Impacts of Air Quality on Global Crop Yields and Food Security: An Integrative Review and Future Outlook
Abstract
1. Introduction
2. Overview of Key Air Pollutants Affecting Agriculture
2.1. Ground-Level Ozone (O3)
2.2. Particulate Matter (PM2.5 and PM10)
2.3. Nitrogen Oxides (NOX) and Sulfur Dioxide (SO2)
2.4. Ammonia (NH3) and Volatile Organic Compounds (VOCs)
2.5. Polycyclic Aromatic Hydrocarbons (PAHs)
Pollutant | Source | Mechanisms/Pathways | Impact on Agriculture | Crop Examples/Data | References |
---|---|---|---|---|---|
Ground-Level Ozone (O3) | Formed from NOX and VOCs under sunlight | Enters plant stomata, generates ROS, damages photosynthesis | Reduces photosynthesis, growth, and yield | Wheat (6.4–14.9% yield loss), soybean (~7.1% global yield loss) | [8,13,14] |
Particulate Matter (PM2.5, PM10) | Industry, vehicle emissions, agriculture | Blocks light, reduces photosynthesis, transports heavy metals | Reduces photosynthetic efficiency, growth, reproduction | Multiple crops affected globally | [29,35,36] |
Nitrogen Oxides (NOX) & Sulfur Dioxide (SO2) | Combustion, fossil fuel burning | Forms acid rain, soil acidification, nutrient cycling disruption | Reduces plant nutrient availability, stunts growth | General crop and soil impacts reported | [39,40,41] |
Ammonia (NH3) and Volatile Organic Compounds (VOCs) | Agriculture, industrial solvents, pesticide applications | Forms secondary PM, ozone precursor, disrupts soil chemistry | Secondary PM formation, ozone precursor, direct toxicity | VOCs from poultry farms, pesticides contribute ~30% of agri-VOC emissions | [41,46,48] |
Polycyclic Aromatic Hydrocarbons (PAHs) | Vehicle exhausts, industrial emissions, fossil fuel and garbage burning, use of contaminated water and wastes | Rain, dry deposition, bind to soil where they are absorbed through the roots and bioaccumulate in plant tissues and the food chain including meat and dairy products. | Disrupt crop growth, reduce crop yields. They are mutagenic, genotoxic and carcinogenic and can cause genetic mutations, cancer, and other diseases. | Leafy vegetables processed cereals, vegetable oils, tea, and meat products | [50,51,52,53] |
3. Impact of Air Quality on Food Security
4. Solutions and Mitigation Strategies for Air Quality Improvement
4.1. Integrated Policy and Regulatory Approaches
4.2. Transportation Sector: Benefits and Limitations of EVs
4.3. Industrial Emission Control
4.4. Agricultural Innovation and Emission Reduction
4.5. Urban Planning and Green Infrastructure
4.6. Public Awareness and Community-Based Interventions
4.7. Monitoring and Technological Innovations
4.8. Urban Planning, Green Infrastructure, and the Future of Agricultural Areas
4.9. Strategic Communication with Stakeholders and Policymakers for Effective Air Pollution Mitigation
5. Policy Implications and Directions for Future Research
5.1. Integrating Air Quality and Agricultural Policies
5.2. The Role of International Collaboration
5.3. Addressing Data Gaps and Research Priorities
5.4. Prioritizing Funding and Multidisciplinary Research
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AQI | Air Quality Index |
AQMS | Air Quality Monitoring Stations |
EVs | Electric Vehicles |
FAO | UN Food and Agricultural Organization |
ICEVs | Internal Combustion Engine Vehicles |
GI | Green Infrastructure |
IoT | Internet of Things |
LEZ | Low-Emission Zones |
LMIC | Low- and Middle-Income Country |
PAHs | Polycyclic aromatic hydrocarbons |
PM | Particulate Matter |
ROS | Reactive Oxygen Species |
TOD | Transport-Oriented Development |
UNECE | United Nations Economic Commission for Europe |
VOC | Volatile Organic Compounds |
References
- Izah, S.C.; Ogwu, M.C.; Shahsavani, A.; Kermani, M.; Hasanzadeh, V. Understanding the One Health Implications of Air Pollution. In Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts; Springer Nature: Cham, Switzerland, 2024; pp. 161–185. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Alawi, O.A.; Kamar, H.M.; Alsuwaiyan, A.; Yaseen, Z.M. Temporal trends and predictive modeling of air pollutants in Delhi: A comparative study of artificial intelligence models. Sci. Rep. 2024, 14, 30957. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, K.; Gautam, A.S.; Gautam, S. Longitudinal study of air pollutants in Indian metropolises: Seasonal patterns and urban variability. Aerosol Sci. Eng. 2024, 9, 320–335. [Google Scholar] [CrossRef]
- Richard, G.; Sawyer, W.E.; Sharipov, A. Environmental Impacts of Air Pollution. In Sustainable Strategies for Air Pollution Mitigation; Development, Economics, and Technologies; Springer: Cham, Switzerland, 2024; pp. 47–76. [Google Scholar] [CrossRef]
- Sharps, K.; Vieno, M.; Beck, R.; Hayes, F.; Harmens, H. Quantifying the impact of ozone on crops in Sub-Saharan Africa demonstrates regional and local hotspots of production loss. Environ. Sci. Pollut. Res. 2021, 28, 62338–62352. [Google Scholar] [CrossRef]
- Guarin, J.R.; Jägermeyr, J.; Ainsworth, E.A.; Oliveira, F.A.; Asseng, S.; Boote, K.; Elliott, J.; Emberson, L.; Foster, I.; Hoogenboom, G.; et al. Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4. 8.0. Geosci. Model Dev. 2024, 17, 2547–2567. [Google Scholar] [CrossRef]
- Das, S.; Pal, D.; Sarkar, A. Particulate matter pollution and global agricultural productivity. In Sustainable Agriculture Reviews 50; Emerging Contaminants in Agriculture; Springer: Cham, Switzerland, 2021; pp. 79–107. [Google Scholar] [CrossRef]
- Manono, B.O.; Khan, S.; Kithaka, K.M. A Review of the Socio-Economic, Institutional, and Biophysical Factors Influencing Smallholder Farmers’ Adoption of Climate Smart Agricultural Practices in Sub-Saharan Africa. Earth 2025, 6, 48. [Google Scholar] [CrossRef]
- FAO. A Coming to Terms with Terminology. Rome: The Nutrition and Consumer Protection Division of the Food and Agriculture Organization. 2012. Available online: https://www.fao.org/fileadmin/templates/cfs/Docs1112/CFS39Docs/CFS_FSN_Terminology_16_October_2012.pdf (accessed on 20 June 2025).
