Advantages of In Situ Mössbauer Spectroscopy in Catalyst Studies with Precaution in Interpretation of Measurements
Abstract
:1. Introduction
2. Experimental Background and Selected Materials
2.1. Samples
2.2. In Situ Mössbauer Measurements
3. Mössbauer Studies on Zeolites (Example 1)
3.1. Demonstration of Extra-Framework Siting of Iron in Various Coordinations in 57Fe LTA Sample
3.2. Framework Iron Ions in Ferrierite Analog Ferrisilicate
4. Metals/Alloys (Example 2)
4.1. In Situ Dehydrochlorination of 1,2-Dichloroethane, ClCH2-CH2Cl
4.2. Oxidation of CO on Pt-Sn Catalyst at Room Temperature
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greenwood, N.N.; Gibb, T.C. Mössbauer Spectroscopy; Chapman and Hall: London, UK, 1971. [Google Scholar]
- Cohen, R.L. Applications of Mössbauer Spectroscopy; Academic Press: Cambridge, MA, USA, 1976; Volumes 1–2. [Google Scholar]
- Long, G.J. Application of Mössbauer Spectroscopy to Inorganic Chemistry; Plenum Press: NewYork, NY, USA, 1984; Volumes 1–3. [Google Scholar]
- Gütlich, P.; Bill, E.; Trautwein, A.X. Mössbauer Spectroscopy and Transitional Metal Chemistry; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Mössbauer Spectroscopy. In Applications in Chemistry, Biology and Nanotechnology; Sharma, V.K., Klingelhöfer, G., Nishida, T., Eds.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Modern Mössbauer Spectroscopy. In Topics in Applied Physics; Yoshida, Y., Langouche, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 137. [Google Scholar]
- Murad, E.; Cashion, J. Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Filter, W.F.; Sands, R.H.; Dunham, W.R. An ultra-high-stability Mössbauer spectrometer drive using a type-2 feedback system. Nucl. Instrum. Methods Phys. Res. B 1996, 119, 565–582. [Google Scholar] [CrossRef]
- Nagy, D.L.; Röhlich, U. An overview on model-independent data reduction methods in Mössbauer spectroscopy. Hyperfine Interact. 1991, 66, 105–126. [Google Scholar] [CrossRef]
- Alenkina, I.V.; Ushakov, M.V.; Morais, P.C.; Selvan, R.K.; Kuzmann, E.; Klencsár, Z.; Felner, I.; Homonnay, Z.; Oshtrakh, M.I. Mössbauer spectroscopy with a high velocity resolution in the studies of nanomaterials. Nanomaterials 2022, 12, 3748. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, Y.; Mehner, H.; Menzel, M.; Rogozev, B. Precision in Mössbauer spectroscopy. Hyperfine Interact. 2002, 139/140, 679–684. [Google Scholar] [CrossRef]
- Spiering, H.; Ksenofontov, V.; Leupold, O.; Kusz, J.; Deák, L.; Németh, Z.; Bogdán, C.; Bottyán, L.; Nagy, D.L. Line shape of 57Co sources exhibiting self absorption. Hyperfine Interact. 2016, 237, 58. [Google Scholar] [CrossRef]
- Brand, R.A. Normos Mössbauer Fitting Program. The NORMOS Program is Available from Wissel GmbH. Nucl. Instrum. Methods Phys. Res. 1987, 28, 398. [Google Scholar] [CrossRef]
