Gout in China
Abstract
:1. Introduction
2. Epidemiology
2.1. The Prevalence and Incidence of Gout in China
2.2. Gout and Hyperuricemia in Adolescents
2.3. Gout Risk Factors
3. Diagnosis
3.1. The Diagnosis of Gout in China
3.2. The Diagnosis of Subclinical Gout and Refractory Gout
3.3. Hyperuricemia and Classification of Hyperuricemia
4. Treatment
4.1. Anti-Inflammatory Treatment
4.2. Serum Urate Management
4.2.1. ULT
4.2.2. Adherence to ULT
4.2.3. Hyperuricemia Classification-Based ULT
4.3. Urine Alkalization
5. Mechanisms
5.1. Studies on the Genetics of Gout
5.2. Studies on Metabolomics in Gout
5.2.1. Serum Metabolomics
5.2.2. Non-Serum Metabolomics
5.2.3. Lipidomics
Biomarkers | Description | Sample | Patients/Reference | Study |
---|---|---|---|---|
Betaine, trigonelline, glycocholate; uracil; pipecolic acid; myristic acid; arachidonate | Biomarkers discriminating gout from hyperuricemia | Serum | Total of 330 patients: healthy controls (n = 119), gout patients (n = 109) and hyperuricemia patients (n = 102) | Shen et al. [105] |
Xanthine, uridine, taurine, arachidic acid, 5′-methylthio adenosine, 4-trimethyl ammonio butanoic acid | Biomarkers distinguishing frequent and infrequent gout | Serum | Total of 638 patients: 163 infrequent gout and 239 frequent gout patients in the discovery cohort; 97 infrequent gout and 139 frequent gout patients in the validation cohort | Wang et al. [109] |
Urate, creatinine, tryptophan, guanosine and hippurate | Biomarkers distinguishing gout and acute gout | Serum and urine | Serum samples: 21 gout patients and 21 age-matched normal males; urine samples: 19 gout patients and 20 non-gout subjects | Liu et al. [111] |
Urate, oxalic acid, and L-homocysteic acid (HCA) | Biomarkers distinguishing gout and hyperuricemic patients | Salivary | Total of 128 participants: the discovery stage included 38 individuals and the validation stage included 90 individual | Cui et al. [112] |
Hypoxanthine | Elevated level of hypoxanthine in chronic gout patients | Serum | Total of 65 patients: 15 healthy controls, 15 acute gout patients, 10 intermittent gout patients, 10 chronic gout patients, and 15 gouty nephropathy patients | Kang et al. [106] |
KYNA,5-HIAA, 2PY, and 2AMIA | Biomarkers associated with an acute inflammatory response in gout or renal impairment resulting from prolonged hyperuricemia. | Serum | Total of 547 participants: training dataset 347 subjects and validation cohort 200 | Lyu et al. [107] |
TAG 18:1–20:0–22:1 and TAG 14:0–16:0–16:1 | Biomarkers distinguishing hyperuricemic and gout patients | Serum | Total of 428 participants: 157 HUA, 183 gout, and 88 normal controls | Liu et al. [115] |
5.3. Studies on Gut Microbiota in Gout
Description | Sample | Sequence Method | Patients/Reference | Study |
---|---|---|---|---|
Prevotella, Fusobacterium, and Bacteroides were elevated in those with gout, while the levels of Enterobacteriaceae and butyrate-producing bacteria were diminished | Fecal samples | Metagenomic sequencing | 102 individuals with gout and 86 healthy controls | Chu et al. [118] |
Significant changes in the gut bacteriome, mycobiome, and virome of patients with gouty arthritis | Fecal samples | Whole-metagenome shotgun sequencing | 26 gout patients and 28 healthy controls | Chen et al. [121] |
Hyperuricemic individuals had a lower relative abundance of Coprococcus compared to those with normouricemic individuals | Fecal samples | 16S ribosomal RNA sequencing | 1,392 subjects (17.2% with hyperuricemia) and 480 subjects for validation (240 with hyperuricemia) | Wei et al. [122] |
A restriction of gut microbiota biodiversity was detected in the untreated gout patients, and the alteration was partly restored by febuxostat. | Fecal samples | 16S ribosomal RNA sequencing and metagenomic shotgun sequencing | 38 gout patients treated with febuxostat, and 26 healthy controls | Lin et al. [123] |
Primary gout associates with the change of diversity and similarity in both Bacteroides and Clostridium. | Fecal samples | 16S ribosomal RNA sequencing | 90 gout patients and 94 healthy controls | Xing et al. [124] |
An increased presence of opportunistic pathogens, including Bacteroides, Porphyromonadaceae Rhodococcus, Erysipelatoclostridium, and Anaerolineaceae in gout patients | Fecal samples | 16S rRNA Gene Tag Sequencing | 26 gout patients and 26 healthy controls | Shao et al. [125] |
In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted | Fecal samples | 16S rRNA genes V1-V3 region and pyrosequencing | 35 gout patients and 33 healthy controls | Guo et al. [127] |
The gut bacterial diversity in the hyperuricemic group reduced significantly and the community of the microbiota was of significant difference between the two groups | Fecal samples | Whole-genome shotgun sequencing | 69 patients with HUA and 118 healthy controls | Sheng et al. [128] |
A number of bacterial species, such as unidentified Enterobacteriaceae, Roseburia, and Faecalibacte-rium, exhibit significant diagnostic potential for identifying asymptomatic hyperuricemia | Fecal samples | 16S rRNA gene sequencing | 45 asymptomatic hyperuricemia and 45 healthy controls | Yang et al. [129] |
6. Conclusions
- Key Points
- ➢
- The prevalence of gout in China has been increasing and the onset age of gout has been trending younger in recent years, which should be taken seriously. Adolescent-onset gout is common in China, while it is very rare in other countries according to the current surveys.
- ➢
- The Chinese clinical guidelines recommend the diagnosis of subclinical gout, refractory gout, and clinical classification of hyperuricemia in gout patients with early-onset or family history.
