Uinta Basin Snow Shadow: Impact of Snow-Depth Variation on Winter Ozone Formation
Abstract
1. Introduction
- Moist flow encounters higher terrain and is forced upward.
- Rising air parcels cool, and resulting condensed water liquid precipitates predominately on the windward side.
- This process depletes air parcels of moisture.
- When drier air descends on the leeward side, it warms adiabatically, further drying air parcels.
- Hence, less moisture is available for precipitation, and the subsiding, dry air creates a “shadow” of reduced snowfall or rainfall.
- Do we find evidence of a Uinta Basin snow shadow? This would appear as less snow in the lee of the Wasatch than on the windward slopes, the challenge of a fair comparison in varying terrain notwithstanding;
- Do we see an impact of spatial snowfall variations on ozone levels? A greater extent of snow coverage would provide conditions associated with an unhealthy buildup of ozone. If less snow falls in the western extent of the Basin, does this restrict ozone levels?;
- How certain are our data in rural, complex terrain? High uncertainty reduces the rigor of prediction, evaluation, and conceptual models. Data from in situ meteorological and chemistry sensors are sparse in comparison to urban regions, and Doppler radar data poorly samples the Basin. This is inherent noise.
2. Background
- Equatorward enough to receive sufficient sunlight for photolysis;
- Poleward enough to preserve snow (less insolation and lower temperatures);
- The higher the elevation, the stronger the insolation;
- Complex terrain cold-pool formation in mountain valleys and basins;
- Precursors to ozone (i.e., volatile organics; NOx).
3. Data and Methods
3.1. Study Area
3.2. Cases and Data
3.3. Data Collection
3.3.1. Doppler Radar
3.3.2. In Situ Meteorological Sensors
3.3.3. Numerical Weather Prediction and RTMA Data
3.4. Filtering and Post-Processing
4. Results
4.1. Case 1: Late February 2023
4.2. Case 2: Late January 2025
5. Conclusions
- Poor estimates of precipitation accumulation from RTMA are insufficiently corrected by a sparse network of radar and in situ observations;
- In summer, cloud base may extend to 4 km AGL; hence, beams can sample precipitation that may evaporate or sublimate between this level and the surface (virga), which results in overestimation from radar returns;
- In winter, cloud bases are within the lowest kilometer, meaning any precipitation is unlikely to be sampled despite a lower likelihood of virga from the shorter, colder path to the surface.
5.1. Future Work
- Data analysis over a longer time period;
- Low-cost snow-depth sensors e.g., [69] that reporting live onto national networks;
- Analysis of ozone concentration and snowfall amounts for weather systems with different prevailing wind directions;
- Identification of new observation sites that would most benefit ozone and snow prediction; see, e.g., [70];
- Methods to extract information (despite trends in industry operations and snowfall intermittency) with further statistical processing [71].
