Optical Gain in Eu-Doped Hybrid Nanocrystals Embedded SiO2-HfO2-ZnO Ternary Glass-Ceramic Waveguides
Abstract
1. Introduction
2. Materials and Methods
3. Characterizations
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurkjian, C.R.; Prindle, W.R. Perspectives on the history of glass composition. J. Am. Ceram. Soc. 1998, 81, 795–813. [Google Scholar] [CrossRef]
- Ferrari, M.; Righini, G.C. Glass-ceramic materials for guided-wave optics. Int. J. Appl. Glass Sci. 2015, 6, 240–248. [Google Scholar] [CrossRef]
- Rastogi, R.; Chaurasia, S. Advances in and Future Perspectives on High-Power Ceramic Lasers. Photonics 2024, 11, 942. [Google Scholar] [CrossRef]
- Mortier, M.; Vivien, D. Ceramic and glass-ceramic lasers. Ann. De Chim. Sci. Des Matériaux 2003, 28, 21–33. [Google Scholar] [CrossRef]
- Dieke, G.H.; Crosswhite, H.M.; Crosswhite, H.M. Spectra and Energy Levels of Rare Earth Ions in Crystals; Interscience Publishers: New York, NY, USA, 1968; Volume 5. [Google Scholar]
- Wang, Y.; Ohwaki, J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 1993, 63, 3268–3270. [Google Scholar] [CrossRef]
- Tick, P.A.; Borrelli, N.F.; Cornelius, L.K.; Newhouse, M.A. Transparent glass ceramics for 1300 nm amplifier applications. J. Appl. Phys. 1995, 78, 6367–6374. [Google Scholar] [CrossRef]
- Tick, P.A. Are low-loss glass–ceramic optical waveguides possible? Opt. Lett. 1998, 23, 1904–1905. [Google Scholar] [CrossRef]
- Blanc, W.; Dussardier, B. Formation and applications of nanoparticles in silica optical fibers. J. Opt. 2016, 45, 247–254. [Google Scholar] [CrossRef]
- Kamrádek, M.; Kašík, I.; Aubrecht, J.; Mrázek, J.; Podrazký, O.; Cajzl, J. Nanoparticle and Solution Doping for Efficient Holmium Fiber Lasers. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Ferreira, P.H.D.; Fabris, D.C.N.; Villas Boas, M.O.C.; Bezerra, I.G.; Mendonça, C.R.; Zanotto, E.D. Transparent glass-ceramic waveguides made by femtosecond laser writing. Opt. Laser Technol. 2021, 136, 106742. [Google Scholar] [CrossRef]
- Dymshits, O.; Shepilov, M.; Zhilin, A. Transparent glass-ceramics for optical applications. MRS Bull. 2017, 42, 200–205. [Google Scholar] [CrossRef]
- Cao, H.; Xu, J.Y.; Seelig, E.W.; Chang, R.P.H. Microlaser made of disordered media. Appl. Phys. Lett. 2000, 76, 2997–2999. [Google Scholar] [CrossRef]
- Son, D.I.; Kwon, B.W.; Park, D.H.; Seo, W.-S.; Yi, Y.; Angadi, B.; Lee, C.-L.; Choi, W.K. Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465. [Google Scholar] [CrossRef] [PubMed]
- Mears, R.J.; Reekie, L.; Poole, S.B.; Payne, D.N. Neodymium-doped silica single-mode fibre laser. Electron. Lett. 1985, 21, 738–740. [Google Scholar] [CrossRef]
- Kik, P.G.; Polman, A. Erbium-doped optical-waveguide amplifiers on silicon. MRS Bull. 1998, 23, 48–54. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Zha, T.; Zhang, P.; Long, Y.; Fang, Z. Low-Temperature Fluoro-Borosilicate Glass for Controllable Nano-Crystallization in Glass Ceramic Fibers. Nanomaterials 2023, 13, 1586. [Google Scholar] [CrossRef]
- Lahoz, F.; Capuj, N.E.; Navarro-Urrios, D.; Hernández, S.E. Stimulated emission and light amplification in Ho3+ doped oxyfluoride glasses and glass-ceramics. Photonic Mater. Devices Appl. II 2007, 6593, 176–183. [Google Scholar]
