Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Coffee Samples
2.2. NIR Spectra Acquisition
2.3. Chemometrics
3. Results
3.1. Spectral Characteristics of Green Coffee Beans
3.2. Coffee Post-Harvest Processing Discrimination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnan, S. Sustainable Coffee Production. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017; ISBN 978-0-19-938941-4. [Google Scholar]
- Farah, A. (Ed.) Coffee: Production, Quality and Chemistry; Royal Society of Chemistry: Cambridge, UK, 2019; ISBN 978-1-78262-004-4. [Google Scholar]
- Girma, B.; Sualeh, A. A Review of Coffee Processing Methods and Their Influence on Aroma. Int. J. Food Eng. Technol. 2022, 6, 7. [Google Scholar] [CrossRef]
- Munyendo, L.M.; Njoroge, D.M.; Owaga, E.E.; Mugendi, B. Coffee Phytochemicals and Post-Harvest Handling—A Complex and Delicate Balance. J. Food Compos. Anal. 2021, 102, 103995. [Google Scholar] [CrossRef]
- Banti, M.; Abraham, E. Coffee Processing Methods, Coffee Quality and Related Environmental Issues. J. Food Nutr. Sci. 2021, 9, 144. [Google Scholar] [CrossRef]
- De Melo Pereira, G.V.; De Carvalho Neto, D.P.; Magalhães Júnior, A.I.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the Impacts of Postharvest Processing on the Aroma Formation of Coffee Beans—A Review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef]
- Perez, M.; Domínguez-López, I.; López-Yerena, A.; Vallverdú Queralt, A. Current Strategies to Guarantee the Authenticity of Coffee. Crit. Rev. Food Sci. Nutr. 2023, 63, 539–554. [Google Scholar] [CrossRef]
- Ferreira, T.; Galluzzi, L.; De Paulis, T.; Farah, A. Three Centuries on the Science of Coffee Authenticity Control. Food Res. Int. 2021, 149, 110690. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2017, 83, e02398-16. [Google Scholar] [CrossRef]
- Cao, X.; Wu, H.; Viejo, C.G.; Dunshea, F.R.; Suleria, H.A.R. Effects of Postharvest Processing on Aroma Formation in Roasted Coffee—A Review. Int. J. Food Sci. Technol. 2023, 58, 1007–1027. [Google Scholar] [CrossRef]
- Sorane Good Kitzberger, C.; Pot, D.; Marraccini, P.; Filipe Protasio Pereira, L.; Brígida Dos Santos Scholz, M. Flavor Precursors and Sensory Attributes of Coffee Submitted to Different Post-Harvest Processing. AIMS Agric. Food 2020, 5, 700–714. [Google Scholar] [CrossRef]
- Rodriguez, Y.F.B.; Guzman, N.G.; Hernandez, J.G. Effect of the Postharvest Processing Method on the Biochemical Composition and Sensory Analysis of Arabica Coffee. Eng. Agríc. 2020, 40, 177–183. [Google Scholar] [CrossRef]
- Bekti Sunarharum, W.; Setyo Yuwono, S.; Sofia Murtini, E.; Fibrianto, K.; Waziiroh, E.; Shinta Wulandari, E.; Yum Wahibah, L. Introduction Of Post-Harvest Processing Tehcnology To Increase Production Capacity And Quality Of Coffee Processed By Uph Sekar Rindu, Dampit, Malang Regency. J. Innov. Appl. Technol. 2018, 4, 766–770. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Yuwono, S.S.; Nadhiroh, H. Effect of Different Post-Harvest Processing on the Sensory Profile of Java Arabica Coffee. Adv. Food Sci. Sustain. Agric. Agroind. Eng. 2018, 1, 9–14. [Google Scholar] [CrossRef]