5.2. Artificial Intelligence Statement
OpenAI GPT o4-mini-high | Python coding assistance |
OpenAI GPT o3 | Research brainstorming |
OpenAI Codex | LaTeX typesetting fixes |
Claude Opus 4.x | Python visualization assistance |
DeepSeek R1 1776 | Information collation |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NOx | Nitrogen oxides |
VOCs | Volatile organic compounds |
BRC | Bingham Research center |
USU | Utah State University |
NEXRAD | Next Generation Radar |
KMTX | Promentary Point (Salt Lake City) NEXRAD site |
KGTX | Grand Junction NEXRAD site |
KVEL | Vernal Regional Airport |
KSLC | Salt Lake International Airport |
EPA | Environmental Protection Agency |
NAAQS | National Ambient Air Quality Standards |
NOAA | National Oceans and Atmospheric Agency |
UFS | Unified Forecasting System |
RTMA | Real-Time Mesoscale Analysis |
HRRR | High Resolution Rapid Refresh (model) |
AQM | Air Quality Model (NOAA UFS) |
AGL | Above Ground Level |
Appendix A
Appendix A.1. Grid Definition
Appendix A.2. Beam Height Computation
References
- Neemann, E.M.; Crosman, E.T.; Horel, J.D.; Avey, L. Simulations of a cold-air pool associated with elevated wintertime ozone in the Uintah Basin, Utah. Atmos. Chem. Phys. 2015, 15, 135–151. [Google Scholar] [CrossRef]
- Lyman, S.; Tran, T. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A. Atmos. Environ. 2015, 123, 156–165. [Google Scholar] [CrossRef]
- Schnell, R.C.; Oltmans, S.J.; Neely, R.R.; Endres, M.S.; Molenar, J.V.; White, A.B. Rapid photochemical production of ozone at high concentrations in a rural site during winter. Nat. Geosci. 2009, 2, 120–122. [Google Scholar] [CrossRef]
- Schnell, R.C.; Johnson, B.J.; Oltmans, S.J.; Cullis, P.; Sterling, C.; Hall, E.; Jordan, A.; Helmig, D.; Petron, G.; Ahmadov, R.; et al. Quantifying wintertime boundary layer ozone production from frequent profile measurements in the Uinta Basin, UT, oil and gas region. J. Geophys. Res. 2016, 121, 11038–11054. [Google Scholar] [CrossRef]
- Edwards, P.M.; Brown, S.S.; Roberts, J.M.; Ahmadov, R.; Banta, R.M.; deGouw, J.A.; Dubé, W.P.; Field, R.A.; Flynn, J.H.; Gilman, J.B.; et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature 2014, 514, 351–354. [Google Scholar] [CrossRef]
- Jones, C.; Tran, H.; Tran, T.; Lyman, S. Assimilating satellite-derived snow cover and albedo data to improve 3-D weather and photochemical models. Atmosphere 2024, 15, 954. [Google Scholar] [CrossRef]
- Mansfield, M.L. Statistical analysis of winter ozone exceedances in the Uintah Basin, Utah, USA. J. Air Waste Manag. Assoc. 2018, 68, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Lawson, J.R.; Lyman, S.N. A preliminary fuzzy inference system for predicting atmospheric ozone in an intermountain basin. Air 2024, 2, 337–361. [Google Scholar] [CrossRef]
- Xu, L.; Crounse, J.D.; Vasquez, K.T.; Allen, H.; Wennberg, P.O.; Bourgeois, I.; Brown, S.S.; Campuzano-Jost, P.; Coggon, M.M.; Crawford, J.H.; et al. Ozone chemistry in western U.S. wildfire plumes. Sci. Adv. 2021, 7, eabl3648. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Cooper, O.R.; Horowitz, L.W.; Langford, A.O.; Levy, H.; Johnson, B.J.; Naik, V.; Oltmans, S.J.; Senff, C.J. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J. Geophys. Res. Atmos. 2012, 117, A41C-0099. [Google Scholar] [CrossRef]
