Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy
Abstract
:1. Introduction
2. Background
3. Laser Configuration and Characterization
3.1. Design and Components
3.2. Spectral Properties
3.3. Spatial Characteristics
4. Raman Spectroscopy with Pr:YLF Laser
4.1. SRS Enhancement Variants
4.2. Collinear Multipass SRS Enhancement
4.3. Trace Spectroscopy of Air Samples
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schrötter, D.K.; Klöckner, H. Raman Spectroscopy of Gases and Liquids; Weber, A., Ed.; Springer: Berlin, Germany, 1979; pp. 123–166. [Google Scholar]
- Ruhnke, N.; Müller, A.; Eppich, B.; Maiwald, M.; Sumpf, B.; Erbert, G.; Tränkle, G. Compact deep UV system at 222.5 nm based on frequency doubling of GaN laser diode emission. IEEE Photon. Technol. Lett. 2018, 30, 289–292. [Google Scholar] [CrossRef]
- Venus, G.; Gourevitch, A.; Smirnov, V.; Glebov, L. High power volume Bragg laser bar with 10 GHz spectral bandwidth. In Laser Source Technology for Defense and Security IV; Dubinskii, M., Wood, G.L., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 6952, p. 69520D. [Google Scholar]
- Kränkel, C.; Marzahl, D.-T.; Moglia, F.; Huber, G.; Metz, P.W. Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers. Laser Photon. Rev. 2016, 10, 548–568. [Google Scholar] [CrossRef]
- Bowman, S.R.; O’Connor, S.; Condon, N.J. Diode pumped yellow dysprosium lasers. Opt. Express 2012, 20, 12906–12911. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Fujita, S.; Kannari, F. High-power visibly emitting Pr3+:YLF laser end pumped by single-emitter or fiber-coupled GaN blue laser diodes. Appl. Opt. 2018, 57, 5923–5928. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Yan, X.; Cui, Q.; Xu, B.; Xu, H.; Cai, Z. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9nm. Opt. Commun. 2016, 380, 357–360. [Google Scholar] [CrossRef]
- Feng, K.; Wang, D.; Zhu, Y.; Xu, B.; Chen, Z.; Baesso, M.L.; Catunda, T. Simple and compact high-power continuous-wave deep ultraviolet source at 261 nm based on diode-pumped intra-cavity frequency doubled Pr:LiYF4 green laser. Opt. Express 2023, 31, 18799–18806. [Google Scholar] [CrossRef]
- Velez, J.; Muller, A. Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity. Meas. Sci. Technol. 2021, 32, 045501. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Wang, J.; Tang, J.; Shi, Y.; Wan, F. Multigas analysis by cavity-enhanced Raman spectroscopy for power transformer diagnosis. Anal. Chem. 2020, 92, 5969–5977. [Google Scholar] [CrossRef]
- Gomez Velez, J.; Muller, A. Purcell-enhanced microcavity Raman scattering from pressurized gases. Appl. Phys. Lett. 2018, 112, 041107. [Google Scholar] [CrossRef]
- Salter, R.; Chu, J.; Hippler, M. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. Analyst 2012, 137, 4669–4676. [Google Scholar] [CrossRef]
- Hippler, M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-diode lasers. Anal. Chem. 2015, 87, 7803–7809. [Google Scholar] [CrossRef]
- Petrov, D. Multipass optical system for a Raman gas spectrometer. Appl. Opt. 2016, 55, 9521–9525. [Google Scholar] [CrossRef]
- Li, X.; Xia, Y.; Zhan, L.; Huang, J. Near-confocal cavity-enhanced Raman spectroscopy for multitrace-gas detection. Opt. Lett. 2008, 33, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Tuesta, A.; Fisher, B.; Skiba, A.; Williams, L.; Osborn, M. Low-pressure multipass Raman spectrometer. Appl. Opt. 2021, 60, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Velez, J.; Muller, A. Trace gas sensing using diode-pumped collinearly detected spontaneous Raman scattering enhanced by a multipass cell. Opt. Lett. 2020, 45, 133–136. [Google Scholar] [CrossRef]
- Singh, J.; Muller, A. Ambient Hydrocarbon Detection with an Ultra-Low-Loss Cavity Raman Analyzer. Anal. Chem. 2023, 95, 3703–3711. [Google Scholar] [CrossRef]
- Kim, H.; Zubairova, A.; Aldén, M.; Brackmann, C. Signal-enhanced Raman spectroscopy with a multi-pass cavity for quantitative measurements of formaldehyde, major species and temperature in a one-dimensional laminar DME-air flame. Combust. Flame 2022, 244, 112221. [Google Scholar] [CrossRef]
