The Development of an Online Decision Support System to Select Optimal Nature-Based Solutions to Protect Streams and the Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Online DSS System
2.2. Questions for the DSS
- -
- What is the general type of your study area?
- ○
- Urban;
- ○
- Agricultural;
- ○
- Forests;
- ○
- Pastures/Grasslands;
- ○
- Wetlands/Lakes/Ponds;
- ○
- Coastal.
- -
- What is the average elevation range of your study area?
- ○
- 0–50 m;
- ○
- 50–300 m;
- ○
- 300–1000 m;
- ○
- >1000 m;
- ○
- Do not know/answer.
- -
- What is the average slope gradient of your study area?
- ○
- Flat area (0–3%);
- ○
- Gentle slope (3–10%);
- ○
- Moderate slope (10–15%);
- ○
- Steep slope (15–30%);
- ○
- Extremely steep slope (30–60%);
- ○
- Excessively steep slope (>60%);
- ○
- Do not know/answer.
- -
- What is the type of hydrographic network in your study area?
- ○
- Mountain gullies;
- ○
- Torrential/ephemeral flow;
- ○
- Ephemeral or intermittent streams;
- ○
- River (perennial flow);
- ○
- Constructed channels/irrigation network;
- ○
- Do not know/answer.
- -
- What is the streambed/streambank material of your study area?
- ○
- Solid rock formation;
- ○
- Boulders (diameter: 256–4096 mm);
- ○
- Cobbles (diameter: 64–256 mm);
- ○
- Pebbles (diameter: 2–64 mm);
- ○
- Granules (diameter: 2–64 mm);
- ○
- Sand (diameter: 0.0625–2 mm);
- ○
- Silt (diameter: 0.002–0.0625 mm);
- ○
- Clay (diameter: <0.002 mm);
- ○
- Do not know/answer.
- -
- What are the vegetation conditions of your study area?
- ○
- Dense high/low vegetation;
- ○
- Sparse vegetation/bare land;
- ○
- Do not know/answer.
- -
- What are the geologic/soil conditions of your study area?
- ○
- Rock/sand;
- ○
- Loam/clay;
- ○
- Do not know/answer.
- -
- Have you noticed any erosion/deposition phenomena or degradation in your study area?
- ○
- Yes;
- ○
- No;
- ○
- Do not know/answer.
- -
- Have you noticed any climate-change-induced extreme events in your study area?
- ○
- Yes;
- ○
- No;
- ○
- Do not know/answer.
2.3. Best Management Solutions Proposed by the DSS
3. Results and Discussion
- -
- 424 engagements (number of times clicked);
- -
- 298 views (number of times viewed/displayed);
- -
- 76 started runs (26% compared to views);
- -
- 46 completed (61% compared to started);
- -
- 1:43 min average time of use.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwenk, C.R. Cognitive simplification processes in strategic decision-making. Strateg. Manag. J. 1984, 5, 111–128. [Google Scholar] [CrossRef]
- Sarter, N.B.; Woods, D.D. Situation awareness: A critical but ill-defined phenomenon. Int. J. Aviat. Psychol. 1991, 1, 45–57. [Google Scholar] [CrossRef]
- Aruldoss, M.; Lakshmi, T.M.; Venkatesan, V.P. A survey on multi criteria decision making methods and its applications. Am. J. Inf. Syst. 2013, 1, 31–43. [Google Scholar]
- Hwang, C.-L.; Masud, A.S.M.; Paidy, S.R.; Yoon, K.P. Multiple Objective Decision Making, Methods and Applications: A State-of-the-Art Survey; Springer: Berlin, Germany, 1979; p. 164. [Google Scholar]
- Eldabi, T.; Irani, Z.; Paul, R.J.; Love, P.E. Quantitative and qualitative decision-making methods in simulation modelling. Manag. Decis. 2002, 40, 64–73. [Google Scholar] [CrossRef]
- Nardo, M. The quantification of qualitative survey data: A critical assessment. J. Econ. Surv. 2003, 17, 645–668. [Google Scholar] [CrossRef]
- Koch, J.; Eisend, M.; Petermann, A. Path dependence in decision-making processes: Exploring the impact of complexity under increasing returns. BuR—Bus. Res. 2009, 2, 67–84. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Kazimieras Zavadskas, E.; Turskis, Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Walker, W.E. Policy analysis: A systematic approach to supporting policymaking in the public sector. J. Multi-Criteria Decis. Anal. 2000, 9, 11–27. [Google Scholar] [CrossRef]
- Stratigea, A.; Papadopoulou, C.A.; Panagiotopoulou, M. Tools and technologies for planning the development of smart cities. J. Urban Technol. 2015, 22, 43–62. [Google Scholar] [CrossRef]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Razmak, J.; Aouni, B. Decision support system and multi-criteria decision aid: A state of the art and perspectives. J. Multi-Criteria Decis. Anal. 2015, 22, 101–117. [Google Scholar] [CrossRef]
