A Spectroscopy-Based Multi-Analytical Approach for Studies in Conservation: Decorations in the Alexander Palace (Tsarskoye Selo)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Painting and Its Conservation
2.2. Experimental Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Zoppi, A.; Lofrumento, C.; Becucci, M.; Castellucci, E.M. A New Compact Instrument for Raman, Laser-Induced Breakdown, and Laser-Induced Fluorescence Spectroscopy of Works of Art and Their Constituent Materials. Rev. Sci. Instrum. 2009, 80, 076109. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.F.C.; Osticioli, I.; Striova, J.; Sansonetti, A.; Becucci, M.; Castellucci, E. Versatile Pulsed Laser Setup for Depth Profiling Analysis of Multilayered Samples in the Field of Cultural Heritage. J. Mol. Struct. 2009, 924–926, 420–426. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H.; Hark, R.R. Raman Microscopy and X-ray Fluorescence Analysis of Pigments on Medieval and Renaissance Italian Manuscript Cuttings. Proc. Natl. Acad. Sci. USA 2010, 107, 5726–5731. [Google Scholar] [CrossRef]
- Bicchieri, M.; Ronconi, S.; Romano, F.P.; Pappalardo, L.; Corsi, M.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E. Study of Foxing Stains on Paper by Chemical Methods, Infrared Spectroscopy, Micro-X-Ray Fluorescence Spectrometry and Laser Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1235–1249. [Google Scholar] [CrossRef]
- Carlesi, S.; Ricci, M.; Cucci, C.; La Nasa, J.; Lofrumento, C.; Picollo, M.; Becucci, M. Multivariate Analysis of Combined Fourier Transform Near-Infrared (FT-NIR) and Raman Data Sets for Improved Discrimination of Drying Oils. Appl. Spectrosc. 2015, 69, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Vagnini, M.; Gabrieli, F.; Daveri, A.; Sali, D. Handheld New Technology Raman and Portable FT-IR Spectrometers as Complementary Tools for the in Situ Identification of Organic Materials in Modern Art. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, M.; Mosca, S.; Marti-Rujas, J.; Nardo, L.; Burnstock, A.; Nevin, A.; Bondani, M.; Toniolo, L.; Valentini, G.; Comelli, D. Time-Resolved Photoluminescence Microscopy Combined with X-Ray Analyses and Raman Spectroscopy Sheds Light on the Imperfect Synthesis of Historical Cadmium Pigments. Anal Chem 2018, 90, 10771–10779. [Google Scholar] [CrossRef]
- Crupi, V.; Galli, G.; La Russa, M.F.; Longo, F.; Maisano, G.; Majolino, D.; Malagodi, M.; Pezzino, A.; Ricca, M.; Rossi, B.; et al. Multi-Technique Investigation of Roman Decorated Plasters from Villa Dei Quintili (Rome, Italy). Appl. Surf. Sci. 2015, 349, 924–930. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H.; Stratoudaki, T.; Doulgeridis, M.; Anglos, D. Pigment Identification in Painted Artworks: A Dual Analytical Approach Employing Laser-Induced Breakdown Spectroscopy and Raman Microscopy. Appl. Spectrosc. 2000, 54, 463–469. [Google Scholar] [CrossRef]
- Burgio, L.; Melessanaki, K.; Doulgeridis, M.; Clark, R.J.H.; Anglos, D. Pigment Identification in Paintings Employing Laser Induced Breakdown Spectroscopy and Raman Microscopy. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 905–913. [Google Scholar] [CrossRef]
- Melessanaki, K.; Papadakis, V.; Balas, C.; Anglos, D. Laser Induced Breakdown Spectroscopy and Hyper-Spectral Imaging Analysis of Pigments on an Illuminated Manuscript. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 2337–2346. [Google Scholar] [CrossRef]
- Chaplin, T.D.; Clark, R.J.H.; Martinón-Torres, M. A Combined Raman Microscopy, XRF and SEM–EDX Study of Three Valuable Objects—A Large Painted Leather Screen and Two Illuminated Title Pages in 17th Century Books of Ordinances of the Worshipful Company of Barbers, London. J. Mol. Struct. 2010, 976, 350–359. [Google Scholar] [CrossRef]
- Zieba-Palus, J.; Borusiewicz, R.; Kunicki, M. PRAXIS—Combined μ-Raman and μ-XRF Spectrometers in the Examination of Forensic Samples. Forensic Sci. Int. 2008, 175, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kansiz, M.; Prater, C.B. Super Resolution Correlative Far-Field Submicron Simultaneous IR and Raman Microscopy: A New Paradigm in Vibrational Spectroscopy. In Advanced Chemical Microscopy for Life Science and Translational Medicine; Simpson, G.J., Cheng, J.-X., Min, W., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11252, p. 78. [Google Scholar]
