Air Sensor Data Unifier: R-Shiny Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Development
2.2. Evaluation
3. Results
3.1. Specific User Needs
3.2. Overall Functionality
3.3. Dataset Dashboard
3.4. Format Wizard
3.5. Location Config
3.6. Data Flagging
3.7. Export Options
3.8. Feedback and Improvements So Far
3.9. Performance Examples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
API | Application Programming Interface |
AQS | Air Quality System |
ASDU | Air Sensor Data Unifier |
ASNAT | Air Sensor Network Analysis Tool |
BAM | Beta Attenuation Monitor |
°C | Degrees Celsius |
CO | Carbon monoxide |
csv | Comma-separated values |
E-BAM | Environmental-Beta Attenuation Monitor |
EPA | Environmental Protection Agency |
°F | Degrees Fahrenheit |
GIS | Geographic Information System |
hPa | Hectopascal |
JSON | JavaScript Object Notation |
KML | Keyhole Markup Language |
m/s | Meters per second |
mph | Miles per hour |
N/A | Not applicable |
NO2 | Nitrogen dioxide |
O3 | Ozone |
ORD | Office of Research and Development |
Pa | Pascals |
PM | Particulate matter |
ppb | Parts per billion |
ppm | Parts per million |
RETIGO | Real Time Geospatial Data Viewer |
tsv | Tab-separated values |
txt | Plain text files |
UNC | University of North Carolina at Chapel Hill |
U.S. | United States |
UTC | Coordinated universal time |
Wi-Fi | Wireless fidelity |
µg/m3 | Micrograms per cubic meter |
#/cm3 | Number of particles per cubic centimeter |
#/m3 | Number of particles per cubic meter |
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Pinder, R.W.; Klopp, J.M.; Kleiman, G.; Hagler, G.S.W.; Awe, Y.; Terry, S. Opportunities and challenges for filling the air quality data gap in low- and middle-income countries. Atmos. Environ. 2019, 215, 116794. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Dahiya, M.; Kumar, R.; Nanda, C. Sensors and systems for air quality assessment monitoring and management: A review. J. Environ. Manag. 2021, 289, 112510. [Google Scholar] [CrossRef]
- Rosales, C.M.; R Bratburd, J.; Diez, S.; Duncan, S.; Malings, C.; Pant, P. Open Air Quality Data Platforms for Environmental Health Research and Action. Curr. Environ. Health Rep. 2025, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- McCarron, A.; Semple, S.; Braban, C.F.; Swanson, V.; Gillespie, C.; Price, H.D. Public engagement with air quality data: Using health behaviour change theory to support exposure-minimising behaviours. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 321–331. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Malings, C.; Amegah, K.; Basart, S.; Diez, S.; Rosales, C.M.F.; Zimmerman, N.; Archer, J.-M.; Barreto, Á.; Bi, J.; Biggs, R.; et al. Integrating Low-cost Sensor Systems and Networks to Enhance Air Quality Applications; World Meteorologial Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Cleland Stephanie, E.; Wyatt Lauren, H.; Wei, L.; Paul, N.; Serre Marc, L.; West, J.J.; Henderson Sarah, B.; Rappold Ana, G. Short-Term Exposure to Wildfire Smoke and PM2.5 and Cognitive Performance in a Brain-Training Game: A Longitudinal Study of U.S. Adults. Environ. Health Perspect. 2022, 130, 067005. [Google Scholar] [CrossRef] [PubMed]
- Stampfer, O.; Farquhar, S.; Seto, E.; Karr, C.J. School and childcare facility air quality decision-makers’ perspectives on using low-cost sensors for wildfire smoke response. BMC Public Health 2023, 23, 2167. [Google Scholar] [CrossRef]