- Klencsár, Z.; Kuzmann, E.; Vértes, A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996, 210, 105–118. [Google Scholar] [CrossRef]
- Lagarec, K.; Rancourt, D.G. Recoil User Manual—Mössbauer Spectral Analysis Software for Windows; University of Ottawa: Ottawa, ON, Canada, 1998. [Google Scholar]
- Zak, T.; Jirásková, Y. CONFIT: Mössbauer spectra fitting program. Surf. Interface Anal. 2006, 38, 710–714. [Google Scholar] [CrossRef]
- Hjøllum, J.; Madsen, M.B. Fit;o)-A Mössbauer spectrum fitting program. arXiv 2009, arXiv:0912.0449v1. [Google Scholar]
- Kamusella, S.; Klauss, H.-H. Moessfit A free Mössbauer fitting program. Hyperfine Interact. 2016, 237, 82. [Google Scholar] [CrossRef]
- Spiering, H.; Nagy, D.L.; Németh, Z.; Bogdán, C.; Deák, L. Non-linearity correction of the velocity scale of a Mössbauer spectrum. Nucl. Instrum. Methods Phys. Res. B 2020, 480, 98–104. [Google Scholar] [CrossRef]
- Kuzmann, E.; Nagy, S.; Vértes, A. Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples. Pure Appl. Chem. 2003, 75, 801–858. [Google Scholar] [CrossRef]
- Grandjean, F.; Long, G.J. Best practices and protocols in Mössbauer spectroscopy. Chem. Mater. 2021, 33, 3878–3904. [Google Scholar] [CrossRef]
- Klencsár, Z.; Wang, J.; Ge, R.; Zhou, W.; Liu, D.; Rykov, A.I.; Zhang, T. The new WEB-accessible online database of the Mössbauer Effect Data Center. Hyperfine Interact. 2021, 242, 15. [Google Scholar] [CrossRef]
- Dyar, M.D. Precision and interlaboratory reproducibility of measurements of the Mössbauer effect in minerals. Am. Mineral. 1984, 69, 1127–1144. [Google Scholar]
- Mehner, H.; Menzel, M.; Nofz, M. Laboratory intercomparison on the determination of the Fe(II)/Fe(III) ratio in glass using Mössbauer spectroscopy. Hyperfine Interact. 2004, 156/157, 347–352. [Google Scholar] [CrossRef]
- Dumesic, J.A.; Topsøe, H. Mössbauer spectroscopy applications to heterogeneous catalysis. Adv. Catal. 1977, 26, 121–246. [Google Scholar]
- Millet, J.-M.M. Mössbauer spectroscopy in heterogeneous catalysis. Adv. Catal. 2007, 51, 309–350. [Google Scholar] [CrossRef]
- Liu, K.; Rykov, A.I.; Wang, J.; Zhang, T. Recent advances in the applications of Mössbauer spectroscopy in heterogeneous catalysis. Adv. Catal. 2015, 58, 1–142. [Google Scholar] [CrossRef]
- Lázár, K. Mössbauer spectroscopy of catalysts, Ch. 4. In Mössbauer Spectroscopy: Applications in Chemistry and Materials Science; Garcia, Y., Wang, J., Zhang, T., Eds.; Wiley: Hoboken, NJ, USA, 2024; pp. 113–143. [Google Scholar]
- Fischer, N.; Claeys, M. In situ characterization of Fischer-Tropsch catalysts: A review. J. Phys. D Appl. Phys. 2020, 53, 293001. [Google Scholar] [CrossRef]
- Bibicu, I.; Frunza, L. Characterization of oxide catalysts by in situ Mössbauer spectroscopy. Rom. Rep. Phys. 2006, 58, 427–453. [Google Scholar]