- ➢
- The treatment of gout flares mainly includes anti-inflammatory treatment and ULT. ULT based on the classification of hyperuricemia is recommended in China, which is more effective and can increase adherence to ULT. Due to the risk of acidic urine, urine alkalization is also recommended in China, especially in patients with CKD, patients receiving uricosuric treatment, and patients with uric acid kidney stones.
- ➢
- Genetic research has revealed new loci in the Chinese population, especially the identification of the adolescent-onset gout gene RCOR1, but there is still a lack of large-sample cohort studies. Both metabolites and the gut microbiota can serve as biomarkers for gout or biomarkers of disease remission.
Author Contributions
Funding
Conflicts of Interest
References
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet 2021, 397, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Jin, C.; Shan, Z.; Teng, W.; Li, J. Prevalence and Risk Factors of Hyperuricemia and Gout: A Cross-sectional Survey from 31 Provinces in Mainland China. J. Transl. Int. Med. 2022, 10, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, C.; Ma, B.; Sun, H.; Chen, Y.; Zhong, Y.; Han, C.; Liu, T.; Li, Y. Global, regional and national burdens of gout in the young population from 1990 to 2019: A population-based study. RMD Open 2023, 9, e003025. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, X.; Merriman, T.R.; Wan, C.; Cui, L.; Zhang, H.; Sun, W.; Wang, J.; Wang, F.; Li, C.; et al. Trends in the manifestations of 9754 gout patients in a Chinese clinical center: A 10-year observational study. Jt. Bone Spine 2021, 88, 105078. [Google Scholar] [CrossRef]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef]
- Tsoi, M.F.; Chung, M.H.; Cheung, B.M.Y.; Lau, C.S.; Cheung, T.T. Epidemiology of gout in Hong Kong: A population-based study from 2006 to 2016. Arthritis Res. Ther. 2020, 22, 204. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y.; Zhou, W.; Jin, S.; Shen, Z.; Zhang, H.; Zhang, X.; Ding, X.; Li, Y. Trend dynamics of gout prevalence among the Chinese population, 1990–2019: A joinpoint and age-period-cohort analysis. Front Public Health 2022, 10, 1008598. [Google Scholar] [CrossRef]
- Tang, Y.M.; Zhang, L.; Zhu, S.Z.; Pan, J.J.; Zhou, S.H.; He, T.J.; Li, Q. Gout in China, 1990–2017: The Global Burden of Disease Study 2017. Public Health 2021, 191, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, Z.; Huang, Z.; Zhou, W.; Li, Z.; Li, X.; Sun, F. The prevalence of gout in mainland China from 2000 to 2016: A systematic review and meta-analysis. J. Public Health 2017, 25, 521–529. [Google Scholar] [CrossRef]
- Miao, Z.; Li, C.; Chen, Y.; Zhao, S.; Wang, Y.; Wang, Z.; Chen, X.; Xu, F.; Wang, F.; Sun, R.; et al. Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J. Rheumatol. 2008, 35, 1859–1864. [Google Scholar]
- Lu, X.; Shi, X.; Li, Y.; Chi, H.; Liao, E.; Liu, C.; Liu, L.; Li, Y.; Teng, D.; Teng, X.; et al. A negative association between urinary iodine concentration and the prevalence of hyperuricemia and gout: A cross-sectional and population-based study in Mainland China. Eur. J. Nutr. 2020, 59, 3659–3668. [Google Scholar] [CrossRef]
- Tu, F.Y.; Lin, G.T.; Lee, S.S.; Tung, Y.C.; Tu, H.P.; Chiang, H.C. Prevalence of gout with comorbidity aggregations in southern Taiwan. Jt. Bone Spine 2015, 82, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-F.; Grainge, M.J.; See, L.-C.; Yu, K.-H.; Luo, S.-F.; Zhang, W.; Doherty, M. Epidemiology and management of gout in Taiwan: A nationwide population study. Arthritis Res. Ther. 2015, 17, 13. [Google Scholar] [CrossRef]
- Tu, H.P.; Ko, A.M.S.; Wang, S.J.; Lee, C.H.; Lea, R.A.; Chiang, S.L.; Chiang, H.C.; Wang, T.N.; Huang, M.C.; Ou, T.T.; et al. Monoamine oxidase A gene polymorphisms and enzyme activity associated with risk of gout in Taiwan aborigines. Hum. Genet. 2010, 127, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Du, G.L.; Song, N.; Ma, Y.-T.; Li, X.-M.; Gao, X.-M.; Yang, Y.-N. Hyperuricemia and its association with adiposity and dyslipidemia in Northwest China: Results from cardiovascular risk survey in Xinjiang (CRS 2008–2012). Lipids Health Dis. 2020, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Chen, Z.; Ma, J.; Xie, J.; Zhang, W.; Ren, H.; Chen, X. Prevalence of and risk factors for high-altitude hyperuricaemia in Bai individuals: A cross-sectional study. J. Int. Med. Res. 2021, 49, 3000605211028140. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Lee, P.Y.; Huang, Y.; Denh, W.; Huang, Z.; Huang, Q.; Chen, S.; Li, T. Clinical characteristics of juvenile gout and treatment response to febuxostat. Ann. Rheum. Dis. 2022, 81, 599–600. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Shen, M.-L. Juvenile gout in Taiwan associated with family history and overweight. J. Rheumatol. 2007, 34, 2308–2311. [Google Scholar]
- Mikuls, T.R.; Farrar, J.; Bilker, W.; Fernandes, S.; Schumacher, H.; Saag, K. Gout epidemiology: Results from the UK general practice research database, 1990–1999. Ann. Rheum. Dis. 2005, 64, 267–272. [Google Scholar] [CrossRef]
