Physico-Chemical Characterisation of Particulate Matter and Ash from Biomass Combustion in Rural Indian Kitchens
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Instrumentation and Sample Collection
2.3. Physical Characterisation
2.3.1. Particle Size Distribution
2.3.2. Characterisation Using Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (FE-SEM, EDX)
2.4. Chemical Characterisation
2.4.1. Raman Spectroscopy
2.4.2. Carbonaceous Analysis
2.4.3. Elemental Analysis
2.4.4. Analysis of Volatile Organic Compounds (VOCs)
3. Results
3.1. Physical Characteristics of Particulate Matter and Ash
3.1.1. Particles Size Distribution
3.1.2. Particle Morphology
3.2. Chemical Characteristics of Particulate Matter and Ash
3.2.1. Carbon Raman Spectrum
3.2.2. Carbon Content of PM and Ash from Biomass Combustion
3.2.3. Elemental Composition of Particulate Matter (PM) and Ash from Biomass Combustion
3.2.4. Volatile Constituents of PM and Ash from Biomass Combustion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Use of Artificial Intelligence
Acknowledgments
Conflicts of Interest
Abbreviations
COPD | Chronic Obstructive Pulmonary Disease |
CSC | Coconut Shell Charcoal |
EC | Elemental Carbon |
EDX | Energy Dispersive X-ray Analysis |
EF | Enrichment Factor |
FE-SEM | Field Emission-Scanning Electron Microscope |
FO-RSR | First-Order Raman Spectrum Region |
GC-MS | Gas Chromatography-Mass Spectrometry |
HRT | Human Respiratory Tract |
IAP | Indoor Air Pollution |
IAQ | Indoor Air Quality |
ICs | Improved Cookstoves |
ICP-OES | Inductively Coupled Plasma with Optical Emission Spectroscopy |
IMPROVE | Interagency Monitoring of Protected Visual Environments |
LPG | Liquefied Petroleum Gas |
NDIR | Non-Dispersive Infrared |
OC | Organic Carbon |
OK | Open Kitchen |
PAHs | Polyaromatic Hydrocarbons |
PM | Particulate Matter |
SK | Separate Kitchen |
SO-RSR | Second-Order Raman Spectrum Region |
TC | Total Carbon |
TCs | Traditional Cookstoves |
TMS | Tetramethylsilane |
TOC | Total Organic Carbon |
VOCs | Volatile Organic Compounds |
Appendix A
Appendix A.1. Characteristics of Real-World Rural Kitchens
House Code | No. of Occupants | Kitchen and Cookstove Configuration * | Construction Materials for the Kitchen | Dimensions of the Kitchen (Length × Breadth × Height) (m) | Volume (m3) | No. of Windows in the Kitchen | Dimension of Windows (Height × Breadth) (m) | No. of Doors in the Kitchen | Dimension of Doors (Height × Breadth) (m) | Does the Location of Doors/Windows Allow Cross-Ventilation |
---|---|---|---|---|---|---|---|---|---|---|
M01 | 8 | OK_IC | Brick wall, concrete floor and tiled roof | 4 × 2 × 3 | 24 | 1 | 1 × 1 | 1 | 1 × 2 | No |
M02 | 4 | OK_TC | Brick wall, concrete floor and tiled roof | 5 × 4 × 3 | 60 | 0 | 2 | 1 × 2 | No | |
M03 | 4 | OK_IC | Brick wall, concrete floor and tiled roof | 4 × 4 × 3 | 48 | 1 | 0.5 × 0.75 | 2 | 1 × 2 | Yes |
M04 | 4 | OK_IC | Brick wall, concrete floor and tiled roof | 2 × 2 × 2.5 | 10 | 0 | 1 | 0.8 × 1.8 | No | |
M05 | 5 | SK_TC | Brick wall, concrete floor and tiled roof | 10 × 5 × 3 | 150 | 4 | 1 × 1 | 2 | 2.5 × 1 | No |
M06 | 3 | SK_TC | Brick wall, concrete floor and tiled roof | 2 × 3 × 3 | 18 | 1 | 1 × 1 | 1 | 2.5 × 0.8 | No |
M07 | 5 | SK_TC | Brick wall, concrete floor and tiled roof | 3 × 4 × 3 | 36 | 1 | 1 × 1 | 2 | 2.5 × 1 | No |
M08 | 5 | SK_IC | Brick wall, concrete floor and tiled roof | 3 × 4 × 3 | 36 | 1 | 1 × 1 | 2 | 2.5 × 1 | No |
M09 | 3 | SK_TC | Brick wall, concrete floor and tiled roof | 6 × 5 × 3 | 90 | 2 | 1.5 × 1 | 2 | 2.5 × 1 | Yes |