- Crajé, M.W.J.; van der Kraan, A.M.; van de Loosdrecht, J.; van Berge, P.J. The application of Mössbauer emission spectroscopy to industrial cobalt based Fischer-Tropsch catalysts. Catal. Today 2002, 71, 369–379. [Google Scholar] [CrossRef]
- Wezendonk, T.A.; Santos, V.P.; Nasalevich, M.A.; Warringa, Q.S.; Dugulan, A.I.; Chojecki, A.; Koeken, A.C.J.; Ruitenbeek, M.; Meima, G.R.; Islam, H.-U.; et al. Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer-Tropsch catalysts. ACS Catal. 2016, 6, 3236–3247. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, X.; Wang, J.; Sougrati, M.T.; Huang, Y.; Zhang, T.; Liu, B. In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem. Catal. 2021, 1, 1215–1233. [Google Scholar] [CrossRef]
- Liu, P.; Farid, S.; Liu, M.; Wang, J. In-situ/operando Mössbauer spectroscopic investigations of Fe-involved metal hydroxide-based OER electrocatalysts. Catal. Surv. Asia 2024, 28, 361–374. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, J.; Li, Y.; Cui, Y.; Lu, Y.-R.; Hung, S.-F.; Wang, S.; Wang, W.; Huo, G.; Zhao, Y.; et al. Operando Mössbauer spectroscopic tracking the metastable state of atomically dispersed tin in copper oxide for selective CO2 electroreduction. J. Am. Chem. Soc. 2023, 145, 20683–20691. [Google Scholar] [CrossRef]
- Bussiere, P. Mössbauer spectroscopy, dispersion and catalysis. Hyperfine Interact. 1991, 66, 39–50. [Google Scholar] [CrossRef]
- Dubkov, K.A.; Ovanesyan, N.S.; Shteinman, A.A.; Starokon, E.V.; Panov, G.I. Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites. J. Catal. 2002, 207, 341–352. [Google Scholar] [CrossRef]
- Candy, J.-P.; Roisin, E.; Basset, J.-M.; Uzio, D.; Morin, S.; Fischer, L.; Olivier-Fourcade, J.; Jumas, J.-C. Evidence for direct observation by Mössbauer spectroscopy of surface tin atoms in platinum-tin particles. Hyperfine Interact. 2005, 165, 55–60. [Google Scholar] [CrossRef]
- Garten, R.L.; Delgass, W.N.; Boudart, M. A Mössbauer spectroscopic study of the reversible oxidation of ferrous ions in Y zeolite. J. Catal. 1970, 18, 90–96. [Google Scholar] [CrossRef]
- Villegas, V.A.R.; Ramirez, J.I.D.L.; Pérez-Cabrera, L.; Pérez-Sicairos, S.; Chávez-Méndez, J.R.; Petranovskii, V. Analysis of catalytic sites in FeY zeolite prepared by sono-assisted exchange of Fe(II) ions. Microporous Mesoporous Mater. 2024, 380, 113306. [Google Scholar] [CrossRef]
- Fejes, P.; Kiricsi, I.; Lázár, K.; Marsi, I.; Rockenbauer, A.; Korecz, L. Attempts to produce uniform Fe(III) siting in Fe content SOD and LTA zeolites; An EPR and Mössbauer study. Appl. Catal. A Gen. 2003, 242, 63–76. [Google Scholar] [CrossRef]
- Lázár, K.; Lejeune, G.; Ahedi, R.K.; Shevade, S.; Kotasthane, A.N. Interpreting the oxidative catalytic activity in iron-substituted ferrierites using in situ Mössbauer spectroscopy. J. Chem. Phys. B 1998, 102, 4865–4870. [Google Scholar] [CrossRef]