- Widodo, P.B.; Yulianto, M.E.; Ariyanto, H.D.; Paramita, V. Efficacy of Natural and Full Washed Post-Harvest Processing Variations on Arabica Coffee Characteristics. Mater. Today Proc. 2023, 87, 79–85. [Google Scholar] [CrossRef]
- Cortés-Macías, E.T.; López, C.F.; Gentile, P.; Girón-Hernández, J.; López, A.F. Impact of Post-Harvest Treatments on Physicochemical and Sensory Characteristics of Coffee Beans in Huila, Colombia. Postharvest Biol. Technol. 2022, 187, 111852. [Google Scholar] [CrossRef]
- Da Silva, M.C.S.; Da Luz, J.M.R.; Veloso, T.G.R.; Gomes, W.D.S.; Oliveira, E.C.D.S.; Anastácio, L.M.; Cunha Neto, A.; Moreli, A.P.; Guarçoni, R.C.; Kasuya, M.C.M.; et al. Processing Techniques and Microbial Fermentation on Microbial Profile and Chemical and Sensory Quality of the Coffee Beverage. Eur. Food Res. Technol. 2022, 248, 1499–1512. [Google Scholar] [CrossRef]
- Effendi, M.; Faqy, M.M.; Santoso, I.; Astuti, R.; Mahmudy, W.F. Identification of Arabica Coffee Post-Harvest Processing Using a Convolutional Neural Network. BIO Web Conf. 2024, 90, 03003. [Google Scholar] [CrossRef]
- Qima, C. ALCHEMY—Qima|The Coffee Revolution. Available online: https://www.qimacoffee.com/alchemy (accessed on 11 February 2025).
- Mawardi, I.-; Nurdin, N.; Zulkarnaini, Z. Appropriate Technology Program of Postharvested Coffee: Production, Marketing, and Coffee Processing Machine Business Unit. J. Pengabdi. Kpd. Masy. Indones. J. Community Engagem. 2019, 5, 267. [Google Scholar] [CrossRef]
- Analianasari, A.; Berliana, D.; Shintawati, S. Defects of Coffee Beans with Different Postharvest Processes and Roasting Temperatures on Volatile Compounds of Coffee Beans from Coffee Small-Scale Industries of West Lampung Indonesia. Trends Sci. 2024, 21, 7695. [Google Scholar] [CrossRef]
- Giraudo, A.; Grassi, S.; Savorani, F.; Gavoci, G.; Casiraghi, E.; Geobaldo, F. Determination of the Geographical Origin of Green Coffee Beans Using NIR Spectroscopy and Multivariate Data Analysis. Food Control 2019, 99, 137–145. [Google Scholar] [CrossRef]
- Buratti, S.; Sinelli, N.; Bertone, E.; Venturello, A.; Casiraghi, E.; Geobaldo, F. Discrimination between Washed Arabica, Natural Arabica and Robusta Coffees by Using near Infrared Spectroscopy, Electronic Nose and Electronic Tongue Analysis. J. Sci. Food Agric. 2015, 95, 2192–2200. [Google Scholar] [CrossRef]
- Yulianti, Y.; Adawiyah, D.R.; Herawati, D.; Indrasti, D.; Andarwulan, N. Detection of Markers in Green Beans and Roasted Beans of Kalosi-Enrekang Arabica Coffee with Different Postharvest Processing Using LC-MS/MS. Int. J. Food Sci. 2023, 2023, 6696808. [Google Scholar] [CrossRef]
- Kim, J.-S.; Choi, J.; Park, S.-E.; Kwak, S.; Cho, H.; Son, H.-S. Factors Influencing Metabolite Profiles in Global Arabica Green Coffee Beans: Impact of Continent, Altitude, Post-Harvest Processing, and Variety. Food Res. Int. 2025, 208, 116187. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: A Mature Analytical Technique with New Perspectives—A Review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Manley, M. Near-Infrared Spectroscopy and Hyperspectral Imaging: Non-Destructive Analysis of Biological Materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef]