- Zardari, N.H.; Ahmed, K.; Shirazi, S.M.; Yusop, Z.B. Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management; Springer: New York, NY, USA, 2014. [Google Scholar]
- Toloie-Eshlaghy, A.; Homayonfar, M. MCDM methodologies and applications: A literature review from 1999 to 2009. Res. J. Int. Stud. 2011, 21, 86–137. [Google Scholar]
- Odu, G.O. Weighting methods for multi-criteria decision making technique. J. Appl. SCI. Environ. Manag. 2019, 23, 1449–1457. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Hites, R.; De Smet, Y.; Risse, N.; Salazar-Neumann, M.; Vincke, P. About the applicability of MCDA to some robustness problems. Eur. J. Oper. Res. 2006, 174, 322–332. [Google Scholar] [CrossRef]
- Ali, R.; Hussain, A.; Nazir, S.; Khan, S.; Khan, H.U. Intelligent Decision Support Systems—An Analysis of Machine Learning and Multicriteria Decision-Making Methods. Appl. Sci. 2023, 13, 12426. [Google Scholar] [CrossRef]
- Burstein, F.; Clyde, H. Handbook on Decision Support Systems; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Power, D.J. Decision Support Systems; Concepts and Resources for Managers; Reference and Research Book News; Book News, Inc.: Portland, OR, USA, 2002; Volume 17. [Google Scholar]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Batista, D.C.; Lima, M.A.; Haddad, F.; Maffia, L.A.; Mizubuti, E.S.G. Validation of decision support systems for tomato early blight and potato late blight, under Brazilian conditions. Crop Prot. 2006, 25, 664–670. [Google Scholar] [CrossRef]
- Ho, G.T.S.; Lee, C.K.M.; Lau, H.C.W.; Ip, A.W.H. An online decision support system for inventory management. Int. J. Prod. Dev. 2007, 4, 351–365. [Google Scholar] [CrossRef]
- Power, D.J.; Kaparthi, S. Building Web-based decision support systems. Stud. Inform. Control 2002, 11, 291–302. [Google Scholar]
- Dastres, R.; Soori, M. Advances in web-based decision support systems. Int. J. Eng. Future Technol. 2021, 19, hal-03367778. [Google Scholar]
- Thysen, I.; Detlefsen, N.K. Online decision support for irrigation for farmers. Agric. Water Manag. 2006, 86, 269–276. [Google Scholar] [CrossRef]
- Ada, Ş.; Ghaffarzadeh, M. Decision making based on management information system and decision support system. Eur. Res. 2015, 4, 260–269. [Google Scholar]
- Nasar, W.; Da Silva Torres, R.; Gundersen, O.E.; Karlsen, A.T. The use of decision support in search and rescue: A systematic literature review. ISPRS Int. J. Geo-Inf. 2023, 12, 182. [Google Scholar] [CrossRef]
- Hamoud, A.K.; Marwah, K.H.; Alhilfi, Z.; Sabr, R.H. Implementing data-driven decision support system based on independent educational data mart. Int. J. Electr. Comput. Eng. 2021, 11, 5301. [Google Scholar] [CrossRef]
- Cinelli, M.; Kadziński, M.; Miebs, G.; Gonzalez, M.; Słowiński, R. Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. Eur. J. Oper. Res. 2022, 302, 633–651. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based solutions: New influence for environmental management and research in Europe. Gaia 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.; McClain, M.E.; Lopez-Gunn, E. Nature-based solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef]
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; De Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Meli, P.; Rey Benayas, J.M.; Balvanera, P.; Martínez Ramos, M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: A meta-analysis. PLoS ONE 2014, 9, e93507. [Google Scholar] [CrossRef]
- Guimarães, L.F.; Teixeira, F.C.; Pereira, J.N.; Becker, B.R.; Oliveira, A.K.B.; Lima, A.F.; Veról, A.P.; Miguez, M.G. The challenges of urban river restoration and the proposition of a framework towards river restoration goals. J. Clean. Prod. 2021, 316, 128330. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Chang. Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef]
