmaceutical Ingredient Purification Using Column Chromatography. ACS Environ. Au 2024, 4, 236–247. [Google Scholar] [CrossRef]
- Riikonen, S.; Timonen, J.; Sikanen, T. Environmental considerations along the life cycle of pharmaceuticals: Interview study on views regarding environmental challenges, concerns, strategies, and prospects within the pharmaceutical industry. Eur. J. Pharm. Sci. 2024, 196, 106743. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.; Kolpin, D.W.; Leung, K.M.; Lai, R.W.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef]
- Paut Kusturica, M.; Jevtic, M.; Ristovski, J.T. Minimizing the environmental impact of unused pharmaceuticals: Review focused on prevention. Front. Environ. Sci. 2022, 10, 1077974. [Google Scholar] [CrossRef]
- Rogowska, J.; Zimmermann, A. Household pharmaceutical waste disposal as a global problem—A review. Int. J. Environ. Res. Public Health 2022, 19, 15798. [Google Scholar] [CrossRef]
- Chau, C. Using Life Cycle Assessment as a Tool to Evaluate and Make Recommendations for Future Biopharmaceutical Manufacture. Ph.D. Thesis, University College London, London, UK, 2021. [Google Scholar]
- European Union—Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Available online: https://eur-lex.europa.eu/eli/dir/2010/75/oj/eng (accessed on 12 March 2025).
- Petrides, D.; Sapidou, E.; Calandranis, J. Computer-aided process analysis and economic evaluation for biosynthetic human insulin production—A case study. Biotechnol. Bioeng. 1995, 48, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Heinzle, E.; Biwer, A.P.; Cooney, C.L. Part II: Bioprocess Case Studies—Chapter 12: 12. Recombinant Human Insulin. In Development of Sustainable Bioprocesses: Modeling and Assessment; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Wilkins, D. Method for Assessing the Environmental Impact of Chronic Disease Treatments. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2020. [Google Scholar]
- Pfützner, A.; Musholt, P.B.; Malmgren-Hansen, B.; Nilsson, N.H.; Forst, T. Analysis of the environmental impact of insulin infusion sets based on loss of resources with waste. J. Diabetes Sci. Technol. 2011, 5, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Bellier, L.; Antier, C.; Soggiu, M.; Virely, N.; Laporte, L.; Sivignon, M.; Kind, B. EE212 Environmental Impact of Switching from Daily to Weekly Basal Insulin Administration in France. Value Health 2024, 27, S96. [Google Scholar] [CrossRef]
- Simpson, V.; Jones, A. Switching to reusable cartridge insulin pens can reduce National Health Service costs while delivering environmental benefits. Diabet. Med. 2024, 41, e15409. [Google Scholar] [CrossRef]
- Shin, C.S.; Hong, M.S.; Bae, C.S.; Lee, J. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21 (DE3)[pET-3aT2M2]. Biotechnol. Prog. 1997, 13, 249–257. [Google Scholar] [CrossRef]
- Cho, C.W.; Park, S.H.; Nam, D.H. Production and purification of single chain human insulin precursors with various fusion peptides. Biotechnol. Bioprocess Eng. 2001, 6, 144–149. [Google Scholar] [CrossRef]
- Nurdiani, D.; Hariyatun, H.; Utami, N.; Putro, E.W.; Kusharyoto, W. Enhancement in human insulin precursor secretion by Pichia pastoris through modification of expression conditions. HAYATI J. Biosci. 2022, 29, 22–30. [Google Scholar] [CrossRef]
- Kazemi Seresht, A.; Cruz, A.L.; de Hulster, E.; Hebly, M.; Palmqvist, E.A.; van Gulik, W.; Daran, J.M.; Pronk, J.; Olsson, L. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production. Biotechnol. Bioeng. 2013, 110, 2749–2763. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 12 March 2025).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirement and Guidelines. ISO: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 12 March 2025).