- Stampfer, O.; Zuidema, C.; Allen, R.W.; Fox, J.; Sampson, P.; Seto, E.; Karr, C.J. Practical considerations for using low-cost sensors to assess wildfire smoke exposure in school and childcare settings. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 157–168. [Google Scholar] [CrossRef]
- Mangin, T.; Barrett, Z.; Palmer, Z.; Tang, D.; Nielson, S.; Sleeth, D.; Kelly, K. Understanding the effect of outdoor pollution episodes and HVAC type on indoor air quality. Build. Environ. 2025, 278, 112978. [Google Scholar] [CrossRef]
- Yang, L.H.; Hagan, D.H.; Rivera-Rios, J.C.; Kelp, M.M.; Cross, E.S.; Peng, Y.; Kaiser, J.; Williams, L.R.; Croteau, P.L.; Jayne, J.T.; et al. Investigating the Sources of Urban Air Pollution Using Low-Cost Air Quality Sensors at an Urban Atlanta Site. Environ. Sci. Technol. 2022, 56, 7063–7073. [Google Scholar] [CrossRef]
- Chu, M.; Brimblecombe, P.; Wei, P.; Liu, C.-H.; Du, X.; Sun, Y.; Yam, Y.S.; Ning, Z. Kerbside NOx and CO concentrations and emission factors of vehicles on a busy road. Atmos. Environ. 2022, 271, 118878. [Google Scholar] [CrossRef]
- Carruthers, D.; Stidworthy, A.; Clarke, D.; Dicks, J.; Jones, R.; Leslie, I.; Popoola, O.A.M.; Seaton, M. Urban emission inventory optimisation using sensor data, an urban air quality model and inversion techniques. Int. J. Environ. Pollut. 2019, 66, 252–266. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Clements, A.; Mocka, C.; Barrette, C.; Bittner, A.; Champion, W.; Gantt, B.; Good, E.; Holder, A.; Hillis, B.; et al. Air Quality Sensor Experts Convene: Current Quality Assurance Considerations for Credible Data. ACS EST Air 2024, 1, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Boghossian, B.D.; Cocker, D.; Polidori, A. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos. Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.; Feenstra, B.; Papapostolou, V.; Zhang, H.; Kuang, M.; Der Boghossian, B.; Polidori, A. Field and laboratory performance evaluations of 28 gas-phase air quality sensors by the AQ-SPEC program. Atmos. Environ. 2020, 220, 117092. [Google Scholar] [CrossRef]
- Hagler, G.; Clements, A. Air sensor data—What are the current technical practices and unmet needs of the EPA, state, local, and tribal air monitoring agencies? In Proceedings of the National Ambient Air Monitoring Conference; Pittsburgh, PA, USA, 9–13 August 2020. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?LAB=CEMM&dirEntryID=349515 (accessed on 26 August 2025).
- Clements, A.; Hagler, G.; Brown, R.; Garver, D.; Evans, R.; Barrette, S.; McMahon, E.; Vallano, D.; Judge, R.; Waldo, S.; et al. Understanding the air sensor data management, visualization, and analysis needs of government air quality organizations in the United States. In Proceedings of the National Ambient Air Monitoring Conference, Pittsburgh, PA, USA, 22–25 August 2022. [Google Scholar]
- Conner, T.; Clements, A.; Williams, R.; Srivastava, M.; Kaufman, A. Macro Analysis Tool—MAT. 2018. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=340520 (accessed on 26 August 2025).
- Clements, A. EPA Tools and Resources Webinar: Web-Based Data Visualization of Air Sensor Data with RETIGO Version 4; Tools and Resources Webinar; 2024. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?LAB=ORD&dirEntryID=361934 (accessed on 26 August 2025).