- Mansfield, M.L.; Hall, C.F. A survey of valleys and basins of the western United States for the capacity to produce winter ozone. J. Air Waste Manag. Assoc. 2018, 68, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Wang, Y.; Li, X.; Ji, D.; Hsu, S.; Goa, X. Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmos. Chem. Phys. 2012, 12, 2757–2776. [Google Scholar] [CrossRef]
- Li, G.; Bei, N.; Cao, J.; Wu, J.; Long, X.; Feng, T.; Dai, W.; Liu, S.; Zhang, Q.; Tie, X. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: Observations and source attributions. Atmos. Chem. Phys. 2017, 17, 2759–2774. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Qiu, Y.; Shen, L.; Zhai, S.; Bates, K.H.; Sulprizio, M.P.; Song, S.; Lu, X.; et al. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc. Natl. Acad. Sci. USA 2021, 118, e2015797118. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Demerjian, K. The sensitivity of computed ozone concentrations to U.V. radiation in the Los Angeles area. Atmos. Environ. 1976, 10, 459–468. [Google Scholar] [CrossRef]
- He, H.; Li, Z.; Dickerson, R.R. Ozone pollution in the North China Plain during the 2016 Air Chemistry Research in Asia (ARIAs) campaign: Observations and a modeling study. Air 2024, 2, 178–208. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Ninneman, M.; Nguyen, L.; Lee, H.; Hu, L.; Ketcherside, D.; Jin, L.; Cope, E.; Lyman, S.; Jones, C.; et al. Key results from the salt lake regional smoke, ozone and aerosol study (SAMOZA). J. Air Waste Manage. Assoc. 2024, 74, 163–180. [Google Scholar] [CrossRef]
- Marsavin, A.; Pan, D.; Pollack, I.B.; Zhou, Y.; Sullivan, A.P.; Naimie, L.E.; Benedict, K.B.; Juncosa Calahoranno, J.F.; Fischer, E.V.; Prenni, A.J.; et al. Summertime ozone production at Carlsbad caverns National Park, New Mexico: Influence of oil and natural gas development. J. Geophys. Res. 2024, 129, e2024JD040877. [Google Scholar] [CrossRef]
- Balmes, J.R. The role of ozone exposure in the epidemiology of asthma. Environ. Health Perspect. 1993, 101 (Suppl. 4), 219–224. [Google Scholar] [CrossRef]
- McConnell, R.; Berhane, K.; Gilliland, F.; London, S.J.; Islam, T.; Gauderman, W.J.; Avol, E.; Margolis, H.G.; Peters, J.M. Asthma in exercising children exposed to ozone: A cohort study. Lancet 2002, 359, 386–391. [Google Scholar] [CrossRef]
- Zu, K.; Shi, L.; Prueitt, R.L.; Liu, X.; Goodman, J.E. Critical review of long-term ozone exposure and asthma development. Inhal. Toxicol. 2018, 30, 99–113. [Google Scholar] [CrossRef]
- Bingham Research Center; Lyman, S.; Jones, C.; Lawson, J.; Mansfield, M.; David, L.; O’Neil, T.; Holmes, B. 2023 Annual Report; Bingham Research Center: Vernal, UT, USA, 2023. [Google Scholar] [CrossRef]
- Whiteman, C.D. Mountain Meteorology: Fundamentals and Applications; Oxford University Press: Oxford, MS, USA, 2000; p. 355. [Google Scholar]
- Tran, T.; Tran, H.; Mansfield, M.; Lyman, S.; Crosman, E. Four dimensional data assimilation (FDDA) impacts on WRF performance in simulating inversion layer structure and distributions of CMAQ-simulated winter ozone concentrations in Uintah Basin. Atmos. Environ. 2018, 177, 75–92. [Google Scholar] [CrossRef]
- Markowski, P.; Richardson, Y. Mesoscale Meteorology in Mid-latitudes; Wiley-Blackwell: Hoboken, NJ, USA, 2010; p. 407. [Google Scholar]