- Andreasi Bassi, S.; Biganzoli, F.; Ferrara, N.; Amadei, A.; Valente, A.; Sala, S.; Ardente, F. Updated Characterisation and Normalisation Factors for the Environmental Footprint 3.1 Method; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Morales-Gonzalez, O.M.; Escribà-Gelonch, M.; Hessel, V. Life cycle assessment of vitamin D3 synthesis: From batch to photo-high p, T. Int. J. Life Cycle Assess. 2019, 24, 2111–2127. [Google Scholar] [CrossRef]
- Ponder, C.; Overcash, M. Cradle-to-gate life cycle inventory of vancomycin hydrochloride. Sci. Total Environ. 2010, 408, 1331–1337. [Google Scholar] [CrossRef]
- Chemical Book Website, CAS Database List, IPTG Synthesis. Available online: https://www.chemicalbook.com/synthesis/iptg.htm (accessed on 12 March 2025).
- Ko, K.S.; Kruse, J.; Pohl, N.L. Synthesis of isobutyl-C-galactoside (IBCG) as an isopropylthiogalactoside (IPTG) substitute for increased induction of protein expression. Org. Lett. 2003, 5, 1781–1783. [Google Scholar] [CrossRef]
- Relph, R.; Connelly, J.; Arnold, R.; Grant, S. Autoclave Impact Evaluation. Report Produced by My Green Lab with Funding Support from NRDL and Envetec. 2023. Available online: https://www.mygreenlab.org/autoclave-impact-evaluation.html (accessed on 12 March 2025).
- Joteo Electricity Usage Calculator Website. Available online: https://joteo.net/electricity-usage-calculator (accessed on 12 March 2025).
- Chatzipanagiotou, K.R.; Jourdin, L.; Bitter, J.H.; Strik, D.P. Concentration-dependent effects of nickel doping on activated carbon biocathodes. Catal. Sci. Technol. 2022, 12, 2500–2518. [Google Scholar] [CrossRef]
- Kühne, S.; Roßberg, D.; Röhrig, P.; Von Mehring, F.; Weihrauch, F.; Kanthak, S.; Kienzle, J.; Patzwahl, W.; Reiners, E.; Gitzel, J. The use of copper pesticides in Germany and the search for minimization and replacement strategies. Org. Farming 2017, 3, 66–75. [Google Scholar] [CrossRef]
- Tamm, L.; Thuerig, B.; Apostolov, S.; Blogg, H.; Borgo, E.; Corneo, P.E.; Fittje, S.; de Palma, M.; Donko, A.; Experton, C.; et al. Use of copper-based fungicides in organic agriculture in twelve European countries. Agronomy 2022, 12, 673. [Google Scholar] [CrossRef]
- Varga, K.; Fehér, J.; Trugly, B.; Drexler, D.; Leiber, F.; Verrastro, V.; Magid, J.; Chylinski, C.; Athanasiadou, S.; Thuerig, B.; et al. The state of play of copper, mineral oil, external nutrient input, anthelmintics, antibiotics and vitamin usage and available reduction strategies in organic farming across Europe. Sustainability 2022, 14, 3182. [Google Scholar] [CrossRef]
- Jin, Y.; Behrens, P.; Tukker, A.; Scherer, L. Water use of electricity technologies: A global meta-analysis. Renew. Sustain. Energy Rev. 2019, 115, 109391. [Google Scholar] [CrossRef]
- Sutter, J. Life Cycle Inventories of Highly Pure Chemicals; Ecoinvent report No. 19; Swiss Centre for Life Cycle Inventories: Dübendorf, Germany, 2007; Available online: https://www.researchgate.net/publication/313054431_Life_Cycle_Inventories_of_Highly_Pure_Chemicals_Data_v20_Uster_2007 (accessed on 12 March 2025).
- Kim, N.-W.; Im, D.-W.; Kim, S.-S. Manufacturing Method of Polyamide Composite Membrane. Korean Patent KR19990070134A, 15 September 1999. Available online: https://patents.google.com/patent/KR19990070134A/en (accessed on 12 March 2025).