- Sadiq, F.K.; Ya’u, S.L.; Aliyu, J.; Maniyunda, L.M. Evaluation of land suitability for soybean production using GIS-based multi-criteria approach in Kudan Local Government area of Kaduna State Nigeria. Environ. Sustain. Indic. 2023, 20, 100297. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, L.; Zhang, Y.; Liu, Y.; Sun, Y.; Tuo, X.; Zhang, Y.; Meng, H.; Zhu, Y.; Yang, L.; et al. Effects of long-distance transport on O3 and secondary inorganic aerosols formation in Qingdao, China. Appl. Geochem. 2023, 155, 105729. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, E.; Wang, X.; Jiang, L.; Liu, X. Ground-level O3 pollution and its impacts on food crops in China: A review. Environ. Pollut. 2015, 199, 42–48. [Google Scholar] [CrossRef]
- Li, S.; Leakey, A.D.; Moller, C.A.; Montes, C.M.; Sacks, E.J.; Lee, D.; Ainsworth, E.A. Similar photosynthetic but different yield responses of C3 and C4 crops to elevated O3. Proc. Natl. Acad. Sci. USA 2023, 120, e2313591120. [Google Scholar] [CrossRef]
- Nowroz, F.; Hasanuzzaman, M.; Siddika, A.; Parvin, K.; Caparros, P.G.; Nahar, K.; Prasad, P.V. Elevated tropospheric ozone and crop production: Potential negative effects and plant defense mechanisms. Front. Plant Sci. 2024, 14, 1244515. [Google Scholar] [CrossRef]
- Osborne, S.A.; Mills, G.; Hayes, F.; Ainsworth, E.A.; Büker, P.; Emberson, L. Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose–response data. Glob. Change Biol. 2016, 22, 3097–3111. [Google Scholar] [CrossRef]
- Liao, Z.H.; Jia, X.C.; Qiu, Y.L.; Quan, J.N.; Pan, Y.B.; Ma, P.K.; Cheng, Z.G.; Wang, Q.Q. Synoptic controls on warm-season O3 pollution in eastern China: A focus on O3-NOx-VOC chemistry. Atmos. Res. 2024, 311, 107660. [Google Scholar] [CrossRef]
- Du, X.; Tang, W.; Zhang, Z.; Chen, J.; Han, L.; Yu, Y.; Li, Y.; Li, Y.; Li, H.; Chai, F.; et al. Responses of ozone concentrations to the synergistic control of NOx and VOCs emissions in the Chengdu metropolitan area. Front. Environ. Sci. 2022, 10, 1024795. [Google Scholar] [CrossRef]
- Erickson, L.E.; Newmark, G.L.; Higgins, M.J.; Wang, Z. Nitrogen oxides and ozone in urban air: A review of 50 plus years of progress. Environ. Prog. Sustain. Energy 2020, 39, e13484. [Google Scholar] [CrossRef]
- Dai, J.; Brasseur, G.P.; Vrekoussis, M.; Kanakidou, M.; Qu, K.; Zhang, Y.; Zhang, H.; Wang, T. The atmospheric oxidizing capacity in China–Part 2: Sensitivity to emissions of primary pollutants. Atmos. Chem. Phys. 2024, 24, 12943–12962. [Google Scholar] [CrossRef]
- Ding, D.; Xing, J.; Wang, S.; Dong, Z.; Zhang, F.; Liu, S.; Hao, J. Optimization of a NOx and VOC cooperative control strategy based on clean air benefits. Environ. Sci. Technol. 2021, 56, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhao, K.; Yuan, Z.; Yang, L.; Zheng, J.; Huang, Z.; Huang, X. Emission source-based ozone isopleth and isosurface diagrams and their significance in ozone pollution control strategies. J. Environ. Sci. 2021, 105, 138–149. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Zhang, J.; Hong, C.; Zhang, S.; Chen, D.; Wild, O.; Feng, Z.; Xu, Y.; Guo, X.; et al. Mitigating climate change and ozone pollution will improve Chinese food security. One Earth 2025, 8, 101166. [Google Scholar] [CrossRef]
- Masutomi, Y.; Kinose, Y.; Takimoto, T.; Yonekura, T.; Oue, H.; Kobayashi, K. Ozone changes the linear relationship between photosynthesis and stomatal conductance and decreases water use efficiency in rice. Sci. Total Environ. 2019, 655, 1009–1016. [Google Scholar] [CrossRef]
- Harmens, H.; Hayes, F.; Sharps, K.; Radbourne, A.; Mills, G. Can reduced irrigation mitigate ozone impacts on an ozone-sensitive African wheat variety? Plants 2019, 8, 220. [Google Scholar] [CrossRef]
- Yadav, A.; Bhatia, A.; Yadav, S.; Kumar, V.; Singh, B. The effects of elevated CO2 and elevated O3 exposure on plant growth, yield and quality of grains of two wheat cultivars grown in north India. Heliyon 2019, 5, e02317. [Google Scholar] [CrossRef]
- Feng, Y.; Nguyen, T.H.; Alam, M.S.; Emberson, L.; Gaiser, T.; Ewert, F.; Frei, M. Identifying and modelling key physiological traits that confer tolerance or sensitivity to ozone in winter wheat. Environ. Pollut. 2022, 304, 119251. [Google Scholar] [CrossRef]