- Stockham, A.J.; Schultz, D.M.; Fairman, J.G.; Draude, A.P. Quantifying the Rain-Shadow Effect: Results from the Peak District, British Isles. Bull. Am. Meteorol. Soc. 2017, 99, 777–790. [Google Scholar] [CrossRef]
- Van den Hende, C.; Van Schaeybroeck, B.; Nyssen, J.; Van Vooren, S.; Van Ginderachter, M.; Termonia, P. Analysis of rain-shadows in the Ethiopian Mountains using climatological model data. Clim. Dyn. 2021, 56, 1663–1679. [Google Scholar] [CrossRef]
- American Meteorological Society. Rain Shadow; American Meteorological Society: Boston, MA, USA, 2024. [Google Scholar]
- Hoinka, K.P.; Tafferner, A.; Weber, L. The ‘miraculous’ föhn in Bavaria of January 1704. Weather 2009, 64, 9–14. [Google Scholar] [CrossRef]
- Bennie, J.J.; Wiltshire, A.J.; Joyce, A.N.; Clark, D.; Lloyd, A.R.; Adamson, J.; Parr, T.; Baxter, R.; Huntley, B. Characterising inter-annual variation in the spatial pattern of thermal microclimate in a UK upland using a combined empirical–physical model. Agric. For. Meteorol. 2010, 150, 12–19. [Google Scholar] [CrossRef]
- Strauss, S. An ill wind: The Foehn in Leukerbad and beyond. J. R. Anthropol. Inst. 2007, 13, S165–S181. [Google Scholar] [CrossRef]
- Kochanski, A.K.; Jenkins, M.A.; Mandel, J.; Beezley, J.D.; Krueger, S.K. Real time simulation of 2007 Santa Ana fires. For. Ecol. Manage. 2013, 294, 136–149. [Google Scholar] [CrossRef]
- Raphael, M.N. The Santa Ana Winds of California. Earth Interact. 2003, 7, 1–13. [Google Scholar] [CrossRef]
- Seydi, S.T. Assessment of the January 2025 Los Angeles County wildfires: A multi-modal analysis of impact, response, and population exposure. arXiv 2025, arXiv:2501.17880. [Google Scholar]
- Schultz, D.M.; Steenburgh, W.J.; Trapp, R.J.; Horel, J.; Kingsmill, D.E.; Dunn, L.B.; Rust, W.D.; Cheng, L.; Bansemer, A.; Cox, J.; et al. Understanding Utah Winter Storms. Bull. Am. Meteorol. Soc. 2002, 83, 189–210. [Google Scholar] [CrossRef]
- Steenburgh, W.; Halvorson, S.F.; Onton, D.J. Climatology of Lake-Effect Snowstorms of the Great Salt Lake. Mon. Weather Rev. 2000, 128, 709–727. [Google Scholar] [CrossRef]
- Lawson, J.; Horel, J. Analysis of the 1 December 2011 Wasatch Downslope Windstorm. Weather Forecast. 2015, 30, 115–135. [Google Scholar] [CrossRef]
- Bestul, K.A. Analysis, Forecast Skill, and Predictability of Downslope Wind Events Along the Wasatch Front. Master’s Thesis, The University of Utah, Salt Lake City, UT, USA, 2023. [Google Scholar]
- Steenburgh, W.J.; Alcott, T.I. Secrets of the “greatest snow on earth”. Bull. Am. Meteorol. Soc. 2008, 89, 1285–1294. [Google Scholar] [CrossRef]
- Ghan, S.J.; Shippert, T.; Fox, J. Physically based global downscaling: Regional evaluation. J. Clim. 2006, 19, 429–445. [Google Scholar] [CrossRef]
- Pomeroy, J.; Gray, D.; Landine, P. The Prairie Blowing Snow Model: Characteristics, validation, operation. J. Hydrol. 1993, 144, 165–192. [Google Scholar] [CrossRef]
- Essery, R.; Li, L.; Pomeroy, J. A distributed model of blowing snow over complex terrain. Hydrol. Processes 1999, 13, 2423–2438. [Google Scholar] [CrossRef]
- Franz, K.J.; Hogue, T.S.; Sorooshian, S. Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts. J. Hydrol. 2008, 360, 48–66. [Google Scholar] [CrossRef]