- Kelly, C.; Fawkes, J.; Habermehl, R.; de Ferreyro Monticelli, D.; Zimmerman, N. PLUME Dashboard: A free and open-source mobile air quality monitoring dashboard. Environ. Model. Softw. 2023, 160, 105600. [Google Scholar] [CrossRef]
- Collier-Oxandale, A.; Feenstra, B.; Papapostolou, V.; Polidori, A. AirSensor v1.0: Enhancements to the open-source R package to enable deep understanding of the long-term performance and reliability of PurpleAir sensors. Environ. Model. Softw. 2022, 148, 105256. [Google Scholar] [CrossRef]
- Feenstra, B.; Collier-Oxandale, A.; Papapostolou, V.; Cocker, D.; Polidori, A. The AirSensor open-source R-package and DataViewer web application for interpreting community data collected by low-cost sensor networks. Environ. Model. Softw. 2020, 134, 104832. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Díaz, J.J.; Mura, I.; Franco, J.F.; Akhavan-Tabatabaei, R. aiRe—A web-based R application for simple, accessible and repeatable analysis of urban air quality data. Environ. Model. Softw. 2021, 138, 104976. [Google Scholar] [CrossRef]
- MacDonald, M.K.; Champion, W.M.; Thoma, E.D. SENTINEL: A Shiny app for processing and analysis of fenceline sensor data. Environ. Model. Softw. 2025, 189, 106462. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, B.; Tong, C.; Shi, Z. Aqpet—An R package for air quality policy evaluation. Environ. Model. Softw. 2024, 177, 106052. [Google Scholar] [CrossRef]
- Kumar, M.; Frederick, S.G.; Barkjohn, K.K.; Clements, A.L. Sensortoolkit—A Python Library for Standardizing the Ingestion, Analysis, and Reporting of Air Sensor Data for Performance Evaluation. Preprints 2025, 2025081172. [Google Scholar] [CrossRef]
- Duvall, R.; Clements, A.; Barkjohn, K.; Kumar, M.; Greene, D.; Dye, T.; Papapostolou, V.; Mui, W.; Kuang, M. NO2, CO, and SO2 Supplement to the 2021 Report on Performance Testing Protocols, Metrics, and Target Values for Ozone Air Sensors; US Environmental Protection Agency: Washington, DC, USA, 2024. [Google Scholar]
- Duvall, R.; Clements, A.; Barkjohn, K.; Kumar, M.; Greene, D.; Dye, T.; Papapostolou, V.; Mui, W.; Kuang, M. PM10 Supplement to the 2021 Report on Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors; US Environmental Protection Agency: Washington, DC, USA, 2023. [Google Scholar]
- Duvall, R.; Clements, A.; Hagler, G.; Kamal, A.; Kilaru, V.; Goodman, L.; Frederick, S.; Barkjohn, K.J.; VonWald, I.; Greene, D.; et al. Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications; EPA/600/R-20/280; U.S. Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2021. [Google Scholar]
- Duvall, R.; Clements, A.; Hagler, G.; Kamal, A.; Kilaru, V.; Goodman, L.; Frederick, S.; Barkjohn, K.J.; VonWald, I.; Greene, D.; et al. Performance Testing Protocols, Metrics, and Target Values for Ozone Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications; EPA/600/R-20/279; US Environmental Protection Agency: Washington, DC, USA, 2021. [Google Scholar]
- Mahajan, S. Vayu: An Open-Source Toolbox for Visualization and Analysis of Crowd-Sourced Sensor Data. Sensors 2021, 21, 7726. [Google Scholar] [CrossRef]
- Prados, A.I.; Leptoukh, G.; Lynnes, C.; Johnson, J.; Rui, H.; Chen, A.; Husar, R.B. Access, Visualization, and Interoperability of Air Quality Remote Sensing Data Sets via the Giovanni Online Tool. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 359–370. [Google Scholar] [CrossRef]
- Barkjohn, K.K.; Plessel, T.; Yang, J.; Pandey, G.; Xu, Y.; Krabbe, S.; Seppanen, C.; Bichler, R.; Tran, H.N.Q.; Arunachalam, S.; et al. Air Sensor Network Analysis Tool: R-Shiny Application. Preprints 2025, 2025071821. [Google Scholar] [CrossRef]
- Chang, W.; Cheng, J.; Allaire, J.; Sievert, C.; Schloerke, B.; Xie, Y.; Allen, J.; McPherson, J.; Dipert, A.; Borges, B. Shiny: Web Application Framework for R; 2025. R package version 1.11.1.9000. Available online: https://github.com/rstudio/shiny (accessed on 26 August 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Attali, D. shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds; 2022. R package version 2.1.0. Available online: https://cran.r-project.org/web/packages/shinyjs/index.html (accessed on 26 August 2025).