- Rhodes, W.; Lázár, K.; Kovalchuk, V.I.; d’Itri, J.L. Hydrogen-assisted 1,2-dichloroethane dechlorination catalyzed by Pt-Sn/SiO2: Effect of the Pt/Sn atomic ratio. J. Catal. 2002, 211, 173–182. [Google Scholar] [CrossRef]
- Margitfalvi, J.L.; Borbáth, I.; Hegedűs, M.; Szegedi, Á.; Lázár, K.; Gőbölös, S.; Kristyán, S. Low-temperature oxidation of CO over tin modified Pt/SiO2 catalysts. Catal. Today 2002, 73, 343–353. [Google Scholar] [CrossRef]
- Lázár, K.; Matusek, K.; Mink, J.; Dobos, S.; Guczi, L.; Vizi-Orosz, A.; Markó, L.; Reiff, W. Spectroscopic and catalytic study on metal carbonyl clusters supported on Cab-O-Sil. J. Catal. 1984, 87, 163–178. [Google Scholar] [CrossRef]
- Kulcsár, K.; Nagy, D.L.; Pócs, L. A complete package of programs for the evaluation of Mössbauer and gamma spectra. KFKI Rep. 1971, 67. [Google Scholar]
- Zhang, J.; Tang, X.; Yi, H.; Yu, Q.; Zhang, Y.; Wei, J.; Yuan, Y. Synthesis, characterization and application of Fe zeolite: A review. Appl. Catal. A Gen. 2022, 630, 118467. [Google Scholar] [CrossRef]
- Panov, G.I.; Sobolev, V.I.; Kharitonov, A.S. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed. J. Mol. Catal. 1990, 61, 85–97. [Google Scholar] [CrossRef]
- Bols, M.L.; Devos, J.; Rhoda, H.M.; Plessers, D.; Solomon, E.I.; Schoonheydt, R.A.; Sels, B.F.; Dusselier, M. Selective formation of α-Fe(II) sites on Fe-zeolites through one-pot synthesis. J. Am. Chem. Soc. 2021, 143, 16243–16255. [Google Scholar] [CrossRef]
- Kornas, A.; Mlekodaj, K.; Tabor, E. Nature and redox properties of iron sites in zeolites revealed by Mössbauer spectroscopy. ChemPlusChem 2024, 89, e202300543. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.G. Mineral Mössbauer spectroscopy: Correlation between chemical shift and quadrupole splitting parameters. Hyperfine Interact. 1994, 91, 739–745. [Google Scholar] [CrossRef]
- Meagher, A.; Nair, V.; Szostak, R. A Mössbauer study of ZSM-5 type ferrisilicates. Zeolites 1988, 8, 3–11. [Google Scholar] [CrossRef]
- Kumar, R.; Date, S.K.; Bill, E.; Trautwein, A. Mössbauer spectroscopic study of iron ferrisilicate analog of zeolite BETA. Zeolites 1991, 11, 211–213. [Google Scholar] [CrossRef]
- Lázár, K.; Borbély, G.; Beyer, H. In situ Mössbauer study of framework-substituted (Fe)ZSM-5 zeolites. Zeolites 1991, 11, 214–222. [Google Scholar] [CrossRef]
- Inui, T.; Tanaka, Y. Evaluation of water adsorption on different kinds of zeolite through Monte Carlo simulation. Stud. Surf. Sci. Catal. 1995, 98, 229–231. [Google Scholar]
- Lázár, K.; Vincent, C.; Fejes, P. Variety of available coordination sites for extra-framework iron in LTA and MFI zeolites. Hyperfine Interact. 2008, 187, 1–6. [Google Scholar] [CrossRef]
- Yakovlev, A.L.; Zhidomirov, G.M.; van Santen, R.A. DFT calculations on N2O decomposition by binuclear Fe complexes in Fe/ZSM-5. J. Phys. Chem. B 2001, 105, 12297–12302. [Google Scholar] [CrossRef]