- Ito, S.; Torii, T.; Nakajima, A.; Iijima, T.; Murano, H.; Horiuchi, H.; Yamanaka, H.; Honda, M. Prevalence of gout and asymptomatic hyperuricemia in the pediatric population: A cross-sectional study of a Japanese health insurance database. BMC Pediatr. 2020, 20, 481–489. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kwak, S.G.; Lee, H.; Kim, S.-K.; Choe, J.-Y.; Park, S.-H. Prevalence and incidence of gout in Korea: Data from the national health claims database 2007–2015. Rheumatol. Int. 2017, 37, 1499–1506. [Google Scholar] [CrossRef]
- Lu, J.; Sun, W.; Cui, L.; Li, X.; He, Y.; Liu, Z.; Li, H.; Han, L.; Ji, A.; Wang, C.; et al. A cross-sectional study on uric acid levels among Chinese adolescents. Pediatr. Nephrol. 2020, 35, 441–446. [Google Scholar] [CrossRef]
- Wu, J.; Lu, A.D.; Zhang, L.P.; Zuo, Y.X.; Jia, Y.P. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi 2019, 40, 52–57. [Google Scholar]
- Ye, P.Y.; Zhao, X.Y.; Yan, Y.K.; Xiao, P.; Hou, D.Q.; Zhu, Z.X.; Yu, Z.C.; Wang, H.J.; Gao, A.Y.; Cheng, H.; et al. Association between hyperuricemia and incidence risk for cardiometabolic abnormity in children. Zhonghua Liu Xing Bing Xue Za Zhi 2021, 42, 433–439. [Google Scholar] [PubMed]
- Xie, L.F.; Zhao, W.; Zhong, Y.C.; Wang, D.L.; Zhang, X.W. Investigation on the prevalence of hyperuricemia among young students. Zhonghua Yi Xue Za Zhi 2018, 98, 987–991. [Google Scholar] [PubMed]
- Liu, C.S.; Li, T.C.; Lin, C.C. The epidemiology of hyperuricemia in children of Taiwan aborigines. J. Rheumatol. 2003, 30, 841–845. [Google Scholar]
- Rao, J.; Ye, P.; Lu, J.; Chen, B.; Li, N.; Zhang, H.; Bo, H.; Chen, X.; Liu, H.; Zhang, C.; et al. Prevalence and related factors of hyperuricaemia in Chinese children and adolescents: A pooled analysis of 11 population-based studies. Ann. Med. 2022, 54, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhou, H.; Zhou, B.; Hu, J.; Zhang, T.; Li, G.; Xie, J.; Wang, Z.; Yang, T.; Liu, H.; et al. Serum uric acid level and its correlation among adolescents in Hangjiang district of Yangzhou city. Chin. J. Rheumatol. 2019, 23, 731–734. [Google Scholar]
- Chuang, S.Y.; Lee, S.C.; Hsieh, Y.T.; Pan, W.H. Trends in hyperuricemia and gout prevalence: Nutrition and Health Survey in Taiwan from 1993–1996 to 2005–2008. Asia Pac. J. Clin. Nutr. 2011, 20, 301–308. [Google Scholar] [PubMed]
- Li, L.; Zhang, Y.; Zeng, C. Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am. J. Transl. Res. 2020, 12, 3167–3181. [Google Scholar]
- Zhou, H.; Liu, Z.; Chao, Z.; Chao, Y.; Ma, L.; Cheng, X.; Wang, Y.; Li, C.; Chen, Y. Nonlinear relationship between serum uric acid and body mass index: A cross-sectional study of a general population in coastal China. J. Transl. Med. 2019, 17, 389. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Jiang, Y.; Huang, Y.; Huang, Y.; Liu, F.; Zhang, Y.; Yang, M.; Wu, J.; Xiao, M.; Cao, S.; et al. Comorbidities and factors influencing frequent gout attacks in patients with gout: A cross-sectional study. Clin. Rheumatol. 2021, 40, 2873–2880. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jian, G.; Tang, Y.; Cheng, H.; Wang, N.; Wu, J. Asymptomatic hyperuricemia and incident congestive heart failure in elderly patients without comorbidities. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Neogi, T.; Jansen, T.L.T.A.; Dalbeth, N.; Fransen, J.; Schumacher, H.R.; Berendsen, D.; Brown, M.; Choi, H.; Edwards, N.L.; Janssens, H.J.E.M.; et al. 2015 gout classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 2015, 67, 2557–2568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Zhang, Z. Performance of the 2015 ACR/EULAR classification criteria compared with other classification criteria for diagnosis of gout in Chinese patients. Beijing Da Xue Xue Bao Yi Xue Ban 2017, 49, 979–984. [Google Scholar] [PubMed]
- Chinese Society of Endocrinology. Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). Chin. J. Endocrinol. Metab. 2020, 361, 1–13. [Google Scholar]
- Ichida, K.; Matsuo, H.; Takada, T.; Nakayama, A.; Murakami, K.; Shimizu, T.; Yamanashi, Y.; Kasuga, H.; Nakashima, H.; Nakamura, T.; et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat. Commun. 2012, 3, 764. [Google Scholar] [CrossRef]
- He, Y.; Xue, X.; Terkeltaub, R.; Dalbeth, N.; Merriman, T.R.; Mount, D.B.; Feng, Z.; Li, X.; Cui, L.; Liu, Z.; et al. Association of acidic urine pH with impaired renal function in primary gout patients: A Chinese population-based cross-sectional study. Arthritis Res. Ther. 2022, 24, 32. [Google Scholar] [CrossRef]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castañeda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 2017, 76, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Fitzgerald, J.D.; Khanna, P.P.; Bae, S.; Singh, M.; Neogi, T.; Pillinger, M.H.; Merill, J.; Lee, S.; Prakash, S.; et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. 2012, 64, 1431–1446. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Liu, Y.; Li, G.; Pan, X.; Huang, Z.; Huang, Y.; Huang, Q.; Zheng, S.; Li, T. Clinical characteristics and risk factors of ulceration over tophi in patients with gout. Int. J. Rheum. Dis. 2019, 22, 1052–1057. [Google Scholar] [CrossRef]