M10 | 3 | OK_IC | Brick wall, mud floor and tiled roof | 3 × 4 × 3 | 36 | 0 | 1 | 2 × 1 | No | |
M11 | 7 | OK_TC | Mud wall, mud floor and tiled roof | 1.5 × 2 × 2.5 | 7.5 | 0 | 1 | 2.5 × 1 | No | |
M12 | 3 | SK_TC | Brick wall, mud floor and tiled roof | 2 × 2 × 2.5 | 10 | 0 | 1 | 2.5 × 1 | No | |
M13 | 5 | SK_TC | Brick wall, concrete floor and tiled roof | 3 × 2 × 3 | 18 | 0 | 1 | 2.5 × 1 | No | |
M14 | 4 | SK_TC | Brick wall, concrete floor and tiled roof | 1.5 × 1.5 × 2.5 | 5.625 | 0 | 1 | 2.5 × 1 | No | |
M15 | 4 | OK_TC | Brick wall, concrete floor and tiled roof | 2 × 3 × 3 | 18 | 0 | 1 | 2.5 × 1 | No | |
M16 | 8 | SK_TC | Brick wall, concrete floor and tiled roof | 3 × 4 × 3 | 36 | 0 | 2 | 2.5 × 1 | Yes | |
M17 | 6 | SK_TC | Brick wall, concrete floor and tiled roof | 5 × 6 × 3 | 90 | 2 | 0.8 × 0.8 | 1 | 1.2 × 2.5 | No |
M18 | 6 | OK_TC | Brick wall, concrete floor and tiled roof | 3 × 2 × 3 | 18 | 0 | 1 | 2.5 × 1 | No | |
M19 | 3 | SK_IC | Brick wall, concrete floor and tiled roof | 2 × 2 × 3 | 12 | 0 | 1 | 2.5 × 1 | No | |
M20 | 4 | SK_IC | Brick wall, concrete floor and tiled roof | 2 × 3.5 × 3 | 21 | 1 | 1 × 1.5 | 1 | 2.5 × 0.8 | Yes |
References
- Bruce, N.; Pope, D.; Rehfuess, E.; Balakrishnan, K.; Adair-Rohani, H.; Dora, C. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 2015, 106, 451–457. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Indoor Air Quality: Household Fuel Combustion; WHO Document Production Services: Geneva, Switzerland, 2014; Available online: https://www.who.int/publications/i/item/9789241548885 (accessed on 21 June 2024).
- Deepthi, Y.; Shiva Nagendra, S.M.; Gummadi, S.N. Characteristics of indoor air pollution and estimation of respiratory dosage under varied fuel-type and kitchen-type in the rural areas of Telangana state in India. Sci. Total Environ. 2019, 650, 616–625. [Google Scholar] [CrossRef]
- Varghese, S.K.; Gangamma, S.; Patil, R.S.; Sethi, V. Particulate Respiratory Dose to Indian Women from Domestic Cooking. Aerosol Sci. Technol. 2005, 39, 1201–1207. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor exposure to selected air pollutants in the home environment: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wong, S.L.; Cakmak, S. Nationally representative levels of selected volatile organic compounds in canadian residential indoor air: Population-based survey. Environ. Sci. Technol. 2013, 47, 13276–13283. [Google Scholar] [CrossRef]
- Jurvelin, J.; Vartiainen, M.; Jantunen, M.; Pasanen, P. Personal exposure levels and microenvironmental concentrations of formaldehyde and acetaldehyde in the Helsinki metropolitan area, Finland. J. Air Waste Manag. Assoc. 2001, 51, 17–24. [Google Scholar] [CrossRef]
- Tancrède, M.; Wilson, R.; Zeise, L.; Crouch, E. The carcinogenic risk of some organic vapors indoors: A theoretical survey. Atmos. Environ. (1967) 1987, 21, 2187–2205. [Google Scholar] [CrossRef]
- Liu, S.; Thompson, S.L.; Stark, H.; Ziemann, P.J.; Jimenez, J.L. Gas-Phase Carboxylic Acids in a University Classroom: Abundance, Variability, and Sources. Environ. Sci. Technol. 2017, 51, 5454–5463. [Google Scholar] [CrossRef]
- Mølhave, L. Indoor climate, air pollution, and human comfort. J. Expo. Anal. Environ. Epidemiol. 1991, 1, 63–81. Available online: https://pubmed.ncbi.nlm.nih.gov/1824312/ (accessed on 21 June 2024). [PubMed]
- WHO. WHO Guidelines for Indoor Air Quality: Selected Pollutants. 2010. Available online: https://www.who.int/publications/i/item/9789289002134 (accessed on 21 June 2024).