- Ghosh, S.; Bhaktha, S.N.B. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides. Nanotechnology 2016, 27, 105202. [Google Scholar] [CrossRef]
- Tien, P.K. Light Waves in Thin Films and Integrated Optics. Appl. Opt. 1971, 10, 2395–2413. [Google Scholar] [CrossRef]
- Ji, Y.; Zhong, Q.; Yang, X.; Li, L.; Li, Q.; Xu, H.; Chen, P.; Li, S.; Yan, H.; Xiao, Y.; et al. Surface Engineering Enables Efficient AgBiS2 Quantum Dot Solar Cells. Nano Lett. 2024, 24, 10418–10425. [Google Scholar] [CrossRef]
- Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzo, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Takeuchi, N.; Taniguchi, H.; Yuyama, S.; Oe, K.; Mibuka, N.; Suzuki, A.; Mataki, H. Amplification properties of Tb(III) green emission in polymeric waveguide doped with Tb–Al nanocluster. J. Lumin. 2009, 129, 526–530. [Google Scholar] [CrossRef]
- McGehee, M.D.; Gupta, R.; Veenstra, S.; Miller, E.K.; Diaz-Garcia, M.A.; Heeger, A.J. Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys. Rev. B 1998, 58, 7035. [Google Scholar] [CrossRef]
- Shaklee, K.L.; Leheny, R.F. Direct determination of optical gain in semiconductor crystals. Appl. Phys. Lett. 1971, 18, 475–477. [Google Scholar] [CrossRef]
- Yariv, A. Quantum Electronics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Bhaktha, S.N.B.; Beclin, F.; Bouazaoui, M.; Capoen, B.; Chiasera, A.; Ferrari, M.; Kinowski, C.; Righini, G.C.; Robbe, O.; Turrell, S. Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content. Appl. Phys. Lett. 2008, 93, 211904. [Google Scholar] [CrossRef]
- Ghosh, S.; Valligatla, S.; Lukowiak, A.; Chiasera, A.; Ferrari, M.; Bhaktha, S.N.B. Time-resolved photoluminescence studies in Eu-doped SiO2—HfO2—ZnO glass-ceramic waveguides. Ceram. Int. 2017, 43, 1145–1149. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhaktha, S.N.B. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications. Nanotechnology 2018, 29, 225202. [Google Scholar] [CrossRef]
Waveguide Composition (mol%) | Refractive Index (n) (±0.005) | Thickness (d) (±0.1 µm) | Propagation Loss @ 632.8 nm (±0.2 dB/cm) | Nanocrystal Size (nm) | Optical Gain (g) cm−1 |
---|---|---|---|---|---|
70 SiO2–30 HfO2 | 1.503 | 0.9 | 0.4 | - | 5.3 |
70 SiO2–28 HfO2–2 ZnO | 1.502 | 0.9 | 0.6 | 3 | 4.8 |
70 SiO2–25 HfO2–5 ZnO | 1.506 | 0.9 | 0.3 | 17 | 3.7 |
70 SiO2–23 HfO2–7 ZnO | 1.499 | 0.9 | 0.5 | 22 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Turrell, S.; Ferrari, M.; N., S.B.B. Optical Gain in Eu-Doped Hybrid Nanocrystals Embedded SiO2-HfO2-ZnO Ternary Glass-Ceramic Waveguides. Spectrosc. J. 2025, 3, 3. https://doi.org/10.3390/spectroscj3010003
Ghosh S, Turrell S, Ferrari M, N. SBB. Optical Gain in Eu-Doped Hybrid Nanocrystals Embedded SiO2-HfO2-ZnO Ternary Glass-Ceramic Waveguides. Spectroscopy Journal. 2025; 3(1):3. https://doi.org/10.3390/spectroscj3010003
Chicago/Turabian StyleGhosh, Subhabrata, Sylvia Turrell, Maurizio Ferrari, and Shivakiran Bhaktha B. N. 2025. "Optical Gain in Eu-Doped Hybrid Nanocrystals Embedded SiO2-HfO2-ZnO Ternary Glass-Ceramic Waveguides" Spectroscopy Journal 3, no. 1: 3. https://doi.org/10.3390/spectroscj3010003
APA StyleGhosh, S., Turrell, S., Ferrari, M., & N., S. B. B. (2025). Optical Gain in Eu-Doped Hybrid Nanocrystals Embedded SiO2-HfO2-ZnO Ternary Glass-Ceramic Waveguides. Spectroscopy Journal, 3(1), 3. https://doi.org/10.3390/spectroscj3010003