Efficacy of Acid-Treated HEPA Filters for Dual Sequestration of Nicotine and Particulate Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Summary
2.2. Materials
2.3. Study Design
2.4. HEPA Filter Treatment
2.5. Filtration Efficiency and Nicotine Capture Efficiency Evaluation
3. Results
3.1. Filtration Efficiency (FE) for Salt Aerosols
3.2. Filtration Efficiency for Electronic Cigarette Aerosols
3.3. Nicotine Capture Efficiency
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chilmonczyk, B.A.; Salmun, L.M.; Megathlin, K.N.; Neveux, L.M.; Palomaki, G.E.; Knight, G.J.; Pulkkinen, A.J.; Haddow, J.E. Association between exposure to environmental tobacco smoke and exacerbations of asthma in children. N. Engl. J. Med. 1993, 328, 1665–1669. [Google Scholar] [CrossRef] [PubMed]
- Charoenca, N.; Kungskulniti, N.; Tipayamongkholgul, M.; Sujirarat, D.; Lohchindarat, S.; Mock, J.; Hamann, S.L. Determining the burden of secondhand smoke exposure on the respiratory health of Thai children. Tob. Induc. Dis. 2013, 11, 7. [Google Scholar] [CrossRef]
- Håberg, S.E.; Stigum, H.; Nystad, W.; Nafstad, P. Effects of pre-and postnatal exposure to parental smoking on early childhood respiratory health. Am. J. Epidemiol. 2007, 166, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Duijts, L.; Jaddoe, V.W.; Hofman, A.; Steegers, E.A.; Mackenbach, J.P.; de Jongste, J.C.; Moll, H.A. Maternal smoking in prenatal and early postnatal life and the risk of respiratory tract infections in infancy. The Generation R study. Eur. J. Epidemiol. 2008, 23, 547–555. [Google Scholar] [CrossRef]
- Best, D.; Committee on Environmental Health; Committee on Native American Child Health and Committee on Adolescence. Secondhand and prenatal tobacco smoke exposure. Pediatrics 2009, 124, e1017–e1044. [Google Scholar] [CrossRef]
- Tang, D.; Warburton, D.; Tannenbaum, S.R.; Skipper, P.; Santella, R.M.; Cereijido, G.S.; Crawford, F.G.; Perera, F.P. Molecular and genetic damage from environmental tobacco smoke in young children. Cancer Epidemiol. Biomark. Prev. 1999, 8, 427–431. [Google Scholar]
- Barnoya, J.; Glantz, S.A. Cardiovascular effects of secondhand smoke: Nearly as large as smoking. Circulation 2005, 111, 2684–2698. [Google Scholar] [CrossRef]
- Glantz, S.A.; Parmley, W.W. Passive smoking and heart disease. Epidemiology, physiology, and biochemistry. Circulation 1991, 83, 1–12. [Google Scholar] [CrossRef]
- Öberg, M.; Jaakkola, M.S.; Woodward, A.; Peruga, A.; Prüss-Ustün, A. Worldwide burden of disease from exposure to second-hand smoke: A retrospective analysis of data from 192 countries. Lancet 2011, 377, 139–146. [Google Scholar] [CrossRef]
- Naeem, Z. Second-hand smoke–ignored implications. Int. J. Health Sci. 2015, 9, V. [Google Scholar] [CrossRef]
- Barnoya, J.; Navas-Acien, A. Protecting the world from secondhand tobacco smoke exposure: Where do we stand and where do we go from here? Nicotine Tob. Res. 2012, 15, 789–804. [Google Scholar] [CrossRef]