- Franz, K.J.; Hogue, T.S.; Sorooshian, S. Snow model verification using ensemble prediction and operational benchmarks. J. Hydrometeorol. 2008, 9, 1402–1415. [Google Scholar] [CrossRef]
- Veals, P.G.; Pletcher, M.; Schwartz, A.J.; Chase, R.J.; Harnos, K.; Correia, J.; Wessler, M.E.; Steenburgh, W.J. Predicting snow-to-liquid ratio in the mountains of the western United States. Weather Forecast. 2025; early online. [Google Scholar] [CrossRef]
- Bormann, K.J.; Westra, S.; Evans, J.P.; McCabe, M.F. Spatial and temporal variability in seasonal snow density. J. Hydrol. 2013, 484, 63–73. [Google Scholar] [CrossRef]
- Fobes, C.B. Snowfall in Maine. Geogr. Rev. 1942, 32, 245. [Google Scholar] [CrossRef]
- Decker, S.; Robinson, D. Unexpected high winds in Northern New Jersey: A downslope windstorm in modest topography. Weather Forecast. 2011, 26, 902–921. [Google Scholar] [CrossRef]
- Kusaka, H.; Suzuki, N.; Yabe, M.; Kobayashi, H. The snow-shadow effect of Sado Island on Niigata City and the coastal plain. Atmos. Sci. Lett. 2023, 24, e1182. [Google Scholar] [CrossRef]
- Ikeda, S.; Wakabayashi, R.; Izumi, K.; Kawashima, K. Study of snow climate in the Japanese Alps: Comparison to snow climate in North America. Cold Reg. Sci. Technol. 2009, 59, 119–125. [Google Scholar] [CrossRef]
- Veals, P.G.; Steenburgh, W.J.; Nakai, S.; Yamaguchi, S. Factors affecting the inland and orographic enhancement of sea-effect snowfall in the Hokuriku region of japan. Mon. Weather Rev. 2019, 147, 3121–3143. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J. Sea and Lake Breezes: A Review of Numerical Studies. Bound.-Layer Meteorol. 2010, 137, 1–29. [Google Scholar] [CrossRef]
- de Gouw, J.A.; Veefkind, J.P.; Roosenbrand, E.; Dix, B.; Lin, J.C.; Landgraf, J.; Levelt, P.F. Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 2020, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Zoogman, P.; Jacob, D.J.; Chance, K.; Liu, X.; Lin, M.; Fiore, A.; Travis, K. Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations. Atmos. Chem. Phys. 2014, 14, 6261–6271. [Google Scholar] [CrossRef]
- Jellis, D.; Bowman, K.; Rapp, A. Lifetimes of overshooting convective events using high-frequency gridded radar composites. Mon. Weather Rev. 2023, 151, 19791992. [Google Scholar] [CrossRef]
- Carbone, R.E.; Tuttle, J.D.; Ahijevych, D.A.; Trier, S.B. Inferences of Predictability Associated with Warm Season Precipitation Episodes. J. Atmos. Sci. 2002, 59, 2033–2056. [Google Scholar] [CrossRef]
- Huang, J.; Stajner, I.; Montuoro, R.; Yang, F.; Wang, K.; Huang, H.C.; Jeon, C.H.; Curtis, B.; McQueen, J.; Liu, H.; et al. Development of the next-generation air quality prediction system in the Unified Forecast System framework: Enhancing predictability of wildfire air quality impacts. Bull. Am. Meteorol. Soc. 2025; early online. [Google Scholar] [CrossRef]
- McNider, R.T.; Pour-Biazar, A. Meteorological modeling relevant to mesoscale and regional air quality applications: A review. J. Air Waste Manag. Assoc. 2020, 70, 2–43. [Google Scholar] [CrossRef]
- Tran, T.; Tran, H. Weather Research and Forecasting (WRF) Model Performance Evaluation; Technical Report, Utah State University: Salt Lake City, UT, USA, 2021. [Google Scholar]
- Matichuk, R.; Tonnesen, G.; Luecken, D.; Gilliam, R.; Napelenok, S.L.; Baker, K.R.; Schwede, D.; Murphy, B.; Helmig, D.; Lyman, S.N.; et al. Evaluation of the Community Multiscale Air Quality Model for Simulating Winter Ozone Formation in the Uinta Basin. J. Geophys. Res. D: Atmos. 2017, 122, 13545–13572. [Google Scholar] [CrossRef] [PubMed]