- Williams, P.; Antoniszyn, J.; Manley, M. Near Infrared Technology: Getting the Best out of Light, 1st ed.; African Sun Media: Stellenbosch, South Africa, 2019. [Google Scholar]
- Cozzolino, D. The Sample, the Spectra and the Maths—The Critical Pillars in the Development of Robust and Sound Applications of Vibrational Spectroscopy. Molecules 2020, 25, 3674. [Google Scholar] [CrossRef]
- Barbin, D.F.; Felicio, A.L.d.S.M.; Sun, D.-W.; Nixdorf, S.L.; Hirooka, E.Y. Application of Infrared Spectral Techniques on Quality and Compositional Attributes of Coffee: An Overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef]
- Zhang, W.; Kasun, L.C.; Wang, Q.J.; Zheng, Y.; Lin, Z. A Review of Machine Learning for Near-Infrared Spectroscopy. Sensors 2022, 22, 9764. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Guo, Y.; Han, Y.; Li, Z.; Yang, Z.; Chai, Q.; Wang, W.; Zhang, Y.; Fu, C. A Review of the Discriminant Analysis Methods for Food Quality Based on Near-Infrared Spectroscopy and Pattern Recognition. Molecules 2021, 26, 749. [Google Scholar] [CrossRef] [PubMed]
- Kumaravelu, C.; Gopal, A. A Review on the Applications of Near-Infrared Spectrometer and Chemometrics for the Agro-Food Processing Industries. In Proceedings of the 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 10–12 July 2015; pp. 8–12. [Google Scholar]
- Nguyen Minh, Q.; Lai, Q.D.; Nguy Minh, H.; Tran Kieu, M.T.; Lam Gia, N.; Le, U.; Hang, M.P.; Nguyen, H.D.; Chau, T.D.A.; Doan, N.T.T. Authenticity Green Coffee Bean Species and Geographical Origin Using Near-infrared Spectroscopy Combined with Chemometrics. Int. J. Food Sci. Technol. 2022, 57, 4507–4517. [Google Scholar] [CrossRef]
- Okubo, N.; Kurata, Y. Nondestructive Classification Analysis of Green Coffee Beans by Using Near-Infrared Spectroscopy. Foods 2019, 8, 82. [Google Scholar] [CrossRef]
- Santos-Rivera, M.; Montagnon, C.; Sheibani, F. Identifying the Origin of Yemeni Green Coffee Beans Using near Infrared Spectroscopy: A Promising Tool for Traceability and Sustainability. Sci. Rep. 2024, 14, 13342. [Google Scholar] [CrossRef] [PubMed]
- Munyendo, L.; Njoroge, D.; Hitzmann, B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes 2021, 10, 71. [Google Scholar] [CrossRef]
- Villegas, A.M.; Perez, C.; Arana, V.A.; Sandoval, T.; Posada, H.E.; Garrido, A.; Ginel, J.G.; Perez, D.; Olmo, J.G. Identificación de origen y calibración para tres compuestos químicos en café, por espectroscopia de infrarojo cercano. Cenicafe 2014, 65, 7–16. [Google Scholar]
- Santos-Rivera, M. Novel Strategies in near Infrared Spectroscopy (NIRS) and Multivariate Analysis (MVA) for Detecting and Profiling Pathogens and Diseases of Agricultural Importance. Ph.D. thesis, Mississippi State University, Mississippi State, MS, USA, 2022.
- Qu, L.; Pei, Y. A Comprehensive Review on Discriminant Analysis for Addressing Challenges of Class-Level Limitations, Small Sample Size, and Robustness. Processes 2024, 12, 1382. [Google Scholar] [CrossRef]
- Parikh, R.; Mathai, A.; Parikh, S.; Sekhar, G.C.; Thomas, R. Understanding and Using Sensitivity, Specificity and Predictive Values. Indian. J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