- Sievert, C.; Cheng, J.; Aden-Buie, G. bslib: Custom ‘Bootstrap’ ‘Sass’ Themes for ‘Shiny’ and ‘Rmarkdown’; 2025. R package version 0.9.0. Available online: https://github.com/rstudio/bslib (accessed on 26 August 2025).
- Xie, Y.; Cheng, J.; Tan, X. DT: A Wrapper of the JavaScript Library ‘DataTables’ 2025. R package version 0.33.3. Available online: https://github.com/rstudio/dt (accessed on 26 August 2025).
- Johnson Barkjohn, K.; Holder, A.; Clements, A.L.; Frederick, S.; Evans, R. Sensor data cleaning and correction: Application on the AirNow Fire and Smoke Map. In Proceedings of the American Association for Aerosol Research Conference, Albuquerque, NM, USA, 18–22 October 2021. [Google Scholar]
- Barkjohn, K.K.; Yaga, R.; Thomas, B.; Schoppman, W.; Docherty, K.S.; Clements, A.L. Evaluation of Long-Term Performance of Six PM2.5 Sensor Types. Sensors 2025, 25, 1265. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-T.; Chan, Y.-W.; Liu, J.-C.; Lou, B.-S. An implementation of cloud-based platform with R packages for spatiotemporal analysis of air pollution. J. Supercomput. 2020, 76, 1416–1437. [Google Scholar] [CrossRef]
- Kasprzak, P.; Mitchell, L.; Kravchuk, O.; Timmins, A. Six Years of Shiny in Resear ears of Shiny in Research:Collaborative Development of Web Tools in R. R J. 2020, 12, 155-162.–162. [Google Scholar] [CrossRef]
- Del Ponte, A.; Ang, L.; Li, L.; Lim, N.; Tam, W.W.S.; Seow, W.J. Change of air quality knowledge, perceptions, attitudes, and practices during and post-wildfires in the United States. Sci. Total Environ. 2022, 836, 155432. [Google Scholar] [CrossRef] [PubMed]
- Oltra, C.; Sala, R.; Boso, À.; Asensio, S.L. Public engagement on urban air pollution: An exploratory study of two interventions. Environ. Monit. Assess. 2017, 189, 296. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, B.J.; Kaufman, A.; Rivers, L.; Schulte, K.; Hagler, G.; Clougherty, J.; Cascio, W.; Costa, D. Understanding social and behavioral drivers and impacts of air quality sensor use. Sci. Total Environ. 2018, 621, 886–894. [Google Scholar] [CrossRef]
Manufacturer | Model | File Format | Header and Meta Data Format |
---|---|---|---|
Aeroqual (Auckland, New Zealand) | AQY | csv | 5 rows of metadata, Row 7 header |
Aeroqual (Auckland, New Zealand) | AQY-R | csv | Same as AQY |
Airly Inc. (Palo Alto, CA, USA) | Airly | csv | Row 1 header |
APIS (Grants Pass, OR, USA) | APIS | csv | Row 1 header |
Applied Particle Technology (Boise, ID, USA) | Maxima | csv | Row 1 ID Row 2 headers |
Clarity Movement Co. (Berkeley, CA, USA) | Node-S | csv | Row 1 header |
Davis Instruments (Hayward, CA, USA) | AirLink | xlsx | Row 1 header including ID and location in each description |
Dylos corporation (Riverside, CA, USA) | Dylos | txt | Row 1 header |
Ecomeasure (Saclay, France) | Ecomeasure_SGS | xlsx | Row 1–3 metadata, Row 5 header |
Habitat Map (Brooklyn, NY, USA) | AirBeam1 | csv | Row 1–3 header |
Habitat Map (Brooklyn, NY, USA) | AirBeam2 | csv | Rows 1–9 header data |
Habitat Map (Brooklyn, NY, USA) | AirBeam3 | csv | Row 1–9 header |
IQAir (Goldach, Switzerland) | AirVisual Pro | csv | Row 1 header |
Kunak (Navarra, Spain) | Air Pro | csv | Row 1 metadata Row 2 header |
Myriad Sensors (Brentwood, TN, USA) | Pocket Lab Air | csv | Row 1 header |
PurpleAir (Draper, UT, USA) | PA-II-SD | csv | Row 1 header |
Sensirion (Stäfa, Switzerland) | SEN44 | xlsx | Rows 1–11 metadata, Rows 12, 13 headers |