- Giakoumaki, A.; Osticioli, I.; Anglos, D. Spectroscopic Analysis Using a Hybrid LIBS-Raman System. Appl. Phys. A Mater. Sci. Process. 2006, 83, 537–541. [Google Scholar] [CrossRef]
- Ricci, M.; Sebastiani, F.; Becucci, M.; Rogozny, M.; Parfenov, V. Study of the Picturesque Decoration of the State Office of Emperor Nicholas II in the Alexander Palace in Tsarskoye Selo. In Optoelectronics into a Powerful Economy; Rădvan, R., Ed.; AGIR Publishing House: Bucharest, Romania, 2020; pp. 337–346. ISBN 978-973-720-822-4. [Google Scholar]
- Bersani, D.; Lottici, P.P. Raman Spectroscopy of Minerals and Mineral Pigments in Archaeometry. J. Raman Spectrosc. 2016, 47, 499–530. [Google Scholar] [CrossRef]
- Bersani, D.; Conti, C.; Matousek, P.; Pozzi, F.; Vandenabeele, P. Methodological Evolutions of Raman Spectroscopy in Art and Archaeology. Anal. Methods 2016, 8, 8395–8409. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community. Appl. Spectrosc. 2010, 64, 335A–336A. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Yakovlev, V.I. Alexander Palace Museum in the Children’s Village. Decoration; Publication of the Administration of the Detskoselsky and Pavlovsk Palaces-Museums: Leningrad, Russia, 1928; p. 286. [Google Scholar]
- Bardovskaya, L.V.; Plaude, V.F.; Stepanenko, I.G. Alexander Palace. Album; Aurora Publishing House: St. Petersburg, Russia, 2010; p. 42. [Google Scholar]
- Bezverkhniy, L.M. Restoration of the Former Alexander Palace and Lyceum in the City of Pushkin. Archit. Leningr. 1950, 1, 23. [Google Scholar]
- Kaszewska, E.A.; Sylwestrzak, M.; Marczak, J.; Skrzeczanowski, W.; Iwanicka, M.; Szmit-Naud, E.; Anglos, D.; Targowski, P. Depth-Resolved Multilayer Pigment Identification in Paintings: Combined Use of Laser-Induced Breakdown Spectroscopy (LIBS) and Optical Coherence Tomography (OCT). Appl. Spectrosc. 2013, 67, 960–972. [Google Scholar] [CrossRef]
- Kramida, A.; Olsen, K.; Ralchenko, Y. NIST LIBS Database. Available online: https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html (accessed on 22 June 2023).
- Tognoni, E.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V. Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the Art. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 1–14. [Google Scholar] [CrossRef]
- Fantoni, R.; Caneve, L.; Colao, F.; Fornarini, L.; Lazic, V.; Spizzichino, V. Methodologies for Laboratory Laser Induced Breakdown Spectroscopy Semi-Quantitative and Quantitative Analysis-A Review. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 1097–1108. [Google Scholar] [CrossRef]
- Feller, R.L. (Ed.) Artists’ Pigments. A Handbook of Their History and Caractheristics; National Gallery, Washington and Cambridge University Press: Cambridge, MA, USA, 1986; Volume 1, p. 47. [Google Scholar]
- Kadikova, I.; Pisareva, S. Primers of Modern Russian Artists: Composition, Structure and Dating. Int. J. Conserv. Sci. 2022, 13, 1485–1494. [Google Scholar]
- Moretti, G.; Gervais, C. Raman Spectroscopy of the Photosensitive Pigment Prussian Blue. J. Raman Spectrosc. 2018, 49, 1198–1204. [Google Scholar] [CrossRef]
- Osticioli, I.; Mendes, N.F.C.; Nevin, A.; Gil, F.P.S.C.; Becucci, M.; Castellucci, E. Analysis of Natural and Artificial Ultramarine Blue Pigments Using Laser Induced Breakdown and Pulsed Raman Spectroscopy, Statistical Analysis and Light Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 525–531. [Google Scholar] [CrossRef]
- Scheuermann, W.; Ritter, G.J. The Vibrational Spectra of Strontium Chromate (SrCrO4) and Lead Chromate (PbCrO4). Z. Naturforsch. A 1970, 25, 1856–1862. [Google Scholar] [CrossRef]
- Frost, R.L. Raman Microscopy of Selected Chromate Minerals. J. Raman Spectrosc. 2004, 35, 153–158. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Proctor, J.E.; Sapiña, F.; Bettinelli, M. Theoretical and Experimental Study of the Crystal Structures, Lattice Vibrations, and Band Structures of Monazite-Type PbCrO4, PbSeO4, SrCrO4, and SrSeO4. Inorg. Chem. 2015, 54, 7524–7535. [Google Scholar] [CrossRef]