- Bonton, A.; Bouchard, C.; Barbeau, B.; Jedrzejak, S. Comparative life cycle assessment of water treatment plants. Desalination 2012, 284, 42–54. [Google Scholar] [CrossRef]
- Lin, C.K.; Lin, R.T.; Chen, P.C.; Wang, P.; De Marcellis-Warin, N.; Zigler, C.; Christiani, D.C. A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. Sci. Rep. 2018, 8, 2611. [Google Scholar] [CrossRef]
- Saito, T.; Fujiwara, K. Causal analysis of nitrogen oxides emissions process in coal-fired power plant with LiNGAM. Front. Anal. Sci. 2023, 3, 1045324. [Google Scholar] [CrossRef]
- New South Wales (NSW) Government. NSW Resources Website, Fact Sheet Airborne Contaminants—Coal Mines. 2024. Available online: https://www.resources.nsw.gov.au/sites/default/files/2024-02/fact-sheet-airborne-contaminants-coal-mines.pdf (accessed on 12 March 2025).
- Vetterlein, D.; Bergmann, C.; Hüttl, R.F. Phosphorus availability in different types of open-cast mine spoil and the potential impact of organic matter application. Plant Soil 1999, 213, 189–194. [Google Scholar] [CrossRef]
- Doka, G. Life Cycle Inventory of the Disposal of Lignite Spoil, Coal Spoil and Coal Tailings; Commissioned by the Swiss Centre for Life Cycle Inventories Ecoinvent Centre; Doka Life Cycle Assessments: Zurich, Switzerland, 15 September 2009; Available online: https://www.doka.ch/DokaCoalTailings.pdf (accessed on 12 March 2025).
- Kirby, B.M.; Vengadajellum, C.J.; Burton, S.G.; Cowan, D.A. Coal, Coal Mines and Spoil Heaps. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Costantino, J.P.; Redmond, C.K.; Bearden, A. Occupationally related cancer risk among coke oven workers: 30 years of follow-up. J. Occup. Environ. Med. 1995, 37, 597–604. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA); National Service Center for Environmental Publications (NSCEP); National Environmental Publications Internet Site (NEPIS) Website. Coke Oven Emissions Report (Publication Number 740F16059). 2016. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P10104A1.txt (accessed on 12 March 2025).
- Weem, A.P. Reduction of Mercury Emissions from Coal Fired Power Plants. United Nations—Economic and Social Council—United Nations Economic Commission for Europe (UNECE)—Working Group on Strategies and Review, Forty-Eighth Session, Geneva Informal Document No. 3. 2011. Available online: https://unece.org/fileadmin/DAM/env/documents/2011/eb/wg5/WGSR48/Informal%20docs/Info.doc.3_Reduction_of_mercury_emissions_from_coal_fired_power_plants.pdf (accessed on 12 March 2025).
- Charvát, P.; Klimeš, L.; Pospíšil, J.; Klemeš, J.J.; Varbanov, P.S. An overview of mercury emissions in the energy industry—A step to mercury footprint assessment. J. Clean. Prod. 2020, 267, 122087. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, J.; Li, G.; Zheng, Y.; Li, R.; Yue, T. Bibliometric analysis on mercury emissions from coal-fired power plants: A systematic review and future prospect. Environ. Sci. Pollut. Res. 2024, 31, 19148–19165. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, G.; Siepi, G.; Miligi, L.; Vineis, P. Solvents in pesticides. Scand. J. Work Environ. Health 1993, 19, 63–65. [Google Scholar] [CrossRef]
- Böhm, S.; Beth-Hübner, M. Chloroformic Esters. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90. [Google Scholar] [CrossRef]