- Rotta, N.M.; Curry, S.; Han, J.; Reconco, R.; Spang, E.; Ristenpart, W.; Donis-González, I.R. A Comprehensive Analysis of Operations and Mass Flows in Postharvest Processing of Washed Coffee. Resour. Conserv. Recycl. 2021, 170, 105554. [Google Scholar] [CrossRef]
- Kidist, T.; Zerihun, G.; Biniam, E. Assessment of Pre and Post-Harvest Management Practices on Coffee (Coffea arabica L.) Quality Determining Factors in Gedeo Zone, Southern Ethiopia. Afr. J. Agric. Res. 2019, 14, 1216–1228. [Google Scholar] [CrossRef]
- Harahap, R.H.; Absah, Y.; Aulia, F. Improving Arabica Coffee Quality: Examining Post-Harvest Practices among Farmers in Bener Meriah District, Aceh, Indonesia. Preprints 2024, 2024060938. [Google Scholar]
- Worku, M.; de Meulenaer, B.; Duchateau, L.; Boeckx, P. Effect of Altitude on Biochemical Composition and Quality of Green Arabica Coffee Beans Can Be Affected by Shade and Postharvest Processing Method. Food Res. Int. 2018, 105, 278–285. [Google Scholar] [CrossRef]
- Worku, M.; Astatkie, T.; Boeckx, P. Shade and Postharvest Processing Effects on Arabica Coffee Quality and Biochemical Composition in Lowland and Midland Coffee-Growing Areas of Southwestern Ethiopia. J. Food Compos. Anal. 2023, 115, 105027. [Google Scholar] [CrossRef]
- Tieghi, H.; Pereira, L.D.A.; Viana, G.S.; Katchborian-Neto, A.; Santana, D.B.; Mincato, R.L.; Dias, D.F.; Chagas-Paula, D.A.; Soares, M.G.; De Araújo, W.G.; et al. Effects of Geographical Origin and Post-Harvesting Processing on the Bioactive Compounds and Sensory Quality of Brazilian Specialty Coffee Beans. Food Res. Int. 2024, 186, 114346. [Google Scholar] [CrossRef] [PubMed]
- Lamessa Tesgera, K.; Nandeshwar, B.C.; Jalata, Z.; Chala, T.C. Physical Quality of Coffee Bean (Coffea arabica L.) as Affected by Harvesting and Drying Methods. J. Hortic. Sci. 2021, 16, 292–300. [Google Scholar] [CrossRef]
- Aung Moon, S.; Wongsakul, S.; Kitazawa, H.; Saengrayap, R. Influence of Post-Harvest Processing and Drying Techniques on Physicochemical Properties of Thai Arabica Coffee. AgriEngineering 2024, 6, 2198–2213. [Google Scholar] [CrossRef]
- Velásquez, S.; Banchón, C. Influence of Pre-and Post-Harvest Factors on the Organoleptic and Physicochemical Quality of Coffee: A Short Review. J. Food Sci. Technol. 2023, 60, 2526–2538. [Google Scholar] [CrossRef] [PubMed]
- Haile, M.; Hee Kang, W. The Harvest and Post-Harvest Management Practices’ Impact on Coffee Quality. In Coffee—Production and Research; Toledo Castanheira, D., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-83880-884-6. [Google Scholar]
- Motta, I.V.C.; Vuillerme, N.; Pham, H.-H.; De Figueiredo, F.A.P. Machine Learning Techniques for Coffee Classification: A Comprehensive Review of Scientific Research. Artif. Intell. Rev. 2024, 58, 15. [Google Scholar] [CrossRef]
- Halagarda, M.; Obrok, P. Influence of Post-Harvest Processing on Functional Properties of Coffee (Coffea arabica L.). Molecules 2023, 28, 7386. [Google Scholar] [CrossRef]
Country | % Moisture Average | Coffee Post-Harvest Processing (PHP) 1 | |||||||
---|---|---|---|---|---|---|---|---|---|
A | AP | DH | H | N | W | WH | Total | ||
Brazil | 9.8 | 0 | 0 | 0 | 0 | 20 | 6 | 0 | 26 |
Colombia | 10.4 | 0 | 0 | 0 | 7 | 9 | 34 | 0 | 50 |
Ecuador | 10.4 | 0 | 0 | 0 | 2 | 6 | 36 | 0 | 44 |