- Albadra, D.; Kuchai, N.; Acevedo-De-Los-Ríos, A.; Rondinel-Oviedo, D.; Coley, D.; da Silva, C.; Rana, C.; Mower, K.; Dengel, A.; Maskell, D.; et al. Measurement and analysis of air quality in temporary shelters on three continents. Build. Environ. 2020, 185, 107259. [Google Scholar] [CrossRef]
- Klansek, T.; Coley, D.A.; Paszkiewicz, N.; Albadra, D.; Rota, F.; Ball, R.J. Analysing experiences and issues in self-built shelters in Bangladesh using transdisciplinary approach. J. Hous. Built Environ. 2021, 36, 723–757. [Google Scholar] [CrossRef]
- WHO. Access To Clean Fuels and Technologies for Cooking. In Tracking SDG 7: The Energy Progress Report 2023; WHO: Washington, DC, USA, 2023; pp. 66–96. Available online: https://www.who.int/publications/m/item/tracking-sdg7--the-energy-progress-report-2023 (accessed on 21 June 2024).
- Shupler, M.; Hystad, P.; Birch, A.; Miller-Lionberg, D.; Jeronimo, M.; Arku, R.E.; Chu, Y.L.; Mushtaha, M.; Heenan, L.; Rangarajan, S.; et al. Household and personal air pollution exposure measurements from 120 communities in eight countries: Results from the PURE-AIR study. Lancet Planet. Health 2020, 4, e451–e462. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, J.I.; Milia, S.; Jaremko, M.; Oddone, E.; Cannizzaro, E.; Cirrincione, L.; Malta, G.; Campagna, M.; Lecca, L.I. Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment. Atmosphere 2023, 14, 12. [Google Scholar] [CrossRef]
- Ansari, F.A.; Khan, A.H.; Patel, D.K.; Siddiqui, H.; Sharma, S.; Ashquin, M.; Ahmad, I. Indoor exposure to respirable particulate matter and particulate-phase PAHs in rural homes in North India. Environ. Monit. Assess. 2009, 170, 491–497. [Google Scholar] [CrossRef]
- Abdullahi, K.L.; Delgado-Saborit, J.M.; Harrison, R.M. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Environ. 2013, 71, 260–294. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Sankar, S.; Parikh, J.; Padmavathi, R.; Srividya, K.; Venugopal, V.; Prasad, S.; Pandey, V.L. Daily average exposures to respirable particulate matter from combustion of biomass fuels in rural households of southern India. Environ. Health Perspect. 2002, 110, 1069–1075. [Google Scholar] [CrossRef]
- Bodor, M.; Ceoromila, A.; Bașliu, V. Morphological and Chemical Characterization of Particulate Matter from an Indoor Measuring Campaign. Sustainability 2022, 14, 11621. [Google Scholar] [CrossRef]
- Budhavant, K.B.; Gawhane, R.D.; Rao, P.S.P.; Nair, H.R.C.R.; Safai, P.D. Physico-chemical characterization and sink mechanism of atmospheric aerosols over South-west India. J. Atmos. Chem. 2020, 77, 17–33. [Google Scholar] [CrossRef]
- Fatima, S.; Mishra, S.K.; Ahlawat, A.; Dimri, A.P. Physico-Chemical Properties and Deposition Potential of PM2.5 during Severe Smog Event in Delhi, India. Int. J. Environ. Res. Public Health 2022, 19, 15387. [Google Scholar] [CrossRef] [PubMed]
- Karin, P.; Koko, P.; Charoenphonphanich, C.; Chollacoop, N.; Hanamura, K. Physicochemical Characterization of Diesel Engine’s Soot and Metal Oxide Ash Nanoparticles Using Electron Microscopy, EDS and TGA. Emiss. Control. Sci. Technol. 2021, 7, 91–104. [Google Scholar] [CrossRef]