- Knebl, A.; Domes, C.; Domes, R.; Wolf, S.; Popp, J.; Frosch, T. Hydrogen and C2–C6 alkane sensing in complex fuel gas mixtures with fiber-enhanced Raman spectroscopy. Anal. Chem. 2021, 93, 10546–10552. [Google Scholar] [CrossRef]
- Hanf, S.; Keiner, R.; Yan, D.; Popp, J.; Frosch, T. Fiber-enhanced Raman multigas spectroscopy: A versatile tool for environmental gas sensing and breath analysis. Anal. Chem. 2014, 86, 5278–5285. [Google Scholar] [CrossRef]
- Qian, G.; Wan, F.; Zhou, F.; Wang, J.; Kong, W.; Chen, W. Fiber-Enhanced Raman Spectroscopy for Trace-Gas Sensing in the High-Concentration Gas Background with an Anti-Resonant Hollow Core Fiber. Front. Phys. 2022, 10, 917688. [Google Scholar] [CrossRef]
- Hanf, S.; Bogozi, T.; Keiner, R.; Frosch, T.; Popp, J. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Anal. Chem. 2015, 87, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Sieburg, A.; Knebl, A.; Jacob, J.; Frosch, T. Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2019, 411, 7399–7408. [Google Scholar] [CrossRef] [PubMed]
- Knebl, A.; Yan, D.; Popp, J.; Frosch, T. Fiber enhanced Raman gas spectroscopy. TrAC 2018, 103, 230–238. [Google Scholar] [CrossRef]
- Yang, Q.; Tan, Y.; Qu, Z.; Sun, Y.; Liu, A.; Hu, S. Multiple Gas Detection by Cavity-Enhanced Raman Spectroscopy with Sub-ppm Sensitivity. Anal. Chem. 2023, 95, 5652–5660. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Dai, W.; Yu, Y.; Dong, Y.; Jin, G. Single longitudinal mode Q-switched operation of Pr:YLF laser with pre-lase and Fabry–Perot etalon technology. Optics Laser Technol. 2020, 129, 106294. [Google Scholar] [CrossRef]
- Mohamed, T.; Zhu, F.; Chen, S.; Strohaber, J.; Kolomenskii, A.; Bengali, A.; Schuessler, H. Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared. Appl. Opt. 2013, 52, 7145–7151. [Google Scholar] [CrossRef]
- Loëte, M.; Berger, H. High resolution Raman spectroscopy of the fundamental vibrational band of 16O2. J. Mol. Spectrosc. 1977, 68, 317–325. [Google Scholar] [CrossRef]
- Motto-Ros, V.; Durand, M.; Morville, J. Extensive characterization of the OF-CEAS technique: Ringdown-time calibration of the absorption scale. Appl. Phys. B 2008, 91, 203–211. [Google Scholar] [CrossRef]
- Singh, J.; Muller, A. High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering. Sensors 2023, 23, 5171. [Google Scholar] [CrossRef]
- Kiefer, J. Simultaneous Acquisition of the Polarized and Depolarized Raman Signal with a Single Detector. Anal. Chem. 2017, 89, 5725–5728. [Google Scholar] [CrossRef]
- Petrov, D.; Matrosov, I. Natural Gas Analysis Using Polarized Raman Spectroscopy. Anal. Chem. 2023, 95, 9409–9414. [Google Scholar] [CrossRef] [PubMed]
- Petrov, D.; Matrosov, I. Raman gas analyzer (RGA): Natural gas measurements. Appl. Spectrosc. 2016, 70, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
Component | Description | Dim. Characteristics | Properties |
---|---|---|---|
Pr:LiYF crystal | Gain medium | 6 × 3 × 3 mm | 0.5% a-cut, AR coated |
Back reflector | Concave high reflector | RC = 50 mm | R > 99.98% at 523 nm |
Output coupler | Flat partial reflector | RC = ∞ | R = 97.7% at 523 nm |
Fold mirror | Dichroic reflector | RC = ∞ | transmit 443 nm, reflect 523 nm |
Pump beam expander | Cylindrical 6× expander | L-L separation 30 mm | AR coated |
Pump lens | Focusing achromat | 45 mm | AR-coated pair |
Etalon | Fused silica plate | 0.3 mm thick | uncoated, FSR = 11.2 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arachchige, C.M.; Muller, A. Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy. Spectrosc. J. 2023, 1, 86-97. https://doi.org/10.3390/spectroscj1020008
Arachchige CM, Muller A. Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy. Spectroscopy Journal. 2023; 1(2):86-97. https://doi.org/10.3390/spectroscj1020008
Chicago/Turabian StyleArachchige, Charuka Muktha, and Andreas Muller. 2023. "Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy" Spectroscopy Journal 1, no. 2: 86-97. https://doi.org/10.3390/spectroscj1020008
APA StyleArachchige, C. M., & Muller, A. (2023). Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy. Spectroscopy Journal, 1(2), 86-97. https://doi.org/10.3390/spectroscj1020008