El Salvador | 10.2 | 0 | 0 | 0 | 5 | 17 | 6 | 0 | 28 |
Guatemala | 10.2 | 0 | 0 | 0 | 1 | 7 | 20 | 0 | 28 |
Indonesia | 10.1 | 0 | 0 | 3 | 6 | 22 | 5 | 3 | 39 |
Mexico | 10.0 | 0 | 0 | 0 | 2 | 11 | 11 | 0 | 24 |
Nicaragua | 10.1 | 0 | 0 | 0 | 1 | 6 | 9 | 0 | 16 |
Peru | 9.9 | 0 | 0 | 0 | 0 | 11 | 60 | 0 | 71 |
Thailand | 10.5 | 0 | 0 | 0 | 10 | 24 | 8 | 0 | 42 |
Yemen | 10.4 | 22 | 4 | 0 | 6 | 124 | 0 | 0 | 156 |
Total Samples | 22 | 4 | 3 | 40 | 257 | 195 | 3 | 524 | |
Training Set Spectra | 75 | 20 | 15 | 140 | 900 | 680 | 15 | 1845 | |
Test Set Spectra | 35 | NA | NA | 60 | 385 | 295 | NA | 775 | |
Total Spectra | 110 | 20 | 15 | 200 | 1285 | 975 | 15 | 2620 |
Coffee Post-Harvest Processing (PHP) 1 | PCA-LDA 1 (750–2500 nm) 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | AP | DH | H | N | W | WH | Total | Ac | Se | Sp | |
Alchemy | 21 | 0 | 0 | 0 | 1 | 0 | 0 | 22 | 99.1 | 95.5 | 99.2 |
Anaerobic Processing | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4 | 100 | 100 | 100 |
Dry-Hulled | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | 100 | 100 | 100 |
Honey | 0 | 0 | 0 | 39 | 0 | 1 | 0 | 40 | 99.8 | 97.5 | 100 |
Natural | 4 | 0 | 0 | 6 | 244 | 3 | 0 | 257 | 98.1 | 97.6 | 98.6 |
Washed | 0 | 0 | 0 | 3 | 1 | 191 | 0 | 195 | 99.2 | 99.5 | 99.1 |
Wet-Hulled | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 100 | 100 | 100 |
Overall Accuracy (%) | 96.5 | ||||||||||
Overall Sensitivity (%) | 98.3 | ||||||||||
Overall Specificity (%) | 99.7 |
PCA-LDA 2 (750–2500 nm) 1 | ||||||||
Training Set | ||||||||
Coffee Post-Harvest Processing (PHP) 2 | A | H | N | W | Total | Ac | Se | Sp |
Alchemy | 15 | 0 | 0 | 0 | 15 | 100 | 100 | 100 |
Honey | 0 | 28 | 0 | 0 | 28 | 98.3 | 100 | 98.2 |
Natural | 0 | 6 | 173 | 1 | 180 | 97.8 | 96.1 | 99.4 |
Washed | 0 | 0 | 1 | 135 | 136 | 99.4 | 99.3 | 99.6 |
Overall Accuracy (%) | 97.8 | |||||||
Overall Sensitivity (%) | 97.8 | |||||||
Overall Specificity (%) | 99.3 | |||||||
Test Set | ||||||||
Coffee Post-Harvest Processing (PHP) | A | H | N | W | Total | Ac | Se | Sp |
Alchemy | 4 | 0 | 3 | 0 | 7 | 96.8 | 57.1 | 98.6 |
Honey | 0 | 7 | 0 | 5 | 12 | 90.3 | 58.3 | 93.0 |
Natural | 2 | 9 | 62 | 4 | 77 | 86.1 | 80.5 | 91.4 |
Washed | 0 | 1 | 4 | 54 | 59 | 93.0 | 91.5 | 94.0 |
Overall Accuracy (%) | 91.5 | |||||||
Overall Sensitivity (%) | 81.9 | |||||||
Overall Specificity (%) | 94.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Rivera, M.; Viswanathan, L.; Sheibani, F. Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy. Spectrosc. J. 2025, 3, 20. https://doi.org/10.3390/spectroscj3020020
Santos-Rivera M, Viswanathan L, Sheibani F. Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy. Spectroscopy Journal. 2025; 3(2):20. https://doi.org/10.3390/spectroscj3020020
Chicago/Turabian StyleSantos-Rivera, Mariana, Lakshmanan Viswanathan, and Faris Sheibani. 2025. "Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy" Spectroscopy Journal 3, no. 2: 20. https://doi.org/10.3390/spectroscj3020020
APA StyleSantos-Rivera, M., Viswanathan, L., & Sheibani, F. (2025). Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy. Spectroscopy Journal, 3(2), 20. https://doi.org/10.3390/spectroscj3020020