- Vázquez-Mellado, J.; Cruz, J.; Guzmán, S.; Casasola-Vargas, J.; Lino, L.; Burgos-Vargas, R. Severe tophaceous gout. Characterization of low socioeconomic level patients from México. Clin. Exp. Rheumatol. 2006, 24, 233. [Google Scholar]
- Dalbeth, N.; Choi, H.K.; Joosten, L.A.B.; Khanna, P.P.; Matsuo, H.; Perez-Ruiz, F.; Stamp, L.K. Gout. Nat. Rev. Dis. Primers 2019, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chen, C.B.; Chang, C.J.; Lin, J.R.; Wang, C.-W.; Chi, C.-C.; Lu, C.-W.; Chen, W.-T.; Pan, R.-Y.; Su, S.-C.; et al. Hypersensitivity and cardiovascular risks related to allopurinol and febuxostat therapy in Asians: A population-based cohort study and meta-analysis. Clin. Pharmacol. Ther. 2019, 106, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Xiong, Y.; Qin, C.; Zhang, W.; Chen, X.P.; Li, J.; Zhou, H.H. HLA-B* 58: 01 is strongly associated with allopurinol-induced severe cutaneous adverse reactions in Han Chinese patients: A multicentre retrospective case–control clinical study. Br. J. Dermatol. 2015, 173, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.S.-M.; Yeung, C.-K.; Chan, C.-Y.; Yap, D.Y.-H.; Tang, S.C.-W.; Cheyng, B.M.-Y.; Kwok, J.S.-Y.; Chan, H.H.-C. HLA-B* 58: 01 screening to prevent allopurinol-induced severe cutaneous adverse reactions in Chinese patients with chronic kidney disease. Arch. Dermatol. Res. 2022, 314, 651–659. [Google Scholar] [CrossRef]
- Haring, B.; Kudlich, T.; Rauthe, S.; Melcher, R.; Geier, A. Benzbromarone: A double-edged sword that cuts the liver? Eur. J. Gastroenterol. Hepatol. 2013, 25, 119–121. [Google Scholar] [CrossRef]
- Azevedo, V.F.; Kos, I.A.; Vargas-Santos, A.B.; da Rocha Castelar Pinheiro, G.; Dos Santos Paiva, E. Benzbromarone in the treatment of gout. Adv. Rheumatol. 2019, 59, 37. [Google Scholar] [CrossRef]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res 2020, 72, 879–895. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Lu, J.; Li, H.; Cheng, X.; Xin, Y.; Li, C. Evaluation of febuxostat initiation during an acute gout attack: A prospective, randomized clinical trial. Jt. Bone Spine 2020, 87, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Ran, Z.; Xue, X.; Han, L.; Terkeltaub, R.; Merriman, T.R.; Zhao, T.; He, Y.; Wang, C.; Li, X.; Liu, Z.; et al. Decrease in Serum Urate Level Is Associated with Loss of Visceral Fat in Male Gout Patients. Front. Endocrinol. 2021, 12, 724822. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Li, L.; Zhang, G.; Cui, Y.; Zhang, L.; Zhang, Q.; Fu, T.; Cao, H.; Li, L.; Gu, Z.; et al. Rate of adherence to urate-lowering therapy among patients with gout: A systematic review and meta-analysis. BMJ Open 2018, 8, e017542. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.S.; Wang, M.; Zhao, X.D.; Cui, L.L.; He, Y.W.; Wang, C.; Li, X.D.; Qu, X.J.; Sun, M.S.; Li, C.G. Treat-to-Target urate-lowering therapy in primary gout patients: A real-world retrospective study at a dedicated gout clinic in China. Technol. Health Care 2021, 29, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Sheng, F.; Fang, W.; Zhang, B.; Sha, Y.; Zeng, X. Adherence to gout management recommendations of Chinese patients. Medicine 2017, 96, e8532. [Google Scholar] [CrossRef]
- Hu, S.; Terkeltaub, R.; Sun, M.; Ji, X.; Li, Z.; Ran, Z.; Li, Y.; Zhang, H.; Sun, W.; Li, C.; et al. Palpable tophi and more comorbidities associated with adherence to urate-lowering medical therapy in a Chinese gout cohort. Jt. Bone Spine 2022, 89, 105435. [Google Scholar] [CrossRef]
- Yin, R.; Lu, J.; Xu, Z.; Yan, Q.; Wang, M.; Xu, R. Urate-lowering therapy adherence and the association with medication beliefs, self-efficacy, depression, anxiety, and COVID-19 pandemic-related concern in Chinese gout patients: A cross-sectional study. Psychol. Health Med. 2023, 28, 1698–1708. [Google Scholar] [CrossRef]
- Qi, H.; Sun, M.; Terkeltaub, R.; Merriman, T.R.; Chen, H.; Li, Z.; Ji, A.; Xue, X.; Sun, W.; Wang, C.; et al. Hyperuricemia Subtypes Classified According to Renal Uric Acid Handling Manifesting Distinct Phenotypic and Genetic Profiles in People with Gout. Arthritis Rheumatol. 2024, 76, 1130–1140. [Google Scholar] [CrossRef]
- Li, F.; Guo, H.; Zou, J.; Fu, C.; Liu, S.; Xiao, J.; Ye, Z. Clinical classification of hyperuricemia in patients with chronic kidney disease. Int. Urol. Nephrol. 2021, 53, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liang, J.; Chen, L.; Mo, Y.Q.; Wei, X.N.; Zheng, D.H.; Dai, L. Clinical characteristics and renal uric acid excretion in early-onset gout patients. Zhonghua Nei Ke Za Zhi. 2018, 57, 185–190. [Google Scholar] [PubMed]
- Sun, M.; Sun, W.; Zhao, X.; Li, Z.; Dalbeth, N.; Ji, A.; He, Y.; Qu, H.; Zheng, G.; Ma, L.; et al. A machine learning-assisted model for renal urate underexcretion with genetic and clinical variables among Chinese men with gout. Arthritis Res. Ther. 2022, 24, 1–9. [Google Scholar] [CrossRef]
- Yan, F.; Xue, X.; Lu, J.; Dalbeth, N.; Qi, H.; Yu, Q.; Wang, C.; Sun, M.; Cui, L.; Liu, Z.; et al. Superiority of Low-Dose Benzbromarone to Low-Dose Febuxostat in a Prospective, Randomized Comparative Effectiveness Trial in Gout Patients with Renal Uric Acid Underexcretion. Arthritis Rheumatol. 2022, 74, 2015–2023. [Google Scholar] [CrossRef]