- Tomer, R.; Bhatia, A.; Kumar, V.; Kumar, A.; Singh, R.; Singh, B.; Singh, S.D. Impact of elevated ozone on growth, yield and nutritional quality of two wheat species in Northern India. Aerosol Air Qual. Res. 2015, 15, 329–340. [Google Scholar] [CrossRef]
- Ahmad, S.; Zeb, B.; Ditta, A.; Alam, K.; Shahid, U.; Shah, A.U.; Ahmad, I.; Alasmari, A.; Sakran, M.; Alqurashi, M. Morphological, mineralogical, and biochemical characteristics of particulate matter in three size fractions (PM10, PM2.5, and PM1) in the urban environment. ACS Omega 2023, 8, 31661–31674. Available online: https://pubs.acs.org/doi/10.1021/acsomega.3c01667 (accessed on 20 June 2025).
- Zhu, C.S.; Cao, J.J.; Tsai, C.J.; Zhang, Z.S.; Tao, J. Biomass burning tracers in rural and urban ultrafine particles in Xi’an, China. Atmos. Pollut. Res. 2017, 8, 614–618. [Google Scholar] [CrossRef]
- Borghi, F.; Spinazzè, A.; De Nardis, N.; Straccini, S.; Rovelli, S.; Fanti, G.; Oxoli, D.; Cattaneo, A.; Cavallo, D.M.; Brovelli, M.A. Studies on air pollution and air quality in rural and agricultural environments: A systematic review. Environments 2023, 10, 208. [Google Scholar] [CrossRef]
- Jia, L.; Zhou, X.; Wang, Q. Effects of agricultural machinery operations on PM2.5, PM10 and TSP in farmland under different tillage patterns. Agriculture 2023, 13, 930. [Google Scholar] [CrossRef]
- Jung, C.C.; Huang, C.Y.; Su, H.J.; Chen, N.T.; Yeh, C.L. Impact of agricultural activity on PM2.5 and its compositions in elementary schools near corn and rice farms. Sci. Total Environ. 2024, 906, 167496. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Stone, E. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ. Sci. Process. Impacts 2014, 16, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Bing, H.; Luo, Z.; Wang, Y.; Jin, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut. 2019, 255, 113138. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Natasha; Dumat, C.; Niazi, N.K.; Xiong, T.T.; Farooq, A.B.; Khalid, S. Ecotoxicology of heavy metal (loid)-enriched particulate matter: Foliar accumulation by plants and health impacts. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2021; Volume 253, pp. 65–113. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Jyethi, D.S. Air quality: Global and regional emissions of particulate matter, SOx, and NOx. In Plant Responses to Air Pollution; Springer: Singapore, 2016; pp. 5–19. [Google Scholar] [CrossRef]
- Prakash, J.; Agrawal, S.B.; Agrawal, M. Global trends of acidity in rainfall and its impact on plants and soil. J. Soil Sci. Plant Nutr. 2023, 23, 398–419. [Google Scholar] [CrossRef] [PubMed]
- Agathokleous, E.; De Marco, A.; Paoletti, E.; Querol, X.; Sicard, P. Air pollution and climate change threats to plant ecosystems. Environ. Res. 2022, 212, 113420. [Google Scholar] [CrossRef] [PubMed]
- Ravishankara, A.R. A question of balance: Weighing the options for controlling ammonia, sulfur dioxide and nitrogen oxides. Natl. Sci. Rev. 2019, 6, 858–859. [Google Scholar] [CrossRef]
- Bauke, S.L.; Amelung, W.; Bol, R.; Brandt, L.; Brüggemann, N.; Kandeler, E.; Meyer, N.; Or, D.; Schnepf, A.; Schloter, M.; et al. Soil water status shapes nutrient cycling in agroecosystems from micrometer to landscape scales. J. Plant Nutr. Soil Sci. 2022, 185, 773–792. [Google Scholar] [CrossRef]
- Manono, B.O. Carbon dioxide, nitrous oxide and methane emissions from the Waimate District (New Zealand) pasture soils as influenced by irrigation, effluent dispersal and earthworms. Cogent Environ. Sci. 2016, 2, 1256564. [Google Scholar] [CrossRef]
- Sadiq, F.K.; Sadiq, A.A.; Matsika, T.A.; Momoh, B.A. Sustainable remediation of persistent organic Pollutants: A review on Recent innovative technologies. Curr. Res. Biotechnol. 2025, 9, 100293. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, J.; Zheng, Y. Observation of ozone deposition flux and its contribution to stomatal uptake over a winter wheat field in eastern China. Atmos. Environ. 2024, 326, 120472. [Google Scholar] [CrossRef]
- Yao, Q.; Torrents, A.; Li, H.; Buser, M.D.; McConnell, L.L.; Downey, P.M.; Hapeman, C.J. Using a vegetative environmental buffer to reduce the concentrations of volatile organic compounds in poultry-house atmospheric emissions. J. Agric. Food Chem. 2018, 66, 8231–8236. Available online: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.8b00088 (accessed on 20 June 2025). [PubMed]