- Vilanova, E.; Estevan, C.; Sogorb, M.A.; Estévez, J. Chloroform. In Encyclopedia of Toxicology, 4th ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2024; Volume 2, pp. 921–928. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Saha, J.G.; McKinlay, K.S. Use of mercury in agriculture and its relationship to environmental pollution. Toxicol. Environ. Chem. 1973, 1, 271–290. [Google Scholar] [CrossRef]
- Li, R.; Wu, H.; Ding, J.; Fu, W.; Gan, L.; Li, Y. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants. Sci. Rep. 2017, 7, 46545. [Google Scholar] [CrossRef]
- Shi, T.; Gong, Y.; Ma, J.; Wu, H.; Yang, S.; Ju, T.; Qu, Y.; Liu, L. Soil-air exchange of mercury from agricultural fields in Zhejiang, East China: Seasonal variations, influence factors, and models of fluxes. Chemosphere 2020, 249, 126063. [Google Scholar] [CrossRef]
- Theys, T.; Van Lierde, N.; Wavreille, A. Water management in phosphoric acid: A processes comparison. Procedia Eng. 2016, 138, 472–480. [Google Scholar] [CrossRef]
- Bertau, M.; Wellmer, F.W.; Scholz, R.W.; Mew, M.; Zenk, L.; Aubel, I.; Fröhlich, P.; Raddant, M.; Steiner, G. The Future of Phosphoric Acid Production–Why We Have to Leave Trodden Paths. ChemSusChem 2025, 18, e202401155. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, X.; Deng, J.; Li, G.; Li, Z.; Jiang, J.; Wu, Q.; Duan, L. Emission characteristics of heavy metals from a typical copper smelting plant. J. Hazard. Mater. 2022, 424, 127311. [Google Scholar] [CrossRef]
- Van Genderen, E.; Wildnauer, M.; Santero, N.; Sidi, N. A global life cycle assessment for primary zinc production. Int. J. Life Cycle Assess. 2016, 21, 1580–1593. [Google Scholar] [CrossRef]
- Althaus, H.J.; Classen, M. Life cycle inventories of metals and methodological aspects of inventorying material resources in ecoinvent (7 pp). Int. J. Life Cycle Assess. 2005, 10, 43–49. [Google Scholar] [CrossRef]
- Vallee, B.L. The function of trace elements in biology. Sci. Mon. 1951, 72, 368–376. [Google Scholar]
- Gumienna-Kontecka, E.; Rowińska-Żyrek, M.; Łuczkowski, M. Chapter 9—The role of trace elements in living organisms. In Recent Advances in Trace Elements; Chojnacka, K., Saeid, A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Gladyshev, V.N. Comparative genomics of trace elements: Emerging dynamic view of trace element utilization and function. Chem. Rev. 2009, 109, 4828–4861. [Google Scholar] [CrossRef]
- Guéablé, Y.K.D.; Soulaimani, A.; Hafidi, M.; El Gharous, M.; El Mejahed, K. New sustainable strategy for rehabilitating phosphate mining sites using phosphate industry by-products and sludge integrating Argan, Carob, and Olive trees. Environ. Technol. Innov. 2024, 35, 103651. [Google Scholar] [CrossRef]
- Belboom, S.; Szöcs, C.; Léonard, A. Environmental impacts of phosphoric acid production using di-hemihydrate process: A Belgian case study. J. Clean. Prod. 2015, 108, 978–986. [Google Scholar] [CrossRef]
- Massella, O.; Holmgren, N.; Pettersson, R.; Sundh, J.; Månsson, O. From Lab-Scale to Industrial-Scale Production. Bachelor’s Thesis, Uppsala University, Uppsala, Sweden, 2025. Available online: https://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-558394 (accessed on 15 March 2025).