- Qi, H.; Sun, M.; Terkeltaub, R.; Xue, X.; Li, X.; Cui, L.; He, Y.; Yan, F.; Sun, R.; Chen, Y.; et al. Response to febuxostat according to clinical subtypes of hyperuricemia: A prospective cohort study in primary gout. Arthritis Res. Ther. 2023, 25, 241. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Jung, S.J.; Yoon, S.; Yun, J.M.; Yoon, H.J. Association between the markers of metabolic acid load and higher all-cause and cardiovascular mortality in a general population with preserved renal function. Hypertens. Res. 2015, 38, 433–438. [Google Scholar] [CrossRef]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. Low urine pH is a risk for non-alcoholic fatty liver disease: A population-based longitudinal study. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 570–576. [Google Scholar] [CrossRef]
- Patel, N.D.; Ward, R.D.; Calle, J.; Remer, E.M.; Monga, M. Computerized Tomography Based Diagnosis of Visceral Obesity and Hepatic Steatosis is Associated with Low Urine pH. J. Urol. 2017, 198, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Hara, S.; Tsuji, H.; Ohmoto, Y.; Amakawa, K.; Hsieh, S.D.; Arase, Y.; Nakajima, H. High serum uric acid level and low urine pH as predictors of metabolic syndrome: A retrospective cohort study in a Japanese urban population. Metabolism 2012, 61, 281–288. [Google Scholar] [CrossRef]
- Nakanishi, N.; Fukui, M.; Tanaka, M.; Toda, H.; Imai, S.; Yamazaki, M.; Hasegawa, G.; Oda, Y.; Nakamura, N. Low urine pH Is a predictor of chronic kidney disease. Kidney Blood Press. Res. 2012, 35, 77–81. [Google Scholar] [CrossRef]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Sakhaee, K. Metabolic basis for low urine pH in type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2010, 5, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Higashiura, Y.; Tanaka, M.; Furuhashi, M.; Koyama, M.; Ohnishi, H.; Numata, K.; Hisasue, T.; Hanawa, N.; Moniwa, N.; Miura, T. Low urine pH predicts new onset of diabetes mellitus during a 10-year period in men: BOREAS-DM1 study. J. Diabetes. Investig. 2020, 11, 1490–1497. [Google Scholar] [CrossRef]
- Asplin, J.R.; Goldfarb, D.S. Effect of thiazolidinedione therapy on the risk of uric acid stones. Kidney Int. 2019, 95, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Khairallah, P.; Isakova, T.; Asplin, J.; Hamm, L.; Dobre, M.; Rahman, M.; Sharma, K.; Leonard, M.; Miller, E., 3rd; Jaar, B.; et al. Acid Load and Phosphorus Homeostasis in CKD. Am. J. Kidney Dis. 2017, 70, 541–550. [Google Scholar] [CrossRef]
- Kanbara, A.; Miura, Y.; Hyogo, H.; Chayama, K.; Seyama, I. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutr. J. 2012, 11, 39. [Google Scholar] [CrossRef]
- Coe, F.L.; Worcester, E.M.; Evan, A.P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 2016, 12, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Gibson, T.; Highton, J.; Potter, C.; Simmonds, H.A. Renal impairment and gout. Ann. Rheum. Dis. 1980, 39, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Melamed, M.L.; Horwitz, E.J.; Dobre, M.A.; Abramowitz, M.K.; Zhang, L.; Lo, Y.; Mitch, W.E.; Hostetter, T.H. Effects of sodium bicarbonate in CKD stages 3 and 4: A randomized, placebo-controlled, multicenter clinical trial. Am. J. Kidney Dis. 2020, 75, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.; et al. Medical management of kidney stones: AUA guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef]
- Saito, J.; Matsuzawa, Y.; Ito, H.; Omura, M.; Ito, Y.; Yoshimura, K.; Yajima, Y.; Kino, T.; Nishikawa, T. The alkalizer citrate reduces serum uric Acid levels and improves renal function in hyperuricemic patients treated with the xanthine oxidase inhibitor allopurinol. Endocr. Res. 2010, 35, 145–154. [Google Scholar] [CrossRef]
- Xue, X.; Liu, Z.; Li, X.; Lu, J.; Wang, C.; Wang, X.; Ren, W.; Sun, R.; Jia, Z.; Ji, X.; et al. The efficacy and safety of citrate mixture vs sodium bicarbonate on urine alkalization in Chinese primary gout patients with benzbromarone: A prospective, randomized controlled study. Rheumatology 2021, 60, 2661–2671. [Google Scholar] [CrossRef] [PubMed]
- Golovinskaia, O.; Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, W.; Dalbeth, N.; Wang, Z.; Wang, X.; Ji, X.; Xue, X.; Han, L.; Cui, L.; Li, X.; et al. Efficacy and safety of tart cherry supplementary citrate mixture on gout patients: A prospective, randomized, controlled study. Arthritis Res. Ther. 2023, 25, 164. [Google Scholar] [CrossRef]
- Tin, A.; Marten, J.; Halperin Kuhns, V.L.; Li, Y.; Wuttke, M.; Kirsten, H.; Sieber, K.B.; Qiu, C.; Gorski, M.; Yu, Z.; et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 2019, 51, 1459–1474. [Google Scholar] [CrossRef] [PubMed]
- Major, T.J.; Takei, R.; Matsuo, H.; Leask, M.P.; Topless, R.K.; Shirai, Y.; Li, Z.; Ji, A.; Cadzow, M.J.; Sumpter, N.A.; et al. A genome-wide association analysis of 2,622,830 individuals reveals new pathogenic pathways in gout. medRxiv 2022. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Liu, S.; Wang, C.; Han, L.; Cui, L.; Zhou, J.; Zou, H.; Liu, Z.; Chen, J.; et al. Genome-wide association analysis identifies three new risk loci for gout arthritis in Han Chinese. Nat. Commun. 2015, 6, 7041. [Google Scholar] [CrossRef]