Sensit Technologies (Valparaiso, IN, USA) | RAMP | txt | No header, variable ID included in column before value |
TSI (Shoreview, MN, USA) | BlueSky | csv | Row 1 header, Row 2 units |
WA Department of Ecology (Lacey, WA, USA) | Custom-built with Sensiron 1 | csv | No headers |
Feedback | Reason | Version | Addressed |
---|---|---|---|
Better timezone handling | Although daylight savings time is not preferred for most air monitoring applications, some data may still come in daylight time and need adjustment | Beta test version | Yes |
Better time format detection and error handling | Some example datasets were not correctly loaded | Beta test version | Yes |
Consider more than 10 header rows | Some datasets have many rows before the header | Beta test version | User can now advance through subsequent rows |
Improved error handling on latitude and longitude | Backwards latitude and longitude crashes ASNAT | Beta test version | Yes |
Better documentation needed on averaging method | Beta test version | Added documentation (e.g., 11:00 to 11:59 labeled as 11:00) | |
Add pressure data type | Beta test version | Yes | |
Allow user to remove problematic data | Beta test version | Data flagging added | |
Data rounding | Too many decimal places included in the sensor data. Not enough decimal places included in the latitude and longitude. | Beta test version, Public version | Yes |
Allow larger file uploads | High-time resolution data (e.g., minutes) can generate large files quickly | Public version | 100 MB max file size |
Improve installation error | Library version conflict | Public version | Yes |
Assign unique sensor IDs if location changes | Sensors may be stationary but rotate through multiple sites for quality assurance or other reasons throughout a project | Public version | Yes |
Ensure output data is sorted by timestamp and sensor ID | Needed if multiple sensors are then loaded to ASNAT | Public version | Yes |
Sensor API direct import (e.g., Clarity, QuantAQ) | Save users the step from API download, then ASDU upload. | Public version | Potential future priority |
Have a publicly hosted tool | Save users from needing to install R and dependent libraries | Beta test version, Public version | Potential future priority |
Allow user to create custom Data Types, Extensions, and Units | Beta test version | Potential future priority |
Example | Rows Raw Data | Sensors | Days | Max Used Memory (Mb) | Time for User to Run (Unknown Format) | Time for User to Run (Known Format) |
---|---|---|---|---|---|---|
Aeroqual AQY | 34,126 | 1 | 22 | 407.6 | 3 min, 55 s | 1 min, 31 s |
APT Maxima | 158,208 | 1 | 56 | 513.4 | 4 min, 44 s | 1 min, 58 s |
Clarity Node | 86,542 | 3 | 331 | 271.7 | 8 min, 4 s | 3 min, 33 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkjohn, K.K.; Seppanen, C.; Arunachalam, S.; Krabbe, S.; Clements, A.L. Air Sensor Data Unifier: R-Shiny Application. Air 2025, 3, 21. https://doi.org/10.3390/air3030021
Barkjohn KK, Seppanen C, Arunachalam S, Krabbe S, Clements AL. Air Sensor Data Unifier: R-Shiny Application. Air. 2025; 3(3):21. https://doi.org/10.3390/air3030021
Chicago/Turabian StyleBarkjohn, Karoline K., Catherine Seppanen, Saravanan Arunachalam, Stephen Krabbe, and Andrea L. Clements. 2025. "Air Sensor Data Unifier: R-Shiny Application" Air 3, no. 3: 21. https://doi.org/10.3390/air3030021
APA StyleBarkjohn, K. K., Seppanen, C., Arunachalam, S., Krabbe, S., & Clements, A. L. (2025). Air Sensor Data Unifier: R-Shiny Application. Air, 3(3), 21. https://doi.org/10.3390/air3030021