- Chen, S.; He, Y.; Jiang, M.; You, Q.; Ma, X.; Xu, Z.; Bo, X. Unveiling the importance of VOCs from pesticides applicated in main crops for elevating ozone concentrations in China. J. Hazard. Mater. 2024, 465, 133385. [Google Scholar] [CrossRef]
- Rajeev, P.; Shukla, P.C.; Singh, G.K.; Das, D.; Gupta, T. Assessment of entrainment of key PAHs emanating from major combustion sources into the ambient air. Fuel 2023, 347, 128430. [Google Scholar] [CrossRef]
- Tarigholizadeh, S.; Sushkova, S.; Rajput, V.D.; Ranjan, A.; Arora, J.; Dudnikova, T.; Barbashev, A.; Mandzhieva, S.; Minkina, T.; Wong, M.H. Transfer and degradation of PAHs in the soil–plant system: A review. J. Agric. Food Chem. 2023, 72, 46–64. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo [a] pyrene—Environmental occurrence, human exposure, and mechanisms of toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A. Polycyclic aromatic hydrocarbons in foods: Biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan Manzoor, M.; Sarwar, G.; Ibrahim, M.; Rehan, S.S.; Hasnain, Z.; Rais, A.; Gul, S.; Alfagham, A.T.; Manono, B.O.; Mehmood, K.; et al. Remediation quantum of organic amendments to immobilize potentially toxic heavy metals in wastewater-contaminated soils through maize cultivation. Front. Environ. Sci. 2024, 12, 1420705. [Google Scholar] [CrossRef]
- Gitipour, S.; Sorial, G.A.; Ghasemi, S.; Bazyari, M. Treatment technologies for PAH-contaminated sites: A critical review. Environ. Monit. Assess. 2018, 190, 546. [Google Scholar] [CrossRef]
- Dell’Anno, F.; Rastelli, E.; Sansone, C.; Brunet, C.; Ianora, A.; Dell’Anno, A. Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms 2021, 9, 1695. [Google Scholar] [CrossRef]
- Wang, Z.; Ng, K.; Warner, R.D.; Stockmann, R.; Fang, Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1598–1626. [Google Scholar] [CrossRef]
- Tai, A.P.; Sadiq, M.; Pang, J.Y.; Yung, D.H.; Feng, Z. Impacts of surface ozone pollution on global crop yields: Comparing different ozone exposure metrics and incorporating co-effects of CO2. Front. Sustain. Food Syst. 2021, 5, 534616. [Google Scholar] [CrossRef]
- Broberg, M.C.; Daun, S.; Pleijel, H. Ozone induced loss of seed protein accumulation is larger in soybean than in wheat and rice. Agronomy 2020, 10, 357. [Google Scholar] [CrossRef]
- Liu, X.; Desai, A.R. Significant reductions in crop yields from air pollution and heat stress in the United States. Earth’s Future 2021, 9, e2021EF002000. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, O.; Ashworth, K.; Chen, X.; Wu, Q.; Qi, Y.; Wang, Z. Reductions in crop yields across China from elevated ozone. Environ. Pollut. 2022, 292, 118218. [Google Scholar] [CrossRef]
- Feng, Z.; De Marco, A.; Anav, A.; Gualtieri, M.; Sicard, P.; Tian, H.; Fornasier, F.; Tao, F.; Guo, A.; Paoletti, E. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 2019, 131, 104966. [Google Scholar] [CrossRef]
- Sampedro, J.; Waldhoff, S.T.; Van de Ven, D.J.; Pardo, G.; Van Dingenen, R.; Arto, I.; del Prado, A.; Sanz, M.J. Future impacts of ozone driven damages on agricultural systems. Atmos. Environ. 2020, 231, 117538. [Google Scholar] [CrossRef]
- Hayes, F.; Harmens, H.; Sharps, K.; Radbourne, A. Ozone dose-response relationships for tropical crops reveal potential threat to legume and wheat production, but not to millets. Sci. Afr. 2020, 9, e00482. [Google Scholar] [CrossRef]
- Hayes, F.; Sharps, K.; Harmens, H.; Roberts, I.; Mills, G. Tropospheric ozone pollution reduces the yield of African crops. J. Agron. Crop Sci. 2020, 206, 214–228. [Google Scholar] [CrossRef]
- Sharps, K.; Foster, J.; Vieno, M.; Beck, R.; Hayes, F. Ozone pollution contributes to the yield gap for beans in Uganda, East Africa, and is co-located with other agricultural stresses. Sci. Rep. 2024, 14, 8026. [Google Scholar] [CrossRef]
- Pandya, S.; Gadekallu, T.R.; Maddikunta, P.K.; Sharma, R. A study of the impacts of air pollution on the agricultural community and yield crops (Indian context). Sustainability 2022, 14, 13098. [Google Scholar] [CrossRef]