- Mescolo, F.; Ferrante, G.; La Grutta, S. Effects of e-cigarette exposure on prenatal life and childhood respiratory health: A review of current evidence. Front. Pediatr. 2021, 9, 711573. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Sim, S.; Choi, H.G. Active, passive, and electronic cigarette smoking is associated with asthma in adolescents. Sci. Rep. 2017, 7, 17789. [Google Scholar] [CrossRef]
- Schweitzer, R.J.; Wills, T.A.; Tam, E.; Pagano, I.; Choi, K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 2017, 105, 226–231. [Google Scholar] [CrossRef]
- Cho, J.H.; Paik, S.Y. Association between electronic cigarette use and asthma among high school students in South Korea. PLoS ONE 2016, 11, e0151022. [Google Scholar] [CrossRef]
- Islam, T.; Braymiller, J.; Eckel, S.P.; Liu, F.; Tackett, A.P.; Rebuli, M.E.; Barrington-Trimis, J.; McConnell, R. Secondhand nicotine vaping at home and respiratory symptoms in young adults. Thorax 2022, 77, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Rees, V.W.; Koutrakis, P.; Wolfson, J.M.; Son, Y.-S.; Lawrence, J.; Christiani, D.C. Cardiac autonomic effects of secondhand exposure to nicotine from electronic cigarettes: An exploratory study. Environ. Epidemiol. 2019, 3, e033. [Google Scholar] [CrossRef]
- National Cancer Institute. Secondhand Tobacco Smoke (Environmental Tobacco Smoke). 13 June 2024. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/substances/secondhand-smoke#:~:text=What%20is%20secondhand%20tobacco%20smoke,involuntary%20smoke%2C%20and%20passive%20smoke (accessed on 24 July 2024).
- Gatlin, C.G. IARC classifies formaldehyde as carcinogenic. Oncol. Times 2004, 26, 72. [Google Scholar]
- Logue, J.M.; Sleiman, M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Benowitz, N.L.; Gundel, L.A.; Destaillats, H. Emissions from electronic cigarettes: Assessing vapers’ intake of toxic compounds, secondhand exposures, and the associated health impacts. Environ. Sci. Technol. 2017, 51, 9271–9279. [Google Scholar] [CrossRef]
- Offermann, F.J. Chemical emissions from e-cigarettes: Direct and indirect (passive) exposures. Build. Environ. 2015, 93, 101–105. [Google Scholar] [CrossRef]
- Kapiamba, K.F.; Hao, W.; Owusu, S.Y.; Liu, W.; Huang, Y.-W.; Wang, Y. Examining metal contents in primary and secondhand aerosols released by electronic cigarettes. Chem. Res. Toxicol. 2022, 35, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Saffari, A.; Daher, N.; Ruprecht, A.; De Marco, C.; Pozzi, P.; Boffi, R.; Hamad, S.H.; Shafer, M.M.; Schauer, J.J.; Westerdahl, D. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: Comparison of emission rates and secondhand exposure. Environ. Sci. Process. Impacts 2014, 16, 2259–2267. [Google Scholar] [CrossRef]
- Ting, C.Y.; Ahmad Sabri, N.A.; Tiong, L.L.; Zailani, H.; Wong, L.P.; Agha Mohammadi, N.; Anchah, L. Heavy metals (Cr, Pb, Cd, Ni) in aerosols emitted from electronic cigarettes sold in Malaysia. J. Environ. Sci. Health Part A 2020, 55, 55–62. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Secondhand Smoke and Electronic-Cigarette Aerosols. 13 December 2024. Available online: https://www.epa.gov/indoor-air-quality-iaq/secondhand-smoke-and-electronic-cigarette-aerosols (accessed on 8 February 2025).