- Andersson, E.; Borgström, S.; McPhearson, T. Double Insurance in Dealing with Extremes: Ecological and Social Factors for Making Nature-Based Solutions Last. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 51–64. [Google Scholar]
- Zaimes, G.N.; García-Rodríguez, J.L.; Iakovoglou, V.; Emmanouloudis, D. Conserving riparian and deltaic ecosystems and enhancing ecotourism opportunities. Cuad. Soc. Española Cienc. For. 2019, 45, 145–156. [Google Scholar] [CrossRef]
- Pontee, N.; Narayan, S.; Beck, M.W.; Hosking, A.H. Nature-based solutions: Lessons from around the world. Proc. Inst. Civ. Eng. Marit. Eng. 2016, 169, 29–36. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Sang, Å.O. Urban natural environments as nature-based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Iseman, T.; Miralles-Wilhelm, F. Nature-Based Solutions in Agriculture—The Case and Pathway for Adoption; FAO and The Nature Conservancy: Rome, Italy, 2021; pp. 1–52. [Google Scholar]
- Pagano, A.; Pluchinotta, I.; Pengal, P.; Cokan, B.; Giordano, R. Engaging stakeholders in the assessment of NBS effectiveness in flood risk reduction: A participatory System Dynamics Model for benefits and co-benefits evaluation. Sci. Total Environ. 2019, 690, 543–555. [Google Scholar] [CrossRef]
- Zasada, I.; Piorr, A.; Novo, P.; Villanueva, A.J.; Valánszki, I. What do we know about decision support systems for landscape and environmental management? A review and expert survey within EU research projects. Environ. Model Softw. 2017, 98, 63–74. [Google Scholar] [CrossRef]
- McIntosh, B.S.; Ascough, J.C., II; Twery, M.; Chew, J.; Elmahdi, A.; Haase, D.; Harou, J.J.; Hepting, D.; Cuddy, S.; Jakeman, A.J.; et al. Environmental decision support systems (EDSS) development–Challenges and best practices. Environ. Model. Softw. 2011, 26, 1389–1402. [Google Scholar] [CrossRef]
- Alamanos, A.; Rolston, A.; Papaioannou, G. Development of a decision support system for sustainable environmental management and stakeholder engagement. Hydrology 2021, 8, 40. [Google Scholar] [CrossRef]
- Matthies, M.; Giupponi, C.; Ostendorf, B. Environmental decision support systems: Current issues, methods and tools. Environ. Model. Softw. 2007, 22, 123–127. [Google Scholar] [CrossRef]
- Bousquet, M.; Kuller, M.; Lacroix, S.; Vanrolleghem, P.A. A critical review of multicriteria decision analysis practices in planning of urban green spaces and nature-based solutions. Blue-Green Syst. 2023, 5, 200–219. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; de Vries, B.; Romme, A.G.L. The nature-based solutions planning support system: A playground for site and solution prioritization. Sustain. Cities Soc. 2022, 78, 103608. [Google Scholar] [CrossRef]
- Datola, G.; Oppio, A. NBS Design and Implementation in Urban Systems: Dimensions, Challenges and Issues to Construct a Comprehensive Evaluation Framework. In Proceedings of the International Conference on Computational Science and Its Applications (ICCSA 2023), Athens, Greece, 3–6 July 2023; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Acuña, V.; Castañares, L.; Castellar, J.; Comas, J.; Cross, K.; Istenic, D.; Masi, F.; McDonald, R.; Pucher, B.; Pueyo-Ros, J.; et al. Development of a decision-support system to select nature-based solutions for domestic wastewater treatment. Blue-Green Syst. 2023, 5, 235–251. [Google Scholar] [CrossRef]
- Dalwani, R.; Gopal, B. Nature-based solutions for restoration of freshwater ecosystems: Indian experiences. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 231–245. [Google Scholar]
- van Rees, C.B.; Jumani, S.; Abera, L.; Rack, L.; McKay, S.K.; Wenger, S.J. The potential for nature-based solutions to combat the freshwater biodiversity crisis. PLoS Water 2023, 2, e0000126. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Sahani, J.; Aragão, L.; Barisani, F.; Basu, B.; Bucchignani, E.; Charizopoulos, N.; Di Sabatino, S.; Domeneghetti, A.; et al. Towards an operationalisation of nature-based solutions for natural hazards. Sci. Total Environ. 2020, 731, 138855. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tan, J.; Zhang, S.; Zhong, C.; Lv, L.; Tara, A. Suitability Assessment of Small Dams’ Location as Nature-Based Solutions to Reduce Flood Risk in Mataniko Catchment, Honiara, Solomon Islands. Sustainability 2023, 15, 3313. [Google Scholar] [CrossRef]