- Sazama, P.; Wichterlová, B.; Tábor, E.; Šťastný, P.; Sathu, N.K.; Sobalík, Z.; Dědeček, J.; Sklenák, Š.; Klein, P.; Vondrová, A. Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx. J. Catal. 2014, 312, 123–138. [Google Scholar] [CrossRef]
- Lázár, K.; Kotasthane, A.N.; Fejes, P. Oxygen transfer centers in Fe-FER and Fe-MFI zeolites: Redox behavior and Debye temperature derived from in situ Mössbauer spectra. Catal. Lett. 1999, 57, 171–177. [Google Scholar] [CrossRef]
- Charlton, J.S.; Cordey-Hayes, M.; Harris, I.R. A study of the 119Sn Mössbauer isomer shifts in some platinum-tin and gold-tin alloys. J. Less-Common Met. 1970, 20, 105–112. [Google Scholar] [CrossRef]
- Hu, J.; Xie, M.; Chen, Y.; Fang, J.; Zhang, Q. Thermodynamic reassessment of Au-Pt-Sn system. Mater. Res. Express 2022, 9, 016507. [Google Scholar] [CrossRef]
- Kappenstein, C.; Guerin, M.; Lázár, K.; Matusek, K.; Paál, Z. Characterization and activity in n-hexane rearrangement reactions of metallic phases on Pt-Sn/Al2O3 catalysts of different preparation. J. Chem. Soc. Faraday Trans. 1998, 94, 2463–2473. [Google Scholar] [CrossRef]
- Olivier-Fourcade, J.; Womes, M.; Jumas, J.-C.; Le Peltier, F.; Morin, S.; Didillon, B. Investigation of redox properties of different PtSn/Al2O3 catalysts. ChemPhysChem 2004, 5, 1734–1744. [Google Scholar] [CrossRef]
- Dubiel, S.M.; Cieslak, J.; Alenkina, I.V.; Oshtrakh, M.I.; Semionkin, V.A. Evaluation of the Debye temperature for iron cores in human live ferritin and its pharmaceutical analogue, Ferrum Lek, using Mössbauer spectroscopy. J. Inorg. Biochem. 2014, 140, 89–93. [Google Scholar] [CrossRef]
- Lengyel, A.; Klencsár, Z.; Homonnay, Z.; Sipos, P.; Bajnoczi, E.; Kuzmann, E. Goldanskii-Karyagin effect on hyperalkaline tin(II)-hydroxide. J. Radioanal. Nucl. Chem. 2016, 307, 1195–1201. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Saxena, A.; Shah, D.; Mahato, T.H.; Singh, B.; Shrivastava, A.; Gutch, P.; Shinde, C. Catalytic removal of carbon monoxide over carbon supported palladium catalyst. J. Hazard. Mater. 2012, 241–242, 463–471. [Google Scholar] [CrossRef]
- Parish, R.V. Structure and bonding in tin compounds, Ch. 16. In Mössbauer Spectroscopy Applied to Inorganic Chemistry; palladium catalys; Long, G.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume I, pp. 527–575. [Google Scholar]
- Sutter, E.; Ivars-Barcelo, F.; Sutter, P. Size-dependent room temperature oxidation of tin particles. Part. Part. Syst. Charact. 2014, 31, 879–885. [Google Scholar] [CrossRef]
Treatment | Atm. | Temp. of | Component | δ a | Δ b | FWHM c | Rel. Int. d |
---|---|---|---|---|---|---|---|
Meas. K | mm s−1 | mm s−1 | mm s−1 | % | |||
As rec. | air | 77 | Fe3+ | 0.45 | 1.04 | 0.59 | 65.9 |
Fe3+ | 0.46 | 0.63 | 0.35 | 34.1 | |||
