The Prevalence of Titanium Dioxide Particles in Synovial Fluid Samples Drops after European Union Ban
Abstract
:1. Introduction
2. Experimental
2.1. Study Design and Participants
2.2. Test Methods
2.3. Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boutillier, S.; Fourmentin, S.; Laperche, B. History of titanium dioxide regulation as a food additive: A review. Environ. Chem. Lett. 2022, 20, 1017–1033. [Google Scholar] [CrossRef]
- Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre Toxicol. 2013, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Sungur, Ş.; Kaya, P.; Koroglu, M. Determination of titanium dioxide nanoparticles used in various foods. Food Addit. Contam. Part B 2020, 13, 260–267. [Google Scholar] [CrossRef]
- Heller, A.; Coffman, S.S.; Jarvis, K. Potentially Pathogenic Calcium Oxalate Dihydrate and Titanium Dioxide Crystals in the Alzheimer’s Disease Entorhinal Cortex. J. Alzheimers Dis. 2020, 77, 547–550. [Google Scholar] [CrossRef]
- Skocaj, M.; Filipic, M.; Petkovic, J.; Novak, S. Titanium dioxide in our everyday life, is it safe? Radiol. Oncol. 2011, 45, 227–247. [Google Scholar] [CrossRef]
- Huerta-García, E.; Pérez-Arizti, J.A.; Márquez-Ramírez, S.G.; Delgado-Buenrostro, N.L.; Chirino, Y.I.; Iglesias, G.G.; López-Marure, R. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic. Biol. Med. 2014, 73, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Geraets, L.; Oomen, A.G.; Krystek, P.; Jacobsen, N.R.; Wallin, H.; Laurentie, M.; Verharen, W.H.; Brandon, E.F.A.; de Jong, W.H. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol. 2014, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Counsil. COMMISSION REGULATION (EU) 2022/63 Amending Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Food Additive Titanium Dioxide (E 171). 2022. Available online: http://data.europa.eu/eli/reg/2022/63/oj (accessed on 1 October 2023).
- Niessink, T.; Kuipers, C.; de Jong, B.Z.; Lenferink, A.T.M.; Janssen, M.; Jansen, T.L.; Otto, C. Raman hyperspectral imaging detects novel and combinations of crystals in synovial fluids of patients with a swollen joint. J. Raman Spectrosc. 2023, 54, 47–53. [Google Scholar] [CrossRef]
- Niessink, T.; Ringoot, J.; Otto, C.; Janssen, M.; Jansen, T.L. Clinical Images: Detection of titanium dioxide particles by Raman spectroscopy in synovial fluid from a swollen ankle. Arthritis Rheumatol. 2022, 74, 1069. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Wei, S.; Chen, Y.; Pu, Y.; Liu, S.; Liu, Y. Intrusion of inhaled exotic ultrafine particles into the knee joint in humans and animals: A risk to the joint and surrounding tissues. Nano Today 2022, 43, 101426. [Google Scholar] [CrossRef]
- Yao, J.J.; Lewallen, E.A.; Trousdale, W.H.; Xu, W.; Thaler, R.; Salib, C.G.; Reina, N.; Abdel, M.P.; Lewallen, D.G.; van Wijnen, A.J. Local Cellular Responses to Titanium Dioxide from Orthopedic Implants. BioResearch Open Access 2017, 6, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Mouktaroudi, M.; Bodar, E.; van der Ven, J.; Kullberg, B.J.; Netea, M.G.; Van Der Meer, J.W. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process. Ann. Rheum. Dis. 2009, 68, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.A.; Morón, B.; Becker, H.M.; Lang, S.; Atrott, K.; Spalinger, M.R.; Scharl, M.; Wojtal, K.A.; Fischbeck-Terhalle, A.; Frey-Wagner, I.; et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: Role of the NLRP3 inflammasome. Gut 2017, 66, 1216–1224. [Google Scholar] [CrossRef]