- Biswal, B.K.; Bolan, N.; Zhu, Y.G.; Balasubramanian, R. Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review. Resour. Conserv. Recycl. 2022, 186, 106578. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land 2022, 11, 1072. [Google Scholar] [CrossRef]
- van der Meulen, F.; IJff, S.; van Zetten, R. Nature-based solutions for coastal adaptation management, concepts and scope, an overview. Nord. J. Bot. 2023, 2023, e03290. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Slinger, J.H.; Cunningham, S.C.; Kothuis, B.L. A co-design method for including stakeholder perspectives in nature-based flood risk management. Nat. Hazards 2023, 119, 1171–1191. [Google Scholar] [CrossRef]
- Moraes, R.P.; Reguero, B.G.; Mazarrasa, I.; Ricker, M.; Juanes, J. A Nature-based solutions in coastal and estuarine areas of Europe. Front. Environ. Sci. 2022, 10, 829526. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. What are Nature-based solutions (NBS)? Setting core ideas for concept clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Iakovoglou, V. Assessing Riparian Areas of Greece—An Overview. Sustainability 2021, 13, 309. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian Land-Use Impacts on Stream Bank and Gully Erosion in Agricultural Watersheds: What We Have Learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef]
- Cassin, J.; Ochoa-Tocachi, B.F. Learning from indigenous and local knowledge: The deep history of nature-based solutions. In Nature-Based Solutions and Water Security. An Action Agenda for the 21st Century; Cassin, J., Matthews, J.H., Gunn, E.L., Eds.; Elsevier: San Diego, CA, USA, 2021; pp. 283–335. [Google Scholar]
- Dhyani, S.; Singh, S.; Kadaverugu, R.; Pujari, P.; Verma, P. Habitat Suitability Modelling and Nature-Based Solutions: An Efficient Combination to Realise the Targets of Bonn Challenge and SDGs in South Asia. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 347–364. [Google Scholar]
- Yavuz, M.; Koutalakis, P.; Diaconu, D.C.; Gkiatas, G.; Zaimes, G.N.; Tufekcioglu, M.; Marinescu, M. Identification of Streamside Landslides with the Use of Unmanned Aerial Vehicles (UAVs) in Greece, Romania, and Turkey. Remote Sens. 2023, 15, 1006. [Google Scholar] [CrossRef]
- Adhikari, D.; Tiwary, R.; Singh, P.P.; Suchiang, B.R.; Nonghuloo, I.M.; Barik, S.K. Trees, Shrubs and Herbs for Slope Stabilization in Landslide Prone Areas of Eastern Himalaya. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 307–326. [Google Scholar]
- Veldman, J.W.; Overbeck, G.E.; Negreiros, D.; Mahy, G.; Le Stradic, S.; Fernandes, G.W.; Durigan, G.; Buisson, E.; Putz, F.E.; Bond, W.J. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 2015, 65, 1011–1018. [Google Scholar] [CrossRef]
- Bartlett, D.; Gomez-Martin, E.; Milliken, S.; Parmer, D. Introducing landscape character assessment and the ecosystem service approach to India: A case study. Landsc. Urban Plan. 2017, 167, 257–266. [Google Scholar] [CrossRef]
- Bartlett, D.M. Landscape character assessment: A method to include community perspectives and ecosystem services in land-use planning. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 99–110. [Google Scholar]
- Simelton, E.; Carew-Reid, J.; Coulier, M.; Damen, B.; Howell, J.; Pottinger-Glass, C.; Hung Tran, V.; Van Der Meiren, M. NBS framework for agricultural landscapes. Front. Environ. Sci. 2021, 9, 678367. [Google Scholar] [CrossRef]
- Telwala, Y. Unlocking the potential of agroforestry as a Nature-based Solution for localizing Sustainable Development Goals: A case study from a drought-prone region in rural India. Nat.-Based Solut. 2022, 3, 100045. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, H. Agroforestry as a nature-based solution for reducing community dependence on forests to safeguard forests in rainfed areas of India. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 289–306. [Google Scholar]