- De Pondeca, M.S.F.V.; Manikin, G.S.; DiMego, G.; Benjamin, S.G.; Parrish, D.F.; James Purser, R.; Wu, W.S.; Horel, J.D.; Myrick, D.T.; Lin, Y.; et al. The Real-Time Mesoscale Analysis at NOAA’s National Centers for Environmental Prediction: Current Status and Development. Weather. Forecast. 2011, 26, 593–612. [Google Scholar] [CrossRef]
- Morris, M.T.; Carley, J.R.; Colón, E.; Gibbs, A.; De Pondeca, M.S.F.V.; Levine, S. A quality assessment of the Real-Time Mesoscale Analysis (RTMA) for aviation. Weather Forecast. 2020, 35, 977–996. [Google Scholar] [CrossRef]
- Tyndall, D.; Horel, J. Impacts of Mesonet Observations on Meteorological Surface Analyses. Weather Forecast. 2013, 28, 254–269. [Google Scholar] [CrossRef]
- Knopfmeier, K.; Stensrud, D. Influence of mesonet observations on the accuracy of surface analyses generated by an ensemble Kalman filter. Weather Forecast. 2013, 28, 815–841. [Google Scholar] [CrossRef]
- Ancell, B.C.; Mass, C.F.; Cook, K.; Colman, B. Comparison of surface wind and temperature analyses from an ensemble Kalman filter and the NWS Real-Time Mesoscale Analysis system. Weather Forecast. 2014, 29, 1058–1075. [Google Scholar] [CrossRef]
- Nelson, B.R.; Prat, O.P.; Seo, D.J.; Habib, E. Assessment and Implications of NCEP Stage IV Quantitative Precipitation Estimates for Product Intercomparisons. Weather Forecast. 2016, 31, 371–394. [Google Scholar] [CrossRef]
- Pearson, R.K.; Neuvo, Y.; Astola, J.; Gabbouj, M. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
- Holder, J.; Jordan, J.; Johnson, K.; Akinremi, A.; Roberts-Semple, D. Using low-cost sensing technology to assess ambient and indoor fine particulate matter concentrations in New York during the COVID-19 lockdown. Air 2023, 1, 196–206. [Google Scholar] [CrossRef]
- Ancell, B.; Hakim, G.J. Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting. Mon. Wea. Rev. 2007, 135, 4117–4134. [Google Scholar] [CrossRef]
- Mansfield, M.L.; Hall, C.F. Statistical analysis of winter ozone events. Air Qual. Atmos. Health 2013, 6, 687–699. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrnic, D.S.; Schotland, R.M. Doppler radar and weather observations. Appl. Opt. 1994, 33, 4531. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davies, M.J.; Lawson, J.R.; O’Neil, T.; Lyman, S.N.; Zager, K.; Coxson, T.D. Uinta Basin Snow Shadow: Impact of Snow-Depth Variation on Winter Ozone Formation. Air 2025, 3, 22. https://doi.org/10.3390/air3030022
Davies MJ, Lawson JR, O’Neil T, Lyman SN, Zager K, Coxson TD. Uinta Basin Snow Shadow: Impact of Snow-Depth Variation on Winter Ozone Formation. Air. 2025; 3(3):22. https://doi.org/10.3390/air3030022
Chicago/Turabian StyleDavies, Michael J., John R. Lawson, Trevor O’Neil, Seth N. Lyman, KarLee Zager, and Tristan D. Coxson. 2025. "Uinta Basin Snow Shadow: Impact of Snow-Depth Variation on Winter Ozone Formation" Air 3, no. 3: 22. https://doi.org/10.3390/air3030022
APA StyleDavies, M. J., Lawson, J. R., O’Neil, T., Lyman, S. N., Zager, K., & Coxson, T. D. (2025). Uinta Basin Snow Shadow: Impact of Snow-Depth Variation on Winter Ozone Formation. Air, 3(3), 22. https://doi.org/10.3390/air3030022