- Radhakrishnan, T. The Optical Properties of Titanium Dioxide. In Proceedings of the Indian Academy of Sciences-Section A; Springer: Berlin/Heidelberg, Germany, 1952. [Google Scholar]
- Balachandran, U.; Eror, N.G. Raman spectra of titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Campillo-Gimenez, L.; Renaudin, F.; Jalabert, M.; Gras, P.; Gosset, M.; Rey, C.; Sarda, S.; Collet, C.; Cohen-Solal, M.; Combes, C.; et al. Inflammatory Potential of Four Different Phases of Calcium Pyrophosphate Relies on NF-κB Activation and MAPK Pathways. Front. Immunol. 2018, 9, 2248. [Google Scholar] [CrossRef] [PubMed]
- Pascual, E.; Sivera, F.; Andres, M. Mixed Crystal Disease: A Tale of 2 Crystals. J. Rheumatol. 2020, 47, 1158–1159. [Google Scholar] [CrossRef] [PubMed]
Titanium Dioxide Negative | Titanium Dioxide Positive | Significance | |
---|---|---|---|
Patient count | 289 | 13 | |
Clinical diagnosis | |||
Gout | 102 (35.3%) | 0 (0%) | p = 0.09 |
CPPD | 39 (13.5%) | 2 (15.4%) | |
Osteoarthritis | 26 (9.0%) | 1 (7.7%) | |
Rheumatoid Arthritis | 14 (4.8%) | 2 (15.4%) | |
Bacterial infection | 8 (2.8%) | 0 (0%) | |
Psoriatic Arthritis | 5 (1.7%) | 0 (0%) | |
Arthritis e causa ignota | 95 (32.9%) | 8 (61.5%) | |
Sex | |||
Male | 190 (65.7%%) | 9 (69.2%) | p = 0.97 |
Female | 99 (34.3%) | 4 (30.8%) | |
Age (years) | |||
Mean age (SD) | 66.0 (SD 15.5) | 59.92 (SD 19.8) | p = 0.17 |
Analysed joint or bursae | |||
MTP1 * | 51 (17.6%) | 2 (15.4%) | p = 0.92 |
Ankle | 35 (12.1%) | 0 (0.0%) | |
Knee | 131 (45.3%) | 8 (61.5%) | |
Wrist | 18 (6.2%) | 1 (7.7%) | |
Other ** | 54 (18.7%) | 2 (15.4%) | |
History of orthopaedic implants | |||
None | 251 (86.9%) | 11 (84.6%) | p = 0.57 |
In punctured joint | 8 (2.8%%) | 1 (7.7%) | |
Elsewhere | 30 (10.3%) | 1 (7.7%) | |
CRP | |||
Normal/Unknown | 94 (32.5%) | 1 (7.7%) | p = 0.13 |
Elevated (1–10 mg/dL) | 100 (34.6%) | 5 (38.5%) | |
High (>10 mg/dL) | 95 (32.78) | 7 (53.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niessink, T.; Janssen, M.; Jansen, T.L.; Otto, C. The Prevalence of Titanium Dioxide Particles in Synovial Fluid Samples Drops after European Union Ban. Gout Urate Cryst. Depos. Dis. 2024, 2, 45-51. https://doi.org/10.3390/gucdd2010004
Niessink T, Janssen M, Jansen TL, Otto C. The Prevalence of Titanium Dioxide Particles in Synovial Fluid Samples Drops after European Union Ban. Gout, Urate, and Crystal Deposition Disease. 2024; 2(1):45-51. https://doi.org/10.3390/gucdd2010004
Chicago/Turabian StyleNiessink, Tom, Matthijs Janssen, Tim L. Jansen, and Cees Otto. 2024. "The Prevalence of Titanium Dioxide Particles in Synovial Fluid Samples Drops after European Union Ban" Gout, Urate, and Crystal Deposition Disease 2, no. 1: 45-51. https://doi.org/10.3390/gucdd2010004
APA StyleNiessink, T., Janssen, M., Jansen, T. L., & Otto, C. (2024). The Prevalence of Titanium Dioxide Particles in Synovial Fluid Samples Drops after European Union Ban. Gout, Urate, and Crystal Deposition Disease, 2(1), 45-51. https://doi.org/10.3390/gucdd2010004