- Ureta, J.; Evangelista, K.P.; Habito, C.M.; Lasco, R. Exploring gender preferences in farming system and tree species selection: Perspectives of smallholder farmers in Southern Philippines. J. Environ. Sci. Manag. 2016, 1, 56–73. [Google Scholar] [CrossRef]
- La Greca, P.; La Rosa, D.; Martinico, F.; Privitera, R. Agricultural and green infrastructures: The role of non-urbanised areas for eco-sustainable planning in a metropolitan region. Environ. Pollut. 2011, 159, 2193–2202. [Google Scholar] [CrossRef]
- Liquete, C.; Udias, A.; Conte, G.; Grizzetti, B.; Masi, F. Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef]
- Kabisch, N.; van den Bosch, M.; Lafortezza, R. The health benefits of nature-based solutions to urbanization challenges for children and the elderly–A systematic review. Environ. Res. 2017, 159, 362–373. [Google Scholar] [CrossRef]
- Li, L.; Cheshmehzangi, A.; Chan, F.K.S.; Ives, C.D. Mapping the research landscape of nature-based solutions in urbanism. Sustainability 2021, 13, 3876. [Google Scholar] [CrossRef]
- Kato-Huerta, J.; Geneletti, D. Environmental justice implications of nature-based solutions in urban areas: A systematic review of approaches, indicators, and outcomes. Environ. Sci. Policy 2022, 138, 122–133. [Google Scholar] [CrossRef]
- Mahmoud, I.H.; Morello, E.; Vona, C.; Benciolini, M.; Sejdullahu, I.; Trentin, M.; Pascual, K.H. Setting the social monitoring framework for nature-based solutions impact: Methodological approach and pre-greening measurements in the case study from clever cities milan. Sustainability 2021, 13, 9672. [Google Scholar] [CrossRef]
- Koutalakis, P.; Gkiatas, G.; Iakovoglou, V.; Zaimes, G.N. New Technologies to Assess and Map an Urban Riparian Area in Drama, Greece, and Determine Opportunity Sites for Litter Traps. Sustainability 2023, 15, 15620. [Google Scholar] [CrossRef]
- Tewari, P.; Singh, R.D.; Nagarkoti, P.; Gumber, S. Temporal changes in livelihood and land usage patterns: Case study of a primitive tribe, Van Raji, from Uttarakhand, India. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 213–228. [Google Scholar]
- Erickson, C.L. The transformation of environment into landscape: The historical ecology of monumental earthwork construction in the Bolivian Amazon. Diversity 2010, 2, 618–652. [Google Scholar] [CrossRef]
- Tenzin, K.; Norbu, L. Leveraging Conservation Benefits through Ecosystem-Based Services Approach and Community Engagement in Wetland and Riparian Ecosystems: The Case of Conserving Black-Necked Crane and White-Bellied Heron in Bhutan. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 163–183. [Google Scholar]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Chang. Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. A new evaluation framework for nature-based solutions (NBS) projects based on the application of performance questions and indicators approach. Sci. Total Environ. 2021, 787, 147615. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Gupta, A.K.; Dhyani, S.; Thummarukudy, M. Nature-based solution entry points through sectoral policies, strategic instruments and business continuity. In Nature-Based Solutions for Resilient Ecosystems and Societies; Dhyani, S., Gupta, A.K., Madhav Karki, M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 409–433. [Google Scholar]
- Ferreira, V.; Barreira, A.P.; Loures, L.; Antunes, D.; Panagopoulos, T. Stakeholders’ engagement on nature-based solutions: A systematic literature review. Sustainability 2020, 12, 640. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Hüesker, F.; Lupp, G.; Begg, C.; Huang, J.; Oen, A.; Vojinovic, Z.; Kuhlicke, C.; Pauleit, S. Stakeholder mapping to co-create nature-based solutions: Who is on board? Sustainability 2020, 12, 8625. [Google Scholar] [CrossRef]
- Beceiro, P.; Brito, R.S.; Galvão, A. The contribution of NBS to urban resilience in stormwater management and control: A framework with stakeholder validation. Sustainability 2020, 12, 2537. [Google Scholar] [CrossRef]
- Lupp, G.; Huang, J.J.; Zingraff-Hamed, A.; Oen, A.; Del Sepia, N.; Martinelli, A.; Lucchesi, M.; Knutsen, T.W.; Olsen, M.; Fjøsne, T.F.; et al. Stakeholder perceptions of nature-based solutions and their collaborative co-design and implementation processes in rural mountain areas—A case study from PHUSICOS. Front. Environ. Sci. 2021, 9, 678446. [Google Scholar] [CrossRef]