- Salim, I.; Gonzalez-Garcia, S.; Feijoo, G.; Moreira, M.T. Assessing the environmental sustainability of glucose from wheat as a fermentation feedstock. J. Environ. Manag. 2019, 247, 323–332. [Google Scholar] [CrossRef]
- Blanco, J.; Iglesias, J.; Morales, G.; Melero, J.A.; Moreno, J. Comparative life cycle assessment of glucose production from maize starch and woody biomass residues as a feedstock. Appl. Sci. 2020, 10, 2946. [Google Scholar] [CrossRef]
- Abu-Bakar, N.A.; Roslan, A.M.; Hassan, M.A.; Rahman, M.H.A.; Ibrahim, K.N.; Abd Rahman, M.D.; Mohamad, R. Environmental impact assessment of rice mill waste valorisation to glucose through biorefinery platform. Sci. Rep. 2023, 13, 14767. [Google Scholar] [CrossRef]
- Baccile, N.; Babonneau, F.; Banat, I.M.; Ciesielska, K.; Cuvier, A.S.; Devreese, B.; Everaert, B.; Lydon, H.; Marchant, R.; Mitchell, C.A.; et al. Development of a cradle-to-grave approach for acetylated acidic sophorolipid biosurfactants. ACS Sustain. Chem. Eng. 2017, 5, 1186–1198. [Google Scholar] [CrossRef]
- Ortiz-Reyes, E.; Anex, R.P. Economic and environmental performance of non-cellulosic fermentable carbohydrates production for biofuels and chemicals. J. Clean. Prod. 2022, 353, 131526. [Google Scholar] [CrossRef]
- Melnik, L.A.; Krysenko, D.A. Ultrapure water: Properties, production, and use. J. Water Chem. Technol. 2019, 41, 143–150. [Google Scholar] [CrossRef]
- Deshmukh, S. Ultrapure Water Production. In Handbook of Water and Used Water Purification; Lahnsteiner, J., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Tien, S.W.; Chung, Y.C.; Tsai, C.H.; Yang, Y.K.; Wu, M.C. Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing. Int. J. Qual. Innov. 2005, 6, 173–189. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Cheng, Y.; Sun, H.; Bai, S.; Li, C. Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment. Sci. Total Environ. 2021, 769, 144771. [Google Scholar] [CrossRef] [PubMed]
- Vanapalli, K.R.; Bhar, R.; Maity, S.K.; Dubey, B.K.; Kumar, S.; Kumar, V. Life cycle assessment of fermentative production of lactic acid from bread waste based on process modelling using pinch technology. Sci. Total Environ. 2023, 905, 167051. [Google Scholar] [CrossRef]
- Herrera, A.; D’Imporzano, G.; Fernandez, F.G.A.; Adani, F. Sustainable production of microalgae in raceways: Nutrients and water management as key factors influencing environmental impacts. J. Clean. Prod. 2021, 287, 125005. [Google Scholar] [CrossRef]
- Forte, A.; Dourado, F.; Mota, A.; Neto, B.; Gama, M.; Ferreira, E.C. Life cycle assessment of bacterial cellulose production. Int. J. Life Cycle Assess. 2021, 26, 864–878. [Google Scholar] [CrossRef]
- Risner, D.; Negulescu, P.; Kim, Y.; Nguyen, C.; Siegel, J.B.; Spang, E.S. Environmental impacts of cultured meat: A cradle-to-gate life cycle assessment. ACS Food Sci. Technol. 2024, 5, 61–74. [Google Scholar] [CrossRef]
- Takenaka, N.; Hong-Mitsui, K.; Kunimasa, K.; Kawajiri, K.; Kayo, C.; Yoshikawa, N. Environmental Impacts of Serum-free Food-grade and Complex Culture Medium Production for Cultivated Meat. bioRxiv 2024. [Google Scholar] [CrossRef]
- Diniz, G.S.; Tourinho, T.C.; Silva, A.F.; Chaloub, R.M. Environmental impact of microalgal biomass production using wastewater resources. Clean Technol. Environ. Policy 2017, 19, 2521–2529. [Google Scholar] [CrossRef]
- Akromah, S.; Chandarana, N.; Rowlandson, J.L.; Eichhorn, S.J. Potential environmental impact of mycelium composites on African communities. Sci. Rep. 2024, 14, 11867. [Google Scholar] [CrossRef] [PubMed]
- Renouf, M.A.; Wegener, M.K.; Nielsen, L.K. An environmental life cycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy 2008, 32, 1144–1155. [Google Scholar] [CrossRef]
- Bello, S.; Salim, I.; Feijoo, G.; Moreira, M.T. Inventory review and environmental evaluation of first-and second-generation sugars through life cycle assessment. Environ. Sci. Pollut. Res. 2021, 28, 27345–27361. [Google Scholar] [CrossRef]
