Genetic Variability, Heritability, and Expected Gains for Yield and Forage Quality in Gamba Grass (Andropogon gayanus) Populations
Abstract
1. Introduction
2. Material and Methods
- (i)
- ƴbf = μ + Bb + Ff + εbf, model for individual data harvest, all effects random;
- (ii)
- ƴbhf = μ + Bb + Hh + BHbh+ Ff + FBfb + FHfh + εbhf, model across harvests, all effects random but harvest;
- (iii)
- ƴyhbf = μ + Yy + Hh + YHyh + Bb + BYby + BHbh+ Ff + FYfy + FBfb + FHfh + FYHfyh + εyhbf, model across years and harvests, all effects random but harvest; and
- (iv)
- ƴph = μ + Pp + Hh + B(P)bp, model across populations, all effects fixed but blocks nested within population.
3. Results
4. Discussion
4.1. Genetic Variation and Trait Expression in Andropogon gayanus
4.2. Heritability Patterns, Genotype × Environment, and Implications for Selection Timing
4.3. Expected Selection Gains
4.4. Trait Relationships, Indirect Selection, and Breeding Targets
4.5. Comparisons with the Literature on Temperate Forage Breeding: Lessons and Methods Transferable to A. gayanus
4.6. Evidence from Tropical Grass Genomics and Diversity Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Grof, B.; Thomas, D. The agronomy of Andropogon gayanus. In Andropogon gayanus Kunth—A Grass for Tropical Acid Soils; Toledo, J.M., Vera, R., Lascano, C., Lenné, J.M., Eds.; CIAT: Cali, Colombia, 1990; pp. 157–177. [Google Scholar]
- Foster, W.H. Investigations preliminary to the production of cultivars of Andropogon gayanus. Euphytica 1962, 11, 47–52. [Google Scholar] [CrossRef]
- Okoli, B.E.; Olorode, O. Cytogenetic studies in the Andropogon gayanus–A. tectorum complex (Gramineae). Bot. J. Linn. Soc. 1983, 87, 263–271. [Google Scholar] [CrossRef]
- Nagahama, N.; Norrmann, G. Review of the genus Andropogon (Poaceae: Andropogoneae) in America based on cytogenetic studies. J. Bot. 2012, 2012, 632547. [Google Scholar] [CrossRef]
- Pessoa Filho, M.A.C.P.; Azevedo, A.L.S.; Ramos, A.K.B.; Carvalho, M.A.; Fonseca, C.E.L. Estimativa do Tamanho do Genoma em Cultivares de Capim-Andropogon (Andropogon gayanus Kunth); Boletim de Pesquisa e Desenvolvimento 372; Embrapa Cerrados: Planaltina, DF, Brazil, 2021; 13p, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/224864/1/Estimativa-do-tamanho-do-genoma-Boletim-372.pdf (accessed on 2 October 2025).
- Jank, L.; Barrios, S.C.; do Valle, C.B.; Simeão, R.M.; Alves, G.F. The value of improved pastures to Brazilian beef production. Crop Pasture Sci. 2014, 65, 1132–1137. [Google Scholar] [CrossRef]
- Miles, J.W.; Grof, B. Genetics and plant breeding of Andropogon gayanus. In Andropogon gayanus Kunth: A Grass for Tropical Acid Soils; Toledo, J.M., Vera, R., Lascano, C., Lenné, J.M., Eds.; CIAT: Cali, Colombia, 1990; pp. 19–35. [Google Scholar]
- Kingston-Smith, A.H.; Marshall, A.H.; Moorby, J.M. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint. Animal 2013, 7 (Suppl. 1), 79–88. [Google Scholar] [CrossRef]
- Wróbel, B.; Zielewicz, W.; Paszkiewicz-Jasińska, A. Improving Forage Quality from Permanent Grasslands to Enhance Ruminant Productivity. Agriculture 2025, 15, 1438. [Google Scholar] [CrossRef]
- Simmonds, N.W.; Smartt, J. Principles of Crop Improvememnt, 2nd ed.; Blackwell Science: Berlim, Germany, 1999. [Google Scholar]
- Béguier, V.; Guillemot, E.; Julier, B. Alfalfa forage quality breeding in France: 30 years of common efforts from seed industry, dehydration industry and public research. In Proceedings of the Second World Alfalfa Congress, Córdoba, Argentina, 11–14 November 2018; Instituto Nacional de Tecnología Agropecuaria (INTA): Buenos Aires, Argentina, 2018. Available online: https://worldalfalfacongress.ucdavis.edu/sites/g/files/dgvnsk8841/files/media/documents/Alfalfa%20forage%20quality%20breeding%20in%20France%3B%2030%20years%20of%20common%20efforts%20from%20seed%20industry%2C%20dehydratation%20industry%20and%20public%20research..pdf (accessed on 2 October 2025).
- Santos, I.G.D.; Cruz, C.D.; Nascimento, M.; Rosado, R.D.S.; Ferreira, R.D.P. Direct, indirect and simultaneous selection as strategies for alfalfa breeding on forage yield and nutritive value. Pesqui. Agropecu. Trop. 2018, 48, 178–189. Available online: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1096305 (accessed on 2 October 2025). [CrossRef]
- Souza, C.D.; Lopez, Y.; Munoz, P.; Anderson, W.; Dall’Agnol, M.; Wallau, M.; Rios, E. Natural genetic diversity of nutritive value traits in the genus Cynodon. Agronomy 2020, 10, 1729. [Google Scholar] [CrossRef]
- Simeão, R.M.; Assis, G.M.L.; Montagner, D.B.; Ferreira, R.C.U. Forage peanut (Arachis spp.) genetic evaluation and selection. Grass Forage Sci. 2017, 72, 322–332. [Google Scholar] [CrossRef]
- Thomas, D.; Andrade, R.P.; Couto, W.; Rocha, C.M.C.; Moore, P. Andropogon gayanus var. bisquamulatus cv. Planaltina: Principais características forrageiras. Pesqui. Agropecu. Bras. 1981, 16, 347–355. Available online: https://seer.sct.embrapa.br/index.php/pab/article/view/16890 (accessed on 2 October 2025).
- Carvalho, M.A.; Fonseca, C.E.L.; Ramos, A.K.B.; Braga, G.J.; Fernandes, F.D.; Pessoa Filho, M.A.C.P. BRS Sarandi: A new Andropogon gayanus cultivar for tropical pastures. In Proceedings of the XXV International Grassland Congress (IGC) “Grasslands for Animal, Soil and Human Health”, Covington, KT, USA, 14–19 May 2023. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Fonseca, C.E.L.; Pessoa Filho, M.; Braga, G.J.; Ramos, A.K.B.; Carvalho, M.A.; Fernandes, F.D.; Karia, C.T.; Maciel, G.A.; Athayde, N.B.; Dessaune, S.N.; et al. Near-infrared reflectance spectroscopy as a tool for breeding Andropogon gayanus Kunth for forage quality. IOSR J. Agric. Vet. Sci. 2020, 13, 57–66. Available online: http://www.iosrjournals.org/iosr-javs/papers/Vol13-issue6/Series-1/H1306015766.pdf (accessed on 2 October 2025).
- Nguyen, H.T.; Sleper, D.A. Theory and application of half-sib matings in forage grass breeding. Theor. Appl. Genet. 1983, 64, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Hallauer, A.R.; Carena, M.J.; Miranda, J.B. Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1988. [Google Scholar] [CrossRef]
- Tucak, M.; Ravlić, M.; Horvat, D.