- Oo, H.M.; Karin, P.; Chollacoop, N.; Hanamura, K. Physicochemical characterization of forest and sugarcane leaf combustion’s particulate matters using electron microscopy, EDS, XRD and TGA. J. Environ. Sci. 2021, 99, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Zeraati-Rezaei, S.; Alam, M.S.; Xu, H.; Beddows, D.C.; Harrison, R.M. Size-resolved physico-chemical characterization of diesel exhaust particles and efficiency of exhaust aftertreatment. Atmos. Environ. 2020, 222, 117021. [Google Scholar] [CrossRef]
- Fanizza, C.; De Berardis, B.; Ietto, F.; Soggiu, M.E.; Schirò, R.; Inglessis, M.; Ferdinandi, M.; Incoronato, F. Analysis of major pollutants and physico-chemical characteristics of PM2.5 at an urban site in Rome. Sci. Total Environ. 2018, 616–617, 1457–1468. [Google Scholar] [CrossRef]
- Cachon, F.B.; Cazier, F.; Verdin, A.; Dewaele, D.; Genevray, P.; Delbende, A.; Ayi-Fanou, L.; Aïssi, F.; Sanni, A.; Courcot, D. Physicochemical Characterization of Air Pollution Particulate Matter (PM2.5 and PM>2.5) in an Urban Area of Cotonou, Benin. Atmosphere 2023, 14, 201. [Google Scholar] [CrossRef]
- Parent, P.; Laffon, C.; Trillaud, V.; Grauby, O.; Ferry, D.; Limoges, A.; Missamou, T.; Piazzola, J. Physicochemical Characterization of Aerosols in the Coastal Zone: Evidence of Persistent Carbon Soot in the Marine Atmospheric Boundary Layer (MABL) Background. Atmosphere 2023, 14, 291. [Google Scholar] [CrossRef]
- Gogoi, D.; Sazid, A.; Bora, J.; Deka, P.; Balachandran, S.; Hoque, R.R. Particulate matter exposure in biomass-burning homes of different communities of Brahmaputra Valley. Environ. Monit. Assess. 2021, 193, 856. [Google Scholar] [CrossRef] [PubMed]
- Massey, D.D.; Kulshrestha, A.; Taneja, A. Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmos. Environ. 2013, 67, 278–286. [Google Scholar] [CrossRef]
- Indu, G.; Shiva, N.S.; Mahesh, P.A. Indoor air pollution in rural south Indian kitchens from biomass-fuel usage and the predicted lung deposition in women. Atmos. Environ. 2024, 336, 120732. [Google Scholar] [CrossRef]
- Census India, Office of the Registrar General & Census Commissioner, India Ministry of Home Affairs, Government of India. 2011. Available online: https://censusindia.gov.in/census.website/data/population-finder (accessed on 14 February 2021).
- O’Donnell, H.; Montgomery, T.; Corn, M. Routine assessment of the particle size-weight distribution of urban aerosols. Atmos. Environ. (1967) 1970, 4, 1–7. [Google Scholar] [CrossRef]
- Agarwal, S.; Mandal, P.; Srivastava, A. Quantification and Characterization of Size-segregated Bioaerosols at Municipal Solid Waste Dumping Site in Delhi. Procedia Environ. Sci. 2016, 35, 400–407. [Google Scholar] [CrossRef]
- Lindsley, W.G.; Green, B.J.; Blachere, F.M.; Martin, S.B.; Law, B.F.; Jensen, P.A.; Schafer, M.P. Chapter BA: Sampling and Characterization of Bioaerosols. In NIOSH Manual of Analytical Methods (NMAM), 5th ed.; NIOSH: Washington, DC, USA; pp. BA1–BA115.