- Yang, B.; Mo, Z.; Wu, C.; Yang, H.; Yang, X.; He, Y.; Gui, L.; Zhou, L.; Guo, H.; Zhang, X.; et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med. Genom. 2014, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Jiri, M.; Zhang, L.; Lan, B.; He, N.; Feng, T.; Liu, K.; Jin, T.; Kang, L. Genetic variation in the ABCG2 gene is associated with gout risk in the Chinese Han population. Clin. Rheumatol. 2016, 35, 159–163. [Google Scholar] [CrossRef]
- Köttgen, A.; Albrecht, E.; Teumer, A.; Vitart, V.; Krumsiek, J.; Hundertmark, C.; Pistis, G.; Ruggiero, D.; O’Seaghdha, C.M.; Haller, T.; et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 2013, 45, 145–154. [Google Scholar] [CrossRef]
- Sakiyama, M.; Matsuo, H.; Nakaoka, H.; Kawamura, Y.; Kawaguchi, M.; Higashino, T.; Nakayama, A.; Akashi, A.; Ueyama, J.; Kondo, T.; et al. Common variant of BCAS3 is associated with gout risk in Japanese population: The first replication study after gout GWAS in Han Chinese. BMC Med. Genet. 2018, 19, 96. [Google Scholar] [CrossRef]
- Chang, Y.S.; Lin, C.Y.; Liu, T.Y.; Huang, C.M.; Chung, C.C.; Chen, Y.C.; Tsai, F.J.; Chang, J.G.; Chang, S.J. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study. Arthritis Res. Ther. 2022, 24, 229. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Wang, C.; Li, X.; Cheng, X.; Li, C.; Shi, Y. Common variants in the SLC28A2 gene are associated with serum uric acid level and hyperuricemia and gout in Han Chinese. Hereditas 2019, 156, 4. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Wang, B.; Miao, Z.; Han, L.; Chu, N.; Zhang, K.; Meng, D.; Li, C.; Ma, X. Association between gout and polymorphisms in GCKR in male Han Chinese. Hum. Genet. 2012, 131, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.-B.; Ren, Y.; Shi, X.; Jiri, M.; He, N.; Feng, T.; Yuan, D.; Kang, L. Genetic variations in the CLNK gene and ZNF518B gene are associated with gout in case–control sample sets. Rheumatol. Int. 2015, 35, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Urano, W.; Taniguchi, A.; Inoue, E.; Sekita, C.; Ichikawa, N.; Koseki, Y.; Kamatani, N.; Yamanaka, H. Effect of genetic polymorphisms on development of gout. J. Rheumatol. 2013, 40, 1374–1378. [Google Scholar] [CrossRef]
- Phipps-Green, A.; Merriman, M.E.; Topless, R.; Altaf, S.; Montgomery, G.W.; Franklin, C.; Jones, G.T.; van Rij, A.M.; White, D.; Stamp, L.K.; et al. Twenty-eight loci that influence serum urate levels: Analysis of association with gout. Ann. Rheum. Dis. 2016, 75, 124–130. [Google Scholar] [CrossRef]
- Rasheed, H.; Stamp, L.K.; Dalbeth, N.; Merriman, T.R. Interaction of the GCKR and A1CF loci with alcohol consumption to influence the risk of gout. Arthritis Res. Ther. 2017, 19, 161. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Sui, Y.; Xue, X.; Ji, X.; Shi, W.; Shi, Y.; Terkeltaub, R.; Dalbeth, N.; Takei, R.; Yan, F.; et al. Novel genetic loci in early-onset gout derived from whole genome sequencing of an adolescent gout cohort. Arthritis Rheumatol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chang, Y.-S.; Liu, T.-Y.; Huang, C.M.; Chung, C.C.; Chen, Y.C.; Tsai, F.J.; Chang, J.G.; Chang, S.J. Genetic contributions to female gout and hyperuricaemia using genome-wide association study and polygenic risk score analyses. Rheumatology 2023, 62, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Li, Y.; Zhou, J.; Jiang, S.; Wang, Y.; Chen, Y.; Zhao, D.; Yang, C.; Qian, Q.; Ma, Y.; et al. Copy number variants of ABCF1, IL17REL, and FCGR3A are associated with the risk of gout. Protein Cell 2017, 8, 467–470. [Google Scholar] [CrossRef]
- Bar, N.; Korem, T.; Weissbrod, O.; Zeevi, D.; Rothschild, D.; Leviatan, S.; Kosower, N.; Lotan-Pompan, M.; Weinberger, A.; Le Roy, C.I.; et al. A reference map of potential determinants for the human serum metabolome. Nature 2020, 588, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Han, X.; Tong, J.; Wang, Y.; Liu, X.; Liao, Z.; Jiang, M.; Zhao, H. Analysis of Metabolites in Gout: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3143. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liang, N.; Tao, Y.; Yin, H. Metabolomics in Hyperuricemia and Gout. Gout Urate Cryst. Depos. Dis. 2023, 1, 49–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Chang, D.; Guo, F.; Pan, H.; Yang, Y. Metabolomics approach by (1)H NMR spectroscopy of serum reveals progression axes for asymptomatic hyperuricemia and gout. Arthritis Res. Ther. 2018, 20, 111. [Google Scholar] [CrossRef]