- Révillion, J.P.; Brandelli, A.; Ayub, M.A. Production of yeast extracts from whey for food use: Market and technical considerations. Food Sci. Technol. 2000, 20, 246–249. [Google Scholar] [CrossRef]
- Revillion, J.P.; Brandelli, A.; Ayub, M.A.Z. Production of yeast extract from whey using Kluyveromyces marxianus. Braz. Arch. Biol. Technol. 2003, 46, 121–128. [Google Scholar] [CrossRef]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast extract: Characteristics, production, applications and future perspectives. J. Microbiol. Biotechnol. 2022, 33, 151–166. [Google Scholar] [CrossRef]
- Gadipelly, C.; Pérez-González, A.; Yadav, G.D.; Ortiz, I.; Ibáñez, R.; Rathod, V.K.; Marathe, K.V. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Ind. Eng. Chem. Res. 2014, 53, 11571–11592. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Pellicer-Martínez, F.; Fernández-López, C. Pharmaceutical grey water footprint: Accounting, influence of wastewater treatment plants and implications of the reuse. Water Res. 2018, 135, 278–287. [Google Scholar] [CrossRef]
- Gupta, R.; Sati, B.; Gupta, A. Treatment and Recycling of Wastewater from Pharmaceutical Industry. In Advances in Biological Treatment of Industrial Waste Water and Their Recycling for a Sustainable Future; Applied Environmental Science and Engineering for a Sustainable Future; Singh, R., Ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Strade, E.; Kalnina, D.; Kulczycka, J. Water efficiency and safe re-use of different grades of water-Topical issues for the pharmaceutical industry. Water Resour. Ind. 2020, 24, 100132. [Google Scholar] [CrossRef]
- Jungbauer, A.; Walch, N. Buffer recycling in downstream processing of biologics. Curr. Opin. Chem. Eng. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Bhadja, V.; Makwana, B.S.; Maiti, S.; Sharma, S.; Chatterjee, U. Comparative efficacy study of different types of ion exchange membranes for production of ultrapure water via electrodeionization. Ind. Eng. Chem. Res. 2015, 54, 10974–10982. [Google Scholar] [CrossRef]
- Van Elslande, P. New Technologies for Ultra-Pure Water Production in the Chemical Industry: Case Study at Yara. Master’s Thesis, Ghent University, Ghent, Belgium, 2017. [Google Scholar]
- Zhao, P.; Bai, Y.; Liu, B.; Chang, H.; Cao, Y.; Fang, J. Process optimization for producing ultrapure water with high resistivity and low total organic carbon. Process Saf. Environ. Prot. 2019, 126, 232–241. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Ngo, H.H.; Guo, W.; Wen, H.; Wang, X.; Zhang, J.; Long, T. A critical review on challenges and trend of ultrapure water production process. Sci. Total Environ. 2021, 785, 147254. [Google Scholar] [CrossRef]
- BIO-FOCUS Website—Top Trends in Pharmaceutical Sustainability for 2025. Available online: https://www.bio-focus.co.uk/sustainability/top-trends-in-pharmaceutical-sustainability-for-2025 (accessed on 19 August 2025).
- Pharma Now Website—The Future of Pharmaceutical Water: Purity, Compliance & Sustainability Trends For 2025. Available online: https://www.pharmanow.live/pharma-manufacturing/pharmaceutical-water-trends (accessed on 19 August 2025).
- Khalid, E.S. Sustainable Pharmaceutical Manufacturing: Strategies for Reducing Waste, Energy Consumption, and Environmental Impact. Emerg. Pharma 2025, 01, 1–16. [Google Scholar]
- Valero, A.; Domínguez, A.; Valero, A. Exergy cost allocation of by-products in the mining and metallurgical industry. Resour. Conserv. Recycl. 2015, 102, 128–142. [Google Scholar] [CrossRef]
- Müller, G.; Sugiyama, H.; Stocker, S.; Schmidt, R. Reducing energy consumption in pharmaceutical production processes: Framework and case study. J. Pharm. Innov. 2014, 9, 212–226. [Google Scholar] [CrossRef]
- Gokcekus, H.; Ozsahin, D.U.; Mustapha, M.T. Simulation and evaluation of water sterilization devices. Desalination Water Treat. 2020, 177, 431–436. [Google Scholar] [CrossRef]