- Cooper, E.; Wang, Y.; Stamp, S.; Nijsen, T.; de Graaf, P.; Hofman, J.; Inki, T.; Driessen, R.; Liebmann, J.; Geven, I.T. Why do people use portable air purifiers? Evidence from occupant surveys and air quality monitoring in homes in three European cities. Build. Res. Inf. 2022, 50, 213–229. [Google Scholar] [CrossRef]
- Zhan, Y.; Johnson, K.; Norris, C.; Shafer, M.M.; Bergin, M.H.; Zhang, Y.; Zhang, J.; Schauer, J.J. The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. Sci. Total Environ. 2018, 626, 507–518. [Google Scholar] [CrossRef]
- Aldekheel, M.; Altuwayjiri, A.; Tohidi, R.; Jalali Farahani, V.; Sioutas, C. The role of portable air purifiers and effective ventilation in improving indoor air quality in university classrooms. Int. J. Environ. Res. Public Health 2022, 19, 14558. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, A.; Chen, H.; Zhao, Z.; Cai, J.; Wang, C.; Yang, C.; Li, H.; Xu, X.; Ha, S. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: A randomized, double-blind crossover trial of air purifiers. J. Am. Coll. Cardiol. 2015, 65, 2279–2287. [Google Scholar] [CrossRef]
- Christopherson, D.A.; Yao, W.C.; Lu, M.; Vijayakumar, R.; Sedaghat, A.R. High-efficiency particulate air filters in the era of COVID-19: Function and efficacy. Otolaryngol.–Head Neck Surg. 2020, 163, 1153–1155. [Google Scholar] [CrossRef]
- White, E. HEPA and ULPA filters. J. Valid. Technol. 2009, 15, 48. [Google Scholar]
- Bennett, A. Standards and testing: Meeting standards in filter media. Filtr. Sep. 2012, 49, 22–25. [Google Scholar] [CrossRef]
- Lowther, S.D.; Deng, W.; Fang, Z.; Booker, D.; Whyatt, D.J.; Wild, O.; Wang, X.; Jones, K.C. How efficiently can HEPA purifiers remove priority fine and ultrafine particles from indoor air? Environ. Int. 2020, 144, 106001. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, R.J.; Levetin, E.; Blocker, J.; Sublette, K.L. Effectiveness of portable indoor air cleaners: Sensory testing results. Indoor Air 1994, 4, 179–188. [Google Scholar] [CrossRef]
- Agranovski, I.; Moustafa, S.; Braddock, R. Performance of activated carbon loaded fibrous filters on simultaneous removal of particulate and gaseous pollutants. Environ. Technol. 2005, 26, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yoon, Y.; Kim, K. Performance of activated carbon-impregnated cellulose filters for indoor VOCs and dust control. Int. J. Environ. Sci. Technol. 2016, 13, 2189–2198. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.; Zhu, Y. Transport and mitigation of exhaled electronic cigarette aerosols in a multizone indoor environment. Aerosol Air Qual. Res. 2020, 20, 2536–2547. [Google Scholar] [CrossRef]
- Hammond, S.K.; Leaderer, B.P.; Roche, A.C.; Schenker, M. Collection and analysis of nicotine as a marker for environmental tobacco smoke. Atmos. Environ. 1967 1987, 21, 457–462. [Google Scholar] [CrossRef]
- Oni, T.M.; Gamagedara, S.; Floyd, E.L. Desorption efficiency and holding capacity of acid-treated filters for nicotine sampling in vape shops. Ann. Work Expo. Health 2024, 69, 104–108. [Google Scholar] [CrossRef]
- Aquilina, N.J.; Havel, C.M.; Harrison, R.M.; Ho, K.-F.; Benowitz, N.L.; Jacob, P., III. Determination of 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone (NNK) arising from tobacco smoke in airborne particulate matter. Environ. Int. 2022, 158, 106992. [Google Scholar] [CrossRef]
- EN 1822-1:2019; High Efficiency Air Filters (EPA, HEPA and ULPA)—Part 1: Classification, Performance Testing, Marking; German Version. iTeh Standards: Etobicoke, ON, Canada, 2019.
- Mead-Hunter, R.; King, A.J.; Mullins, B.J. Aerosol-mist coalescing filters—A review. Sep. Purif. Technol. 2014, 133, 484–506. [Google Scholar] [CrossRef]
- USEPA. What Is a HEPA Filter? 2024. Available online: https://www.epa.gov/indoor-air-quality-iaq/what-hepa-filter (accessed on 12 March 2024).