- Zhong, Z.; Huang, Y.; Huang, Q.; Zheng, S.; Huang, Z.; Deng, W.; Li, T. Serum metabolic profiling analysis of gout patients based on UPLC-Q-TOF/MS. Clin. Chim. Acta 2021, 515, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, M.; Ou, J.; Lv, Q.; Wei, Q.; Chen, Z.; Wu, J.; Tu, L.; Jiang, Y.; Zhang, X.; et al. Identification of the urine and serum metabolomics signature of gout. Rheumatology 2020, 59, 2960–2969. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, C.; Liang, N.; Liu, Z.; Li, X.; Zhu, Z.J.; Merriman, T.R.; Dalbeth, N.; Terkeltaub, R.; Li, C.; et al. Serum Metabolomics Identifies Dysregulated Pathways and Potential Metabolic Biomarkers for Hyperuricemia and Gout. Arthritis Rheumatol. 2021, 73, 1738–1748. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Liu, J.; Zhang, H.; Jiang, M.; Jin, Y.; Zhang, M.; Hu, P. Improved ultra-high performance liquid chromatographic method for simultaneous determination of five gout-related metabolites in human serum. J. Sep. Sci. 2021, 44, 954–962. [Google Scholar] [CrossRef]
- Lyu, S.; Rao, Y.; Liu, P.; Yang, S.; Chen, W.; Yang, H.; Ke, S.; OuYang, H.; He, M.; Feng, Y. Metabolomics analysis reveals four biomarkers associated with the gouty arthritis progression in patients with sequential stages. Semin. Arthritis Rheum. 2022, 55, 152022. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, L.; Peng, A.; Liu, J.Y. Metabolic profiling of human plasma reveals the activation of 5-lipoxygenase in the acute attack of gouty arthritis. Rheumatology 2019, 58, 345–351. [Google Scholar] [CrossRef]
- Wang, M.; Li, R.; Qi, H.; Pang, L.; Cui, L.; Liu, Z.; Lu, J.; Wang, R.; Hu, S.; Liang, N.; et al. Metabolomics and Machine Learning Identify Metabolic Differences and Potential Biomarkers for Frequent versus Infrequent Gout Flares. Arthritis Rheumatol. 2023, 75, 2252–2264. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wei, S.; Wu, D.; Wen, C.; Zhou, J. Urinary Metabolomics Study of Patients with Gout Using Gas Chromatography-Mass Spectrometry. Biomed. Res. Int. 2018, 2018, 3461572. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Di, D.; Quan, J.; Zhang, J.; Yang, X. A metabolic profiling analysis of symptomatic gout in human serum and urine using high performance liquid chromatography-diode array detector technique. Clin. Chim. Acta 2011, 412, 2132–2140. [Google Scholar] [CrossRef]
- Cui, L.; Liu, J.; Yan, X.; Hu, S. Identification of Metabolite Biomarkers for Gout Using Capillary Ion Chromatography with Mass Spectrometry. Anal. Chem. 2017, 89, 11737–11743. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Yeh, W.T.; Chuang, S.Y.; Wu, Y.Y.; Pan, W.H. Gender-specific risk factors for incident gout: A prospective cohort study. Clin. Rheumatol. 2012, 31, 239–245. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Sui, X.L.; Xu, Y.P.; Gu, F.J.; Zhang, A.S.; Chen, J.H. NLRP3 inflammasome and lipid metabolism analysis based on UPLC-Q-TOF-MS in gouty nephropathy. Int. J. Mol. Med. 2019, 44, 172–184. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Liu, H.; Xu, T.; Wang, M.J.; Lu, J.; Guo, Y.; Chen, W.; Ke, M.; Zhou, G.; et al. Serum lipidomics reveals distinct metabolic profiles for asymptomatic hyperuricemic and gout patients. Rheumatology 2022, 61, 2644–2651. [Google Scholar] [CrossRef]
- Wang, C.; Lu, J.; Sun, W.; Merriman, T.R.; Dalbeth, N.; Wang, Z.; Wang, X.; Han, L.; Cui, L.; Li, X.; et al. Profiling of serum oxylipins identifies distinct spectrums and potential biomarkers in young people with very early onset gout. Rheumatology 2023, 62, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, L.B.; Levinson, D.J. Origin and extrarenal elimination of uric acid in man. Nephron 1975, 14, 7–20. [Google Scholar] [CrossRef]
- Chu, Y.; Sun, S.; Huang, Y.; Gao, Q.; Xie, X.; Wang, P.; Li, J.; Liang, L.; He, X.; Jiang, Y.; et al. Metagenomic analysis revealed the potential role of gut microbiome in gout. NPJ Biofilms Microbiomes 2021, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Y.; Yao, X.; Yan, Q.; Li, S.; Zhong, Q.; Liu, Z.; Tang, F.; Liu, C.; Li, H.; et al. Characterizations of the multi-kingdom gut microbiota in Chinese patients with gouty arthritis. BMC Microbiol. 2023, 23, 363. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Zhang, Y.; Dalbeth, N.; Terkeltaub, R.; Yang, T.; Wang, Y.; Yang, Z.; Li, J.; Wu, Z.; Zeng, C.; et al. Association between gut microbiota and elevated serum urate in two independent cohorts. Arthritis Rheumatol. 2022, 74, 682–691. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, T.; Zhu, L.; Pang, K.; Lu, S.; Liao, X.; Ying, S.; Zhu, L.; Xu, X.; Wu, J.; et al. Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota. J. Genet. Genom. 2021, 48, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.C.; Meng, D.M.; Chen, Y.; Jiang, G.; Liu, X.S.; Li, N.; Yan, Y.Y.; Li, C.G. Study on the diversity of Bacteroides and Clostridium in patients with primary gout. Cell Biochem. Biophys. 2015, 71, 707–715. [Google Scholar] [CrossRef]
- Shao, T.; Shao, L.; Li, H.; Xie, Z.; He, Z.; Wen, C. Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout. Front. Microbiol. 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Wen, S.; Nguyen, T.; Wang, C.; Jin, J.; Zhou, L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 943–962. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Wang, Z.; Ang, K.Y.; Huang, S.; Hou, Q.; Su, X.; Qiao, J.; Zheng, Y.; Wang, L.; et al. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans. Sci. Rep. 2016, 6, 20602. [Google Scholar] [CrossRef]