- Terrones-Fernandez, I.; Rodero-De-Lamo, L.; López, A.; Peiró, S.; Asensio, D.; Castilla, R.; Gamez-Montero, P.J.; Piqué, N. Microwave oven application for the preparation and sterilization of microbiological culture media: A feasible method with an adapted water bath and perforable cap. Appl. Sci. 2024, 14, 2340. [Google Scholar] [CrossRef]
- Armenante, P.M.; Kirpekar, A.C. Sterilization in the pharmaceutical and biotechnology industry. In Handbook of Downstream Processing; Goldberg, E., Ed.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Armenante, P.M.; Akiti, O. Sterilization processes in the pharmaceutical industry. In Chemical Engineering in the Pharmaceutical Industry: Drug Product Design, Development, and Modeling; Ende, M.T., Ende, D.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 311–379. [Google Scholar] [CrossRef]
- O’Callaghan, J.; Fitzpatrick, J.; Lalor, F.; Byrne, E. Investigating the energy, environmental, and economic challenges and opportunities associated with steam sterilisation autoclaves. Chem. Prod. Process Model. 2023, 18, 671–689. [Google Scholar] [CrossRef]
Host MO | Reactor Operation | Reactor Size | Construct | Study Objective | Reference |
---|---|---|---|---|---|
E. coli | Cyclic fed-batch | 5 L | Single chain | To increase the yield of insulin production by using a small fusion partner and C-chain peptide | [31] |
E. coli | Batch | 5 L | Single chain | To compare the production and purification of different human insulin precursors with various fusion peptides | [32] |
E. coli | Fed-batch | 50 L | Separate chains A and B | To avoid the use of chemical inducers by using a thermally inducible expression vector | [3] |
P. pastoris | Batch | 100 mL | Single chain | To optimize the induction by testing different starting inoculum densities, inducer concentrations, time points of induction, induction pH, and temperatures | [33] |
S. cerevisiae | Fed-batch, followed by continuous (chemostat) | 1 L | Single chain | To study production of a human insulin analog precursor in S. cerevisiae under long-term reactor operation and subsequent metabolic burden on the host MO | [34] |
pKBA Plasmid | pMAL-BA Plasmid | pGEX-BA Plasmid | pET-BA Plasmid |
---|---|---|---|
Yeast extract 0.5% | Yeast extract 0.5% | Yeast extract 1.0% | Yeast extract 1.0% |
Tryptone 1.0% | Tryptone 1.0% | Tryptone 1.6% | Tryptone 1.6% |
NaCl 1.0% | NaCl 1.0% | NaCl 0.5% | NaCl 0.5% |
Glucose not disclosed | Glucose not disclosed | Glucose 2.0% | Glucose not disclosed |
Ampicillin 50 μg/mL | Ampicillin 100 μg/mL | Ampicillin 100 μg/mL | Kanamycin 15 μg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzipanagiotou, K.-R.; Pappas, A.; Petrakli, F.; Antonaropoulos, G.; Koumoulos, E.P. Sustainability Assessment in Recombinant Human Insulin Production—Evaluating the Environmental Impacts of Microbial Growth Medium Components and Formulations. J. Exp. Theor. Anal. 2025, 3, 28. https://doi.org/10.3390/jeta3030028
Chatzipanagiotou K-R, Pappas A, Petrakli F, Antonaropoulos G, Koumoulos EP. Sustainability Assessment in Recombinant Human Insulin Production—Evaluating the Environmental Impacts of Microbial Growth Medium Components and Formulations. Journal of Experimental and Theoretical Analyses. 2025; 3(3):28. https://doi.org/10.3390/jeta3030028
Chicago/Turabian StyleChatzipanagiotou, Konstantina-Roxani, Athanasios Pappas, Foteini Petrakli, George Antonaropoulos, and Elias P. Koumoulos. 2025. "Sustainability Assessment in Recombinant Human Insulin Production—Evaluating the Environmental Impacts of Microbial Growth Medium Components and Formulations" Journal of Experimental and Theoretical Analyses 3, no. 3: 28. https://doi.org/10.3390/jeta3030028
APA StyleChatzipanagiotou, K.-R., Pappas, A., Petrakli, F., Antonaropoulos, G., & Koumoulos, E. P. (2025). Sustainability Assessment in Recombinant Human Insulin Production—Evaluating the Environmental Impacts of Microbial Growth Medium Components and Formulations. Journal of Experimental and Theoretical Analyses, 3(3), 28. https://doi.org/10.3390/jeta3030028