- Liu, Y.; Sun, B.; Tajcmanova, L.; Liu, C.; Wu, J. Effect of carbon residues structures on burnout characteristic by FTIR and Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 272, 120947. [Google Scholar] [CrossRef]
- Xu, J.; He, Q.; Xiong, Z.; Yu, Y.; Zhang, S.; Hu, X.; Jiang, L.; Su, S.; Hu, S.; Wang, Y.; et al. Raman spectroscopy as a versatile tool for investigating thermochemical processing of coal, biomass, and wastes: Recent advances and future perspectives. Energy Fuels 2020, 35, 2870–2913. [Google Scholar] [CrossRef]
- Dychalska, A.; Popielarski, P.; Franków, W.; Fabisiak, K.; Paprocki, K.; Szybowicz, M. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci. 2015, 33, 799–805. [Google Scholar] [CrossRef]
- Marina-Montes, C.; Pérez-Arribas, L.V.; Anzano, J.; de Vallejuelo, S.F.-O.; Aramendia, J.; Gómez-Nubla, L.; de Diego, A.; Madariaga, J.M.; Cáceres, J.O. Characterization of atmospheric aerosols in the Antarctic region using Raman Spectroscopy and Scanning Electron Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120452. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Chen, L.-W.A. Summary of Organic and Elemental Carbon/Black Carbon Analysis Methods and Intercomparisons. Aerosol Air Qual. Res. 2005, 5, 65–102. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Paredes-Miranda, G.; Chang, M.-C.O.; Trimble, D.; Fung, K.K.; Zhang, H.; Yu, J.Z. Refining temperature measures in thermal/optical carbon analysis. Atmos. Chem. Phys. 2005, 5, 2961–2972. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 2007, 57, 1014–1023. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Chow, J.C.; Wang, X.L.; Robles, J.A.; Sumlin, B.J.; Lowenthal, D.H.; Zimmermann, R.; Watson, J.G. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos. Meas. Tech. 2015, 8, 451–461. [Google Scholar] [CrossRef]
- Chow, J.C.; Wang, X.; Sumlin, B.J.; Gronstal, S.B.; Chen, L.-W.A.; Trimble, D.L.; Kohl, S.D.; Mayorga, S.R.; Riggio, G.; Hurbain, P.R.; et al. Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol Air Qual. Res. 2015, 15, 1145–1159. [Google Scholar] [CrossRef]
- U.S.EPA, IO Compendium Method IO-3.1: Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air: Selection, Preparation and Extraction of Filter Material, U.S.EPA, Cincinnati, OH. 1999. Available online: https://www.epa.gov/esam/epa-io-inorganic-compendium-method-io-31-selection-preparation-and-extraction-filter-material (accessed on 21 June 2024).
- U.S.EPA, IO Compendium Method IO-3.4: Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air: Determination of Metals in Ambient Particulate Matter using Inductively Coupled Plasma (ICP) Spectroscopy, U.S.EPA, Cincinnati, OH. 1999. Available online: https://www.epa.gov/amtic/compendium-methods-determination-inorganic-compounds-ambient-air (accessed on 21 June 2024).
- Ministry of the Environment. Analytical Methods. In Standard Guidelines for the Environmental Monitoring of Chemicals; Ministry of the Environment, Government of Japan: Tokyo, Japan, 2002; pp. 41–130. [Google Scholar]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Toxicological Profile for Polycyclic Aromatic Hydrocarbons. 1995. Available online: https://www.ncbi.nlm.nih.gov/books/NBK598190/ (accessed on 21 June 2024).