- Zeeshan, N.; Freer-Smith, P.; Murtaza, G.; Wong, A.E.; Taylor, G. His dark materials: Quantifying the problem of dust (particulate matter) in the agricultural landscape of California. Atmos. Environ. 2024, 330, 120562. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burney, J.A. Cleaner air has contributed one-fifth of US maize and soybean yield gains since 1999. Environ. Res. Lett. 2021, 16, 074049. [Google Scholar] [CrossRef]
- Atafar, Z.; Sarkhoshkalat, M.M.; Manesh, M.B. Overview of air pollution: History, sources and effects. In Air Pollution, Air Quality, and Climate Change; Elsevier: Amsterdam, The Netherlands, 2025; pp. 1–21. [Google Scholar] [CrossRef]
- Macaulay, B.M.; Owoeye, J.A.; Abiya, S.F.; Raji, J.I.; Hung, Y.T. Acid rain: A growing global concern. In Handbook of Environment and Waste Management: Acid Rain and Greenhouse Gas Pollution Control; World Scientific: Singapore, 2020; pp. 59–93. [Google Scholar] [CrossRef]
- Rafie-Rad, Z.; Raza, T.; Eash, N.S.; Moradi-Khajevand, M.; Moradkhani, M. Effects of outdoor air pollutants on plants and agricultural productivity. In Health and Environmental Effects of Ambient Air Pollution; Academic Press: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Ehrnsperger, L.; Klemm, O. Source apportionment of urban ammonia and its contribution to secondary particle formation in a mid-size European city. Aerosol Air Qual. Res. 2021, 21, 200404. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Singh, A.; Dash, S.P.; Mallick, N.; Clerbaux, C.; Van Damme, M.; Clarisse, L.; Coheur, P.F.; Raj, S.; Abbhishek, K.; et al. Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Sci. Total Environ. 2020, 740, 139986. [Google Scholar] [CrossRef]
- Liu, X.; Tai, A.P.; Fung, K.M. Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes. Atmos. Chem. Phys. 2021, 21, 17743–17758. [Google Scholar] [CrossRef]
- Sobanaa, M.; Prathiviraj, R.; Selvin, J.; Prathaban, M. A comprehensive review on methane’s dual role: Effects in climate change and potential as a carbon–neutral energy source. Environ. Sci. Pollut. Res. 2024, 31, 10379–10394. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Mishra, A.K. Role of essential climate variables and black carbon in climate change: Possible mitigation strategies. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 31–53. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, X.; Kumar, R.; Barth, M.; Diao, C.; Gao, M.; Lin, L.; Jones, B.; Meehl, G.A. Substantial increase in the joint occurrence and human exposure of heatwave and high-PM hazards over South Asia in the mid-21st century. AGU Adv. 2020, 1, e2019AV000103. [Google Scholar] [CrossRef]
- Nilsson, M.; Sie, A.; Muindi, K.; Bunker, A.; Ingole, V.; Ebi, K.L. Weather, climate, and climate change research to protect human health in sub-Saharan Africa and South Asia. Glob. Health Action 2021, 14, 1984014. [Google Scholar] [CrossRef] [PubMed]
- Kornhuber, K.; Coumou, D.; Vogel, E.; Lesk, C.; Donges, J.F.; Lehmann, J.; Horton, R.M. Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Clim. Chang. 2020, 10, 48–53. [Google Scholar] [CrossRef]
- Prasad, R.; Prasad, S. Algal blooms and phosphate eutrophication of inland water ecosystems with special reference to India. Int. J. Plant Environ. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Abedin, M.A.; Habiba, U.; Shaw, R. Salinity scenario in mekong, ganges, and indus river deltas. In Water Insecurity: A Soc. Dilemma; Emerald Group Publishing Limited: Leeds, UK, 2014; pp. 115–138. [Google Scholar] [CrossRef]
- Snowsill, A.; Hamilton, R.; Schneider, L.; Mahanty, S.; Doron, A. Re-viewing pollution: A tale of two basins. Environ. Sci. Policy 2024, 156, 103751. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.; Abdel-Daim, M.M.; et al. Overview of bee pollination and its economic value for crop production. Insects 2021, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Démares, F.; Gibert, L.; Creusot, P.; Lapeyre, B.; Proffit, M. Acute ozone exposure impairs detection of floral odor, learning, and memory of honey bees, through olfactory generalization. Sci. Total Environ. 2022, 827, 154342. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Lapeyre, B.; Brondani, M.; Opsommer, M.; Dufay, M.; Hossaert-McKey, M.; Proffit, M. Ozone pollution alters olfaction and behavior of pollinators. Antioxidants 2021, 10, 636. [Google Scholar] [CrossRef] [PubMed]