630 K/ | vacuum | 300 | Fe3+ | 0.36 | 0.93 | 0.61 | 58.4 |
vac | Fe2+ | 0.83 | 0.45 | 0.28 | 25.5 | ||
Fe2+ | 0.87 | 2.44 | 0.89 | 16.1 | |||
570/H2 | H2 | 470 | Fe2+ | 0.72 | 0.52 | 0.29 | 71.2 |
Fe2+ | 0.87 | 1.71 | 0.70 | 28.8 | |||
None | H2 | 300 | Fe3+ | 0.25 | 0.75 | 0.37 | 8.7 |
(1st part) | Fe2+ | 0.84 | 0.50 | 0.24 | 16.2 | ||
Fe2+ | 1.08 | 1.12 | 0.68 | 52.1 | |||
Fe2+ | 1.12 | 2.19 | 0.51 | 23.0 | |||
None | H2 | 300 | Fe3+ | 0.28 | 0.80 | 0.35 | 8.2 |
(2nd part) | Fe2+ | 1.10 | 1.08 | 0.39 | 46.2 | ||
Fe2+ | 1.08 | 2.04 | 0.65 | 45.6 | |||
470/N20 | N2O | 470 | Fe3+ | 0.25 | 1.00 | 0.83 | 85.2 |
Fe2+ | 0.57 | 2.60 | 0.90 | 14.7 | |||
RT/H2 | H2 | 300 | Fe3+ | 0.34 | 1.06 | 0.74 | 73.0 |
Fe2+ | 0.88 | 2.46 | 1.62 | 27.0 | |||
450/H2 | H2 | 450 | Fe3+ | 0.21 | 0.99 | 0.67 | 94.1 |
Fe2+ | 1.37 | 1.25 | 0.52 | 6.9 | |||
540/H2 | H2 | 540 | Fe2+ | 0.57 | 0.60 | 0.95 | 39.2 |
Fe2+ | 0.69 | 0.53 | 0.23 | 50.5 | |||
Fe2+ | 0.78 | 1.89 | 0.48 | 10.2 | |||
300/air | air | 300 | Fe3+ | 0.32 | 0.85 | 0.61 | 56.7 |
Fe2+ | 1.15 | 2.09 | 0.63 | 43.2 |
Treatment | Temp. | Atm. | Comp. | δ a | Δ b | FWHM c | Rel. Int. d |
---|---|---|---|---|---|---|---|
Meas. (K) | mm s−1 | mm s−1 | mm s−1 | % | |||
Calcined | 300 | air | Fe3+ | 0.28 | 0.60 | 0.43 | 13.4 |
/air | Fe3+ | 0.35 | 1.03 | 0.74 | 86.6 | ||
620 K/vac | 300 | vacuum | Fe3+ | 0.24 | 1.98 | 0.61 | 70.9 |
Fe3+ | 0.37 | 1.17 | 1.08 | 29.1 | |||
620 K/H2 | 77 | hydrogen | Fe3+ | 0.33 | 1.83 | 0.38 | 13.6 |
Fe3+ | 0.54 | 1.16 | 0.82 | 37.6 | |||
Fe2+ | 1.17 | 1.98 | 0.77 | 36.4 | |||
Fe2+ | 1.15 | 3.03 | 0.56 | 12.3 | |||
None | 300 | hydrogen | Fe3+ | 0.30 | 1.62 | 0.59 | 35.6 |
Fe3+ | 0.31 | 0.97 | 0.61 | 56.1 | |||
Fe2+ | 0.78 | 2.46 | 0.44 | 3.3 | |||
Fe2+ | 1.26 | 2.49 | 0.49 | 5.0 | |||
None | 77 | hydrogen | Fe3+ | 0.40 | 1.48 | 0.69 | 52.5 |
(repeat) | Fe3+ | 0.40 | 0.88 | 0.54 | 35.9 | ||
Fe2+ | 1.25 | 2.26 | 0.25 | 1.9 | |||
Fe2+ | 1.40 | 2.96 | 0.61 | 9.7 | |||
620 K/vac | 300 | vacuum | Fe3+ | 0.22 | 1.98 | 0.56 | 60.8 |
Fe3+ | 0.46 | 1.52 | 1.25 | 39.2 | |||
620 K/H2 | 77 | hydrogen | Fe3+ | 0.37 | 1.66 | 0.45 | 13.5 |
Fe3+ | 0.42 | 1.13 | 0.79 | 28.6 | |||
Fe2+ | 1.09 | 2.21 | 0.76 | 36.9 | |||
Fe2+ | 1.42 | 2.53 | 0.59 | 21.0 | |||
140 K/vac | 140 K | vacuum | Fe3+ | 0.31 | 1.73 | 0.53 | 27.9 |
Fe3+ | 0.32 | 1.14 | 0.61 | 38.6 | |||
Fe2+ | 0.99 | 2.02 | 0.58 | 12.4 | |||
Fe2+ | 1.31 | 2.30 | 0.77 | 21.1 | |||
300 K/vac | 300 K | vacuum | Fe3+ | 0.25 | 1.63 | 0.52 | 47.5 |
Fe3+ | 0.32 | 0.98 | 0.59 | 26.9 | |||
Fe2+ | 1.04 | 2.14 | 0.96 | 25.6 | |||
620 K/vac | 300 | vacuum | Fe3+ | 0.24 | 1.96 | 0.50 | 58.6 |
Fe3+ | 0.40 | 1.27 | 0.95 | 27.6 | |||
Fe2+ | 1.22 | 1.50 | 0.91 | 13.7 |
Treatment | Comp. | δ a | Δ b | FWHM c | Rel. Int. d | Srel e |
---|---|---|---|---|---|---|
mm s−1 | mm s−1 | mm s−1 | % | |||