- Lupp, G.; Zingraff-Hamed, A.; Huang, J.J.; Oen, A.; Pauleit, S. Living labs—A concept for co-designing nature-based solutions. Sustainability 2020, 13, 188. [Google Scholar] [CrossRef]
- Calliari, E.; Castellari, S.; Davis, M.; Linnerooth-Bayer, J.; Martin, J.; Mysiak, J.; Pastor, T.; Ramieri, E.; Scolobig, A.; Sterk, M.; et al. Building climate resilience through nature-based solutions in Europe: A review of enabling knowledge, finance and governance frameworks. Clim. Risk Manag. 2022, 37, 100450. [Google Scholar] [CrossRef]
- Johnson, B.A.; Kumar, P.; Okano, N.; Dasgupta, R.; Shivakoti, B.R. Nature-based solutions for climate change adaptation: A systematic review of systematic reviews. Nat.-Based Solut. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Görür, N. Timing of opening of the Black Sea basin. Tectonophysics 1988, 147, 247–262. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Zibtsev, S.; Yavuz, M.; Emmanouloudis, D.; Kaziolas, D.; Corobov, R.; Uratu, R.; Ghulijanyan, A.; Borsuk, A.; et al. Developing a holistic and complete approach for wildfire suppression for the Black Sea region. In Proceedings of the International Conference of Forest Fires in Black Sea Region, Kastamonu, Turkey, 5–8 November 2014. [Google Scholar]
- Blinkov, I. The Balkans: The most erosive part of Europe? Glas. Šumar. Fak. 2015, 111, 9–20. [Google Scholar] [CrossRef]
- Bär, R.; Rouholahnejad, E.; Rahman, K.; Abbaspour, K.C.; Lehmann, A. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment. Environ. Sci. Policy 2015, 46, 57–69. [Google Scholar] [CrossRef]
- Turp, M.T.; An, N.; Bilgin, B.; Şimşir, G.; Orgen, B.; Kurnaz, M.L. Projected Summer Tourism Potential of the Black Sea Region. Sustainability 2023, 16, 377. [Google Scholar] [CrossRef]
- Sen, B.; Topcu, S.; Türkeș, M.; Sen, B.; Warner, J.F. Projecting climate change, drought conditions and crop productivity in Turkey. Clim. Res. 2012, 52, 175–191. [Google Scholar] [CrossRef]
Nr | Method | Abbreviation |
---|---|---|
1 | Aggregated indices randomization method | AIRM |
2 | Analytic hierarchy process | AHP |
3 | Analytic network process | ANP |
4 | Data envelopment analysis | DEA |
5 | Dominance-based rough set approach | DRSA |
6 | Élimination et choix traduisant la réalite | ELECTRE |
7 | The evidential reasoning approach | ER |
8 | Goal programming | GP |
9 | Grey relational analysis | GRA |
10 | Inner product of vectors | IPV |
11 | Multi-attribute global inference of quality | MAGIQ |
12 | New approach to appraisal | NATA |
13 | Nonstructural fuzzy decision support system | NSFDSS |
14 | Potentially all pairwise rankings of all possible alternatives | PAPRIKA |
15 | Preference ranking organization methods for enrichment of evaluation | PROMETHEE |
16 | Superiority and inferiority ranking method | SIR Method |
17 | Value analysis | VA |
18 | Value engineering | VE |
19 | Weighted product model | WPM |
20 | Weighted sum model | WSM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutalakis, P.; Zaimes, G. The Development of an Online Decision Support System to Select Optimal Nature-Based Solutions to Protect Streams and the Sea. Platforms 2024, 2, 118-137. https://doi.org/10.3390/platforms2030008
Koutalakis P, Zaimes G. The Development of an Online Decision Support System to Select Optimal Nature-Based Solutions to Protect Streams and the Sea. Platforms. 2024; 2(3):118-137. https://doi.org/10.3390/platforms2030008
Chicago/Turabian StyleKoutalakis, Paschalis, and George Zaimes. 2024. "The Development of an Online Decision Support System to Select Optimal Nature-Based Solutions to Protect Streams and the Sea" Platforms 2, no. 3: 118-137. https://doi.org/10.3390/platforms2030008
APA StyleKoutalakis, P., & Zaimes, G. (2024). The Development of an Online Decision Support System to Select Optimal Nature-Based Solutions to Protect Streams and the Sea. Platforms, 2(3), 118-137. https://doi.org/10.3390/platforms2030008