- Ryalls, J.M.; Langford, B.; Mullinger, N.J.; Bromfield, L.M.; Nemitz, E.; Pfrang, C.; Girling, R.D. Anthropogenic air pollutants reduce insect-mediated pollination services. Environ. Pollut. 2022, 297, 118847. [Google Scholar] [CrossRef]
- Srivastava, Y. Climate change: A challenge for postharvest management, food loss, food quality, and food security. In Climate Change and Agricultural Ecosystems; Woodhead Publishing: London, UK, 2019; pp. 355–377. [Google Scholar] [CrossRef]
- Bailey, G.; Brian, J.; Champion, C. An investigation into the impact of sealed wooden and acrylic showcases and storage cases on the corrosion of lead objects during long term storage and display. AICCM Bull. 2017, 38, 43–50. [Google Scholar] [CrossRef]
- Hill, A.E.; Burkhardt, J.; Bayham, J.; O’Dell, K.; Ford, B.; Fischer, E.V.; Pierce, J.R. Air pollution, weather, and agricultural worker productivity. Am. J. Agric. Econ. 2024, 106, 1329–1353. [Google Scholar] [CrossRef]
- He, Q.; Ji, X. The labor productivity consequences of exposure to particulate matters: Evidence from a Chinese National Panel Survey. Int. J. Environ. Res. Public Health 2021, 18, 12859. [Google Scholar] [CrossRef]
- Dong, D.; Wang, J. Air pollution as a substantial threat to the improvement of agricultural total factor productivity: Global evidence. Environ. Int. 2023, 173, 107842. [Google Scholar] [CrossRef]
- Ye, H.J.; Huang, Z.; Chen, S. Air pollution and agricultural labor supply: Evidence from China. China Econ. Rev. 2023, 82, 102075. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, W. Genetic Face-Lifting: Applications and Prospects of Epigenetic Modifications in Stress Response of Trees. Plant Gene Trait 2024, 15. [Google Scholar] [CrossRef]
- Cong, W.; Miao, Y.; Xu, L.; Zhang, Y.; Yuan, C.; Wang, J.; Zhuang, T.; Lin, X.; Jiang, L.; Wang, N.; et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol. 2019, 19, 282. [Google Scholar] [CrossRef]
- Katsidi, E.C.; Avramidou, E.V.; Ganopoulos, I.; Barbas, E.; Doulis, A.; Triantafyllou, A.; Aravanopoulos, F.A. Genetics and epigenetics of Pinus nigra populations with differential exposure to air pollution. Front. Plant Sci. 2023, 14, 1139331. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Amann, M.; Kiesewetter, G.; Schöpp, W.; Klimont, Z.; Winiwarter, W.; Cofala, J.; Rafaj, P.; Höglund-Isaksson, L.; Gomez-Sabriana, A.; Heyes, C.; et al. Reducing global air pollution: The scope for further policy interventions. Philos. Trans. R. Soc. A 2020, 378, 20190331. [Google Scholar] [CrossRef] [PubMed]
- Jonidi Jafari, A.; Charkhloo, E.; Pasalari, H. Urban air pollution control policies and strategies: A systematic review. J. Environ. Health Sci. Eng. 2021, 19, 1911–1940. [Google Scholar] [CrossRef] [PubMed]
- Timmers, V.R.; Achten, P.A. Non-exhaust PM emissions from electric vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Malmqvist, E. Particles from Electric Vehicles. Acid News, 2022; no. 3. Available online: https://www.airclim.org/acidnews/particles-electric-vehicles (accessed on 29 July 2025).
- Bondorf, L.; Köhler, L.; Grein, T.; Epple, F.; Philipps, F.; Aigner, M.; Schripp, T. Airborne brake wear emissions from a battery electric vehicle. Atmosphere 2023, 14, 488. [Google Scholar] [CrossRef]
- Beddows, D.C.; Harrison, R.M. PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmos. Environ. 2021, 244, 117886. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R., III; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Ramani, V.; Rani Kuiti, M.; Ghosh, D.; Swami, S. Effectiveness of environmental regulations: Firm’s decisions and welfare implications. J. Oper. Res. Soc. 2024, 75, 2443–2463. [Google Scholar] [CrossRef]
- Oncioiu, I.; Dănescu, T.; Popa, M.A. Air-pollution control in an emergent market: Does it work? Evidence from Romania. Int. J. Environ. Res. Public Health 2020, 17, 2656. [Google Scholar] [CrossRef]
- Liu, H.; Owens, K.A.; Yang, K.; Zhang, C. Pollution abatement costs and technical changes under different environmental regulations. China Econ. Rev. 2020, 62, 101497. [Google Scholar] [CrossRef]
- Surendran, U.; Nagakumar, K.C.; Samuel, M.P. Remote sensing in precision agriculture. In Digital Agriculture: A Solution for Sustainable Food and Nutritional Security; Springer International Publishing: Cham, Switzerland, 2024; pp. 201–223. [Google Scholar] [CrossRef]