- Košařová, V.; Hradil, D.; Hradilová, J.; Čermáková, Z.; Němec, I.; Schreiner, M. The Efficiency of Micro-Raman Spectroscopy in the Analysis of Complicated Mixtures in Modern Paints: Munch’s and Kupka’s Paintings under Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 156, 36–46. [Google Scholar] [CrossRef]
- Xu, J.F.; Ji, W.; Shen, Z.X.; Li, W.S.; Tang, S.H.; Ye, X.R.; Jia, D.Z.; Xin, X.Q. Raman Spectra of CuO Nanocrystals. J. Raman Spectrosc. 1999, 30, 413–415. [Google Scholar] [CrossRef]
- Debbichi, L.; Marco De Lucas, M.C.; Pierson, J.F.; Krüger, P. Vibrational Properties of CuO and Cu 4O 3 from First-Principles Calculations, and Raman and Infrared Spectroscopy. J. Phys. Chem. C 2012, 116, 10232–10237. [Google Scholar] [CrossRef]
- Basso, E.; Invernizzi, C.; Malagodi, M.; La Russa, M.F.; Bersani, D.; Lottici, P.P. Characterization of Colorants and Opacifiers in Roman Glass Mosaic Tesserae through Spectroscopic and Spectrometric Techniques. J. Raman Spectrosc. 2014, 45, 238–245. [Google Scholar] [CrossRef]
- Platania, E.; Streeton, N.L.W.; Vila, A.; Buti, D.; Caruso, F.; Uggerud, E. Investigation of Mineralization Products of Lead Soaps in a Late Medieval Panel Painting. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117844. [Google Scholar] [CrossRef] [PubMed]
- Ghervase, L.; Cortea, I.M. Lighting Up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors 2023, 11, 100. [Google Scholar] [CrossRef]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Etchegoin, P.G. Principles of Surface-Enhanced Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 978-0-444-52779-0. [Google Scholar]
- Becucci, M.; Ricci, M.; Lofrumento, C.; Castellucci, E. Identification of Organic Dyes by Surface-Enhanced Raman Scattering in Nano-Composite Agar-Gel Matrices: Evaluation of the Enhancement Factor. Opt. Quantum Electron. 2016, 48, 449. [Google Scholar] [CrossRef]
- Pozzi, F.; Leona, M. Surface-Enhanced Raman Spectroscopy in Art and Archaeology. J. Raman Spectrosc. 2015, 47, 67–77. [Google Scholar] [CrossRef]
- Leona, M.; Decuzzi, P.; Kubic, T.A.; Gates, G.; Lombardi, J.R. Nondestructive Identification of Natural and Synthetic Organic Colorants in Works of Art by Surface Enhanced Raman Scattering. Anal. Chem. 2011, 83, 3990–3993. [Google Scholar] [CrossRef]
- Leona, M. Microanalysis of Organic Pigments and Glazes in Polychrome Works of Art by Surface-Enhanced Resonance Raman Scattering. Proc. Natl. Acad. Sci. USA 2009, 106, 14757–14762. [Google Scholar] [CrossRef]
- Platania, E.; Lombardi, J.R.; Leona, M.; Shibayama, N.; Lofrumento, C.; Ricci, M.; Becucci, M.; Castellucci, E. Suitability of Ag-Agar Gel for the Microextraction of Organic Dyes on Different Substrates: The Case Study of Wool, Silk, Printed Cotton and a Panel Painting Mock-Up. J. Raman Spectrosc. 2014, 45, 1133–1139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, M.; Sebastiani, F.; Becucci, M.; Rogozny, M.; Parfenov, V. A Spectroscopy-Based Multi-Analytical Approach for Studies in Conservation: Decorations in the Alexander Palace (Tsarskoye Selo). Spectrosc. J. 2023, 1, 121-136. https://doi.org/10.3390/spectroscj1030011
Ricci M, Sebastiani F, Becucci M, Rogozny M, Parfenov V. A Spectroscopy-Based Multi-Analytical Approach for Studies in Conservation: Decorations in the Alexander Palace (Tsarskoye Selo). Spectroscopy Journal. 2023; 1(3):121-136. https://doi.org/10.3390/spectroscj1030011
Chicago/Turabian StyleRicci, Marilena, Federico Sebastiani, Maurizio Becucci, Mikhail Rogozny, and Vadim Parfenov. 2023. "A Spectroscopy-Based Multi-Analytical Approach for Studies in Conservation: Decorations in the Alexander Palace (Tsarskoye Selo)" Spectroscopy Journal 1, no. 3: 121-136. https://doi.org/10.3390/spectroscj1030011
APA StyleRicci, M., Sebastiani, F., Becucci, M., Rogozny, M., & Parfenov, V. (2023). A Spectroscopy-Based Multi-Analytical Approach for Studies in Conservation: Decorations in the Alexander Palace (Tsarskoye Selo). Spectroscopy Journal, 1(3), 121-136. https://doi.org/10.3390/spectroscj1030011