Air Purifier | HEPA Filter Number | Air Flowrate (m3/min) | |||
---|---|---|---|---|---|
Untreated HEPA Filters | Treated HEPA Filters | ||||
Original | Replacement | Original | Replacement | ||
1 | 1 | 4.64 | 5.01 | 4.79 | 5.10 |
2 | 1 | 4.53 | 5.07 | 4.62 | 5.04 |
3 | 1 | 4.62 | 4.87 | 4.70 | 5.01 |
4 | 1 | 4.70 | 4.87 | 4.64 | 5.13 |
1 | 2 | 4.98 | 4.67 | ||
2 | 2 | 4.84 | 4.67 | ||
3 | 2 | 4.70 | 4.87 | ||
4 | 2 | 4.96 | 4.90 | ||
Average | 4.62 | 4.91 | 4.69 | 4.92 | |
SD | 0.07 | 0.12 | 0.07 | 0.18 |
HEPA Filter Number | Mass (Grams) | |||
---|---|---|---|---|
Untreated HEPA Filters | Treated HEPA Filters | |||
Original | Replacement | Original | Replacement | |
1 | 748.5 | 859.9 | 703.9 | 796.4 |
2 | 733.3 | 775.2 | 746.5 | 864.5 |
3 | 737.9 | 796.9 | 724 | 859.4 |
4 | 734.7 | 841 | 754.5 | 873.7 |
5 | 823.7 | 910.5 | ||
6 | 844.8 | 868.9 | ||
7 | 817 | 896.6 | ||
8 | 836.3 | 805.5 | ||
Average | 739 | 824 | 732 | 859 |
SD | 6.88 | 27.58 | 22.88 | 39.98 |
HEPA Filter | Number of Pleats | |
---|---|---|
Original | Replacement | |
1 | 152 | 177 |
2 | 160 | 177 |
3 | 158 | 179 |
4 | 159 | 178 |
Average | 157 | 178 |
SD | 3.59 | 0.96 |
Filtration/Capture Efficiency | ||||||
---|---|---|---|---|---|---|
Challenge Agent | Filter Type | Untreated | Citric Acid-Treated | p-Value | ||
Mean (%) | RSD | Mean (%) | RSD | |||
Salt Aerosol | Originals | 99.8 | 0.2 | 99.8 | 0.1 | 0.840 |
Replacements | 89.8 | 5.0 | 93.9 | 3.8 | 0.062 | |
EC Aerosol | Originals | 96.4 | 0.8 | 94.7 | 2.0 | 0.172 |
Replacements | 58.9 | 14.9 | 75.4 | 15.3 | 0.010 * | |
Nicotine Vapor | Originals | 57.4 | 2.3 | 99.4 | 0.2 | 0.029 * |
Replacements | 42.0 | 14.2 | 99.0 | 1.1 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oni, T.M.; Cai, C.; Floyd, E.L. Efficacy of Acid-Treated HEPA Filters for Dual Sequestration of Nicotine and Particulate Matter. Air 2025, 3, 8. https://doi.org/10.3390/air3010008
Oni TM, Cai C, Floyd EL. Efficacy of Acid-Treated HEPA Filters for Dual Sequestration of Nicotine and Particulate Matter. Air. 2025; 3(1):8. https://doi.org/10.3390/air3010008
Chicago/Turabian StyleOni, Toluwanimi M., Changjie Cai, and Evan L. Floyd. 2025. "Efficacy of Acid-Treated HEPA Filters for Dual Sequestration of Nicotine and Particulate Matter" Air 3, no. 1: 8. https://doi.org/10.3390/air3010008
APA StyleOni, T. M., Cai, C., & Floyd, E. L. (2025). Efficacy of Acid-Treated HEPA Filters for Dual Sequestration of Nicotine and Particulate Matter. Air, 3(1), 8. https://doi.org/10.3390/air3010008