- Rees, R.M.; Maire, J.M.; Florence, A.; Cowan, N.; Skiba, U.M.; Van Der Weerden, T.; Ju, X. Mitigating nitrous oxide emissions from agricultural soils by precision management. Front. Agric. Sci. Eng. 2020, 7, 75–80. [Google Scholar] [CrossRef]
- Garfí, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresour. Technol. 2019, 274, 541–548. [Google Scholar] [CrossRef]
- Reeves, S.; Wang, W.; Ginns, S. Mitigate N2O emissions while maintaining sugarcane yield using enhanced efficiency fertilisers and reduced nitrogen rates. Nutr. Cycl. Agroecosyst. 2024, 128, 325–340. [Google Scholar] [CrossRef]
- Stein, L.Y. Agritech to Tame the Nitrogen Cycle. Cold Spring Harb. Perspect. Biol. 2024, 16, a041668. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef]
- Sheikh, H.A.; Maher, B.A.; Woods, A.W.; Tung, P.Y.; Harrison, R.J. Efficacy of green infrastructure in reducing exposure to local, traffic-related sources of airborne particulate matter (PM). Sci. Total Environ. 2023, 903, 166598. [Google Scholar] [CrossRef]
- Wróblewska, K.; Jeong, B.R. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. Environ. Sci. Eur. 2021, 33, 110. [Google Scholar] [CrossRef]
- Corada, K.; Woodward, H.; Alaraj, H.; Collins, C.M.; de Nazelle, A. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut. 2021, 269, 116104. [Google Scholar] [CrossRef]
- Riley, R.; de Preux, L.; Capella, P.; Mejia, C.; Kajikawa, Y.; de Nazelle, A. How do we effectively communicate air pollution to change public attitudes and behaviours? A review. Sustain. Sci. 2021, 16, 2027–2047. [Google Scholar] [CrossRef]
- Fino, A.; Vichi, F.; Leonardi, C.; Mukhopadhyay, K. An overview of experiences made and tools used to inform the public on ambient air quality. Atmosphere 2021, 12, 1524. [Google Scholar] [CrossRef]
- Laha, S.R.; Pattanayak, B.K.; Pattnaik, S. Advancement of environmental monitoring system using IoT and sensor: A comprehensive analysis. AIMS Environ. Sci. 2022, 9, 771–800. [Google Scholar] [CrossRef]
- Singh, D.; Dahiya, M.; Kumar, R.; Nanda, C. Sensors and systems for air quality assessment monitoring and management: A review. J. Environ. Manag. 2021, 289, 112510. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lin, Y.; Wang, J.; Peng, F. Achieving Air Pollution Control Targets with Technology-Aided Monitoring: Better Enforcement or Localized Efforts? Am. Econ. J. Econ. Policy 2024, 16, 280–315. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S.; Osammor, O. Analysis of air pollution in urban areas with Airviro dispersion model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. [Google Scholar] [CrossRef]
- Özdemir, E.T.; Birinci, E.; Deniz, A. Multi-source observations on the effect of atmospheric blocking on air quality in İstanbul: A study case. Environ. Monit. Assess. 2024, 196, 698. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Saez, Y.; Harris, I.; Huang, X.; Collado, E. Advancements in air quality monitoring: A systematic review of IoT-based air quality monitoring and AI technologies. Artif. Intell. Rev. 2025, 58, 275. [Google Scholar] [CrossRef]
- Sadiq, F.K.; Yaqub, M.T.; Maniyunda, L.M.; Alalwany, A.A.; Abubakar, F.; Anyebe, O. Soil classification and land suitability evaluation for tomato cultivation using analytic hierarchy process under different land uses. Heliyon 2025, 11, e41681. [Google Scholar] [CrossRef]
- Agbossou, A.; Fontodji, J.K.; Ayassou, K.; Tchegueni, S.; Segla, K.N.; Adjonou, K.; Bokovi, Y.; Ajayon, A.L.; Polo-Akpisso, A.; Kuylenstierna, J.C.; et al. Integrated climate change and air pollution mitigation assessment for Togo. Sci. Total Environ. 2022, 844, 157107. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Lori, T.; Aliu, O.O.; Febnteh, E.B.; Izah, S.C.; Abdelkhalek, S.T. Agricultural air pollution: Impacts, sources, and mitigation strategies. In Air Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts; Springer Nature: Cham, Switzerland, 2024; pp. 395–423. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; ST/ESA/SER.A/420; United Nations: New York, NY, USA, 2019; Available online: https://population.un.org/wup/assets/WUP2018-Report.pdf (accessed on 9 August 2025).