- Sheng, S.; Chen, J.; Zhang, Y.; Qin, Q.; Li, W.; Yan, S.; Wang, Y.; Li, T.; Gao, X.; Tang, L.; et al. Structural and Functional Alterations of Gut Microbiota in Males with Hyperuricemia and High Levels of Liver Enzymes. Front. Med. 2021, 8, 779994. [Google Scholar] [CrossRef]
- Yang, H.-T.; Xiu, W.-J.; Liu, J.-K.; Yang, Y.; Hou, X.G.; Zheng, Y.Y.; Wu, T.T.; Wu, C.X.; Xie, X. Gut microbiota characterization in patients with asymptomatic hyperuricemia: Probiotics increased. Bioengineered 2021, 12, 7263–7275. [Google Scholar] [CrossRef]
Prevalence | Age | Data Collection Period | Setting | Study |
---|---|---|---|---|
1.1% (95% CI: 0.7%, 1.5%) | All ages | 2000–2014 | Meta-analysis in Mainland China | Liu et al. [6] |
1.7 and 0.5% for male and female; 1.3 and 1.0% for inland and coast; 1.4, 1.0 and 0.7% for urban, city, and rural areas; 1.0 and 1.6% for community and hospital; 1.2, 1.7, and 0.8% for eastern, central and western region; 1.0, 1.1 and 1.3% for 2000–2005, 2006–2009 and 2010–2016 | All ages | 2000–2016 | Meta-analysis in Mainland China | Chen et al. [10] |
3.2% (4.4% for males, 2.0% for females) | ≥18 | 2015–2017 | A cross-sectional survey in Mainland China | Song et al. [3] |
1.1% (1.9% for males, 0.4% for females) | 20–80 | 2004 | A sample survey in the northern coastal cities | Miao et al. [11] |
12.3‰ and 3.9‰ for men and women (age-standardized) | 15–89 | 2019 | A joinpoint and age-period-cohort analysis | Zhu et al. [8] |
3.6% (8.3%postmenopausal females, 1.3% postmenopausal women) | ≥18 | 2015–2017 | A cross-sectional and population-based study in Mainland China | Lu et al. [12] |
Early onset gout: from 11.7% to 23.7% in 2008-2012 to 2013–2018 | ≤30 | 2008–2018 | A 10-year observational study | Gao et al. [5] |
10.42% in Taiwan aborigines, 2.98% in Taiwan Han | ≥20 | 2006 | A population-based cross-sectional study in Taiwan | Tu et al. [13] |
1.56% to 2.92% | All ages | 2006–2016 | Hong Kong Gout Epidemiology Study | Tsoi et al. [7] |
Gout Risk Factor | Description | Study |
---|---|---|
Age | The prevalence of gout increases linearly with age, and increasing age is independently associated with the development of gout in both men and women. | Song et al. [3] |
Area of residence | Living in urban areas was an independent risk factor for gout in men after adjusting for related confounders. | Song et al. [3] |
Ethnic groups | Among the five ethnic groups of Han, Tibetan, Zhuang, Uygur, and Hui; Han, Zhuang, and Uygur populations are all at a reduced risk for gout, while Tibetan populations are at an increased risk. | Song et al. [3] |
Economic income | As men’s income increased, the prevalence of gout showed a U-shaped curve. | Song et al. [3] |
Educational background | A high education level was an independent risk factor for gout in men. | Song et al. [3] |
Smoking | The age- and sex-standardized prevalence rates of gout are significantly different in mainland China. | Song et al. [3] |
BMI | For every 1 kg/m2 increase in BMI, the serum urate level increased by 5.10 times in men and 3.93 times in women. | Zhou et al. [32] |
Comorbidities (Obesity, Hypertension, Fatty liver, Renal insufficiency, Cardiovascular, and Dyslipidaemia) | The risk of hyperuricemia increased significantly with overweight, obesity, and waist circumference. A cross-sectional study showed that 26% of gout patients had hypertension, 17.6% had renal insufficiency according to eGFR, 53% had fatty liver disease, and 10.3% had coronary heart disease. The most common comorbidities involved coronary artery disease (CAD) (10.3%), chronic kidney disease (10.1%), and hyperlipidemia (57, 8.7%). | Liu et al. [16]; Liang et al. [33]; Wu et al. [34] |
Alkalizing Urine Drugs | Advantages |
---|---|
Sodium bicarbonate | Suitable for patients with CKD complicated with metabolic acidosis |
Potassium citrate | Dissolves urinary calculi |
Potassium sodium hydrogen citrate mixture | Dissolves urate stones and calcium stones; Reduces the occurrence of urine occult blood and decreases the frequency of gout attacks |
Tart cherry supplementary citrate mixture | More significant improvements in the urine albumin/creatinine ratio and C-reactive protein levels, indicating extra renal protective benefits and diminished inflammation in gout |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Gout, Hyperuricemia and Crystal Associated Disease Network. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, A.; Tian, Z.; Shi, Y.; Takei, R.; Chang, S.-J.; Yip, R.M.L.; Yin, H.; Li, C. Gout in China. Gout Urate Cryst. Depos. Dis. 2025, 3, 1. https://doi.org/10.3390/gucdd3010001
Ji A, Tian Z, Shi Y, Takei R, Chang S-J, Yip RML, Yin H, Li C. Gout in China. Gout, Urate, and Crystal Deposition Disease. 2025; 3(1):1. https://doi.org/10.3390/gucdd3010001
Chicago/Turabian StyleJi, Aichang, Zibin Tian, Yongyong Shi, Riku Takei, Shun-Jen Chang, Ronald M. L. Yip, Huiyong Yin, and Changgui Li. 2025. "Gout in China" Gout, Urate, and Crystal Deposition Disease 3, no. 1: 1. https://doi.org/10.3390/gucdd3010001
APA StyleJi, A., Tian, Z., Shi, Y., Takei, R., Chang, S.-J., Yip, R. M. L., Yin, H., & Li, C. (2025). Gout in China. Gout, Urate, and Crystal Deposition Disease, 3(1), 1. https://doi.org/10.3390/gucdd3010001