- Khobragade, P.P.; Ahirwar, A.V. Chemical and morphological characterization of PM2.5 samples collected over an urban industrial region Raipur, Chhattisgarh. Acta Geophys. 2023, 71, 3057–3076. [Google Scholar] [CrossRef]
- Wang, J.; Tu, J.; Lei, H.; Zhu, H. The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries. RSC Adv. 2019, 9, 38990–38997. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hu, Y.; Chen, J.; Ma, Z.; Ye, X.; Yang, X.; Wang, L.; Wang, X.; Mellouki, A. Physiochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity. Atmos. Environ. 2016, 140, 94–105. [Google Scholar] [CrossRef]
- Siddique, R. Wood Ash. In Waste Materials and By-Products in Concrete; Springer: Berlin/Heidelberg, Germany, 2008; pp. 303–321. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Mukhola, M.S.; Mokgobu, M.I. Health risk analysis of elemental components of an industrially emitted respirable particulate matter in an urban area. Int. J. Environ. Res. Public Health 2021, 18, 3653. [Google Scholar] [CrossRef] [PubMed]
Element | Weight % | |
---|---|---|
PM | Ash | |
C | 6.62 | 8.50 |
O | 44.08 | 51.22 |
Na | 0.98 | 2.03 |
Mg | - | 3.35 |
Si | 48.32 | 20.42 |
P | - | 1.26 |
S | - | 0.96 |
Cl | - | 0.61 |
K | - | 4.19 |
Ca | - | 6.33 |
Br | - | 1.13 |
Total: | 100 | 100 |
Elemental Concentration (µg) | PM (Biomass Burning) | PM (Cooking) | Ash |
---|---|---|---|
Ag | 0.35 | 2.94 | 0.02 |
Al | 8.54 | 3.87 | 1.48 |
As | 0.89 | 0.41 | - |
Ba | 1.01 | 0.30 | 0.36 |
Ca | 59.18 | 31.47 | 350.05 |
Cd | 0.02 | - | - |
Co | 0.02 | - | 0.01 |
Cr | 0.29 | 0.30 | 0.02 |
Cu | 0.50 | 0.15 | 0.07 |
Fe | 17.66 | 8.21 | 2.32 |
Hg | - | 1.28 | - |
In | 0.26 | 0.17 | - |
La | 0.02 | - | 0.10 |
Mg | 5.88 | 2.66 | 31.50 |
Mn | 1.01 | 0.14 | 0.18 |
Mo | 0.18 | 0.05 | 0.02 |
Ni | - | 0.09 | - |
P | 11.42 | 4.01 | 23.79 |
Pb | 1.08 | 0.18 | - |
Pd | 0.03 | - | - |
Se | - | - | 0.16 |
Sn | - | 0.57 | - |
Zn | 7.71 | 2.84 | 0.34 |
Zr | 0.30 | 0.03 | 0.01 |
Legend | |||
Highest | Moderate | Lowest |
Compounds | Contents Included |
---|---|
Benzene derivatives | Benzaldehyde, indole, phenyl, benzamides, naphthalene derivatives, quinone. |
Esters | Esters (acid derivatives). |
Ethers | Ethers such as pentabromodiphenyl ether. |
Ketones | Benzene substituted, ketones. |
Nitrogenous compounds | N-derivatives. |
Phosphorous compounds | Compounds with attached phosphorous. |
Sulphurous compounds | Compounds with attached sulphur. |
TMS | Tetramethyl silanes and its derivatives. |
Others | Amides, amines, inorganic compounds, acetates, acids, alkanes, aldehydes, chlorinated compounds, carbonyl compounds, furans, urea, and metal-organics with molybdenum, and osmium. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indu, G.; Saragur Madanayak, S.N.; Ball, R.J. Physico-Chemical Characterisation of Particulate Matter and Ash from Biomass Combustion in Rural Indian Kitchens. Air 2025, 3, 23. https://doi.org/10.3390/air3030023
Indu G, Saragur Madanayak SN, Ball RJ. Physico-Chemical Characterisation of Particulate Matter and Ash from Biomass Combustion in Rural Indian Kitchens. Air. 2025; 3(3):23. https://doi.org/10.3390/air3030023
Chicago/Turabian StyleIndu, Gopika, Shiva Nagendra Saragur Madanayak, and Richard J. Ball. 2025. "Physico-Chemical Characterisation of Particulate Matter and Ash from Biomass Combustion in Rural Indian Kitchens" Air 3, no. 3: 23. https://doi.org/10.3390/air3030023
APA StyleIndu, G., Saragur Madanayak, S. N., & Ball, R. J. (2025). Physico-Chemical Characterisation of Particulate Matter and Ash from Biomass Combustion in Rural Indian Kitchens. Air, 3(3), 23. https://doi.org/10.3390/air3030023