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.A.; Wu, Q.; et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef]
- Sharma, R.; Sachdeva, K.; Sharma, A.R. Assessment of Synergistic Impact of Ambient Surface Ozone and Fine Particulate Matter on Experimentally Grown Wheat Crop. Asian J. Atmos. Environ. 2021, 15, 2020080. [Google Scholar] [CrossRef]
- Feng, Z.; Kobayashi, K.; Li, P.; Xu, Y.; Tang, H.; Guo, A.; Paoletti, E.; Calatayud, V. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering. Atmos. Environ. 2019, 217, 116945. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Y.; Zhang, S.; Zheng, G.; Zheng, H.; Chang, X.; Huang, C.; Wang, S.; Wu, Y.; Hao, J. Vehicular ammonia emissions significantly contribute to urban PM2.5 pollution in two Chinese megacities. Environ. Sci. Technol. 2023, 57, 2698–2705. [Google Scholar] [CrossRef] [PubMed]
- Granella, F.; Renna, S.; Reis, L.A. The formation of secondary inorganic aerosols: A data-driven investigation of Lombardy’s secondary inorganic aerosol problem. Atmos. Environ. 2024, 327, 120480. [Google Scholar] [CrossRef]
- Elhini, M.; Hassaballa, H.; Simpson, N.P.; Balbaa, M.; Ibrahim, R.; Mansour, S.; Abou-Kota, M.E.; Ganzour, S. The land degradation and desertification-socioeconomic nexus in Egypt’s delta region: A case study on Alexandria and Beheira. Heliyon 2024, 10, e31165. [Google Scholar] [CrossRef]
- Manono, B.O. Small-Scale Farming in the United States: Challenges and Pathways to Enhanced Productivity and Profitability. Sustainability 2025, 17, 6752. [Google Scholar] [CrossRef]
- Fatihu, K.S.; Maniyunda, L.M.; Awwal, A.Y. Assessment of soil properties under different land uses and their suitability for maize (Zea mays) production in Hunkuyi, northern Guinea savanna, Nigeria. J. Agric. Food Secur. (Dujafs) 2020, 7, 1–12. [Google Scholar]
- Xie, H.; Pearson, D.; McLaren, S.J.; Horne, D. Expansion of Lifestyle Blocks in Peri-Urban New Zealand: A Review of the Implications for Environmental Management and Landscape Design. Land 2025, 14, 1447. [Google Scholar] [CrossRef]
- Mashanye, E.N.; Matakana, A.R.; Bhanye, J.I. A review study on nature-based solutions (NBS) for urban agriculture in southern Africa. Discov. Cities 2025, 2, 20. [Google Scholar] [CrossRef]
- Al-Thani, H.G.; Isaifan, R.J. Policies and regulations for sustainable clean air: An overview. In Sustainable Strategies for Air Pollution Mitigation; Development, Economics, and Technologies; Springer Nature: Cham, Switzerland, 2024; pp. 409–437. [Google Scholar] [CrossRef]
- Imarhiagbe, O.; Okafor, A.C.; Ogwu, M.C. Air Pollution Control Technologies and Strategies. In Evaluating Environmental Processes and Technologies; Springer Nature: Cham, Switzerland, 2025; pp. 231–258. [Google Scholar] [CrossRef]
- Hassan Bhat, T.; Jiawen, G.; Farzaneh, H. Air pollution health risk assessment (AP-HRA), principles and applications. Int. J. Environ. Res. Public Health 2021, 18, 1935. [Google Scholar] [CrossRef]
- Kabange, N.R.; Kwon, Y.; Lee, S.M.; Kang, J.W.; Cha, J.K.; Park, H.; Dzorkpe, G.D.; Shin, D.; Oh, K.W.; Lee, J.H. Mitigating greenhouse gas emissions from crop production and management practices, and livestock: A review. Sustainability 2023, 15, 15889. [Google Scholar] [CrossRef]
- Jiang, K.; Xing, R.; Luo, Z.; Huang, W.; Yi, F.; Men, Y.; Zhao, N.; Chang, Z.; Zhao, J.; Pan, B.; et al. Pollutant emissions from biomass burning: A review on emission characteristics, environmental impacts, and research perspectives. Particuology 2024, 85, 296–309. [Google Scholar] [CrossRef]
- Abera, A.; Friberg, J.; Isaxon, C.; Jerrett, M.; Malmqvist, E.; Sjöström, C.; Taj, T.; Vargas, A.M. Air quality in Africa: Public health implications. Annu. Rev. Public Health 2021, 42, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z. Collaborative governance of trade-driven transboundary air pollution in China: A responsibility-based fair compensation mechanism. J. Environ. Manag. 2023, 348, 119327. [Google Scholar] [CrossRef]
- He, C.; Kumar, R.; Tang, W.; Pfister, G.; Xu, Y.; Qian, Y.; Brasseur, G. Air pollution interactions with weather and climate extremes: Current knowledge, gaps, and future directions. Curr. Pollut. Rep. 2024, 10, 430–442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manono, B.O.; Sadiq, F.K.; Sadiq, A.A.; Matsika, T.A.; Tanko, F. Impacts of Air Quality on Global Crop Yields and Food Security: An Integrative Review and Future Outlook. Air 2025, 3, 24. https://doi.org/10.3390/air3030024
Manono BO, Sadiq FK, Sadiq AA, Matsika TA, Tanko F. Impacts of Air Quality on Global Crop Yields and Food Security: An Integrative Review and Future Outlook. Air. 2025; 3(3):24. https://doi.org/10.3390/air3030024
Chicago/Turabian StyleManono, Bonface O., Fatihu Kabir Sadiq, Abdulsalam Adeiza Sadiq, Tiroyaone Albertinah Matsika, and Fatima Tanko. 2025. "Impacts of Air Quality on Global Crop Yields and Food Security: An Integrative Review and Future Outlook" Air 3, no. 3: 24. https://doi.org/10.3390/air3030024
APA StyleManono, B. O., Sadiq, F. K., Sadiq, A. A., Matsika, T. A., & Tanko, F. (2025). Impacts of Air Quality on Global Crop Yields and Food Security: An Integrative Review and Future Outlook. Air, 3(3), 24. https://doi.org/10.3390/air3030024