As prepared | Sn4+ | 0.07 | 0.50 | 0.89 | 100 | 1.00 |
H2/493 K | Sn4+ | 0.54 | - | 1.31 | 24 | 1.54 |
Pt-Sn(a) | 1.39 | - | 1.64 | 21 | ||
Pt-Sn(b) | 2.45 | - | 1.48 | 50 | ||
SnCl2 | 4.15 | - | 0.74 | 5 | ||
H2/623 K | Sn4+ | 0.38 | - | 0.68 | 6 | 1.74 |
Pt-Sn(a) | 1.11 | - | 1.29 | 19 | ||
Pt-Sn(b) | 2.16 | - | 1.69 | 64 | ||
SnCl2 | 3.95 | - | 1.14 | 12 | ||
React. mixt. f | Pt-Sn(a) | 1.22 | - | 1.59 | 43 | 1.42 |
473 K | Pt-Sn(b) ≈ β-Sn | 2.53 | - | 1.76 | 52 | |
SnCl2 | 3.96 | - | 1.58 | 5 |
Treatment | Comp. | 77 K | 300 K | |||||||
---|---|---|---|---|---|---|---|---|---|---|
δ a | Δ b | FWHM c | Rel. Int. d | δ a | Δ b | FWHM c | Rel. Int. d | f(rel) e | ||
mm s−1 | mm s−1 | mm s−1 | % | mm s−1 | mm s−1 | mm s−1 | % | |||
As received | Sn4+ | 0.00 | 0.72 | 1.17 | 74 | 0.01 | 0.64 | 1.07 | 77 | 4.14 |
PtSn(a) | 1.49 | - | 1.43 | 26 | 1.42 | - | 1.16 | 23 | 4.87 | |
H2/573 K | Sn4+(surf) | 0.49 | 0.42 | 0.59 | 6 | 0.53 | 0.43 | 0.39 | 4 | 7.43 |
Sn2+ | 2.88 | 2.11 | 1.06 | 9 | ||||||
PtSn(a) | 1.31 | - | 1.27 | 37 | 1.41 | - | 1.25 | 55 | 3.78 | |
PtSn(b) | 2.32 | - | 2.00 | 48 | 2.38 | - | 1.60 | 40 | 6.50 | |
CO + O2 | Sn4+ | 0.00 | 0.68 | 1.25 | 72 | 0.01 | 0.72 | 1.06 | 83 | 2.88 |
300 K | Sn4+(surf) | 0.86 | - | 1.10 | 16 | 0.93 | - | 0.88 | 8 | 6.28 |
PtSn | 1.77 | - | 1.41 | 12 | 1.60 | - | 1.32 | 9 | 4.06 | |
H2/300 K | Sn4+ | 0.04 | 0.70 | 1.09 | 42 | 0.05 | 0.71 | 1.03 | 45 | 5.49 |
PtSn(a) | 1.22 | - | 1.58 | 24 | 1.36 | - | 1.54 | 32 | 4.53 | |
PtSn(b) | 2.31 | - | 1.79 | 33 | 2.39 | - | 1.48 | 23 | 7.35 | |
CO + O2 | Sn4+ | −0.19 | 0.57 | 1.10 | 53 | |||||
300 K | Sn4+(surf) | 0.66 | - | 1.24 | 29 | |||||
Sn2+ | 3.23 | 2.30 | 1.30 | 7 | ||||||
PtSn(a) | 1.40 | - | 1.41 | 12 | ||||||
CO/300 K | Sn4+ | −0.02 | 0.71 | 1.13 | 62 | 0.00 | 0.73 | 0.99 | 64 | 3.54 |
Sn4+(surf) | 0.88 | - | 1.17 | 14 | 0.80 | - | 1.10 | 8 | 5.79 | |
PtSn | 1.86 | - | 1.69 | 24 | 1.72 | - | 1.74 | 27 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lázár, K. Advantages of In Situ Mössbauer Spectroscopy in Catalyst Studies with Precaution in Interpretation of Measurements. Spectrosc. J. 2025, 3, 10. https://doi.org/10.3390/spectroscj3010010
Lázár K. Advantages of In Situ Mössbauer Spectroscopy in Catalyst Studies with Precaution in Interpretation of Measurements. Spectroscopy Journal. 2025; 3(1):10. https://doi.org/10.3390/spectroscj3010010
Chicago/Turabian StyleLázár, Károly. 2025. "Advantages of In Situ Mössbauer Spectroscopy in Catalyst Studies with Precaution in Interpretation of Measurements" Spectroscopy Journal 3, no. 1: 10. https://doi.org/10.3390/spectroscj3010010
APA StyleLázár, K. (2025). Advantages of In Situ Mössbauer Spectroscopy in Catalyst Studies with Precaution in Interpretation of Measurements. Spectroscopy Journal, 3(1), 10. https://doi.org/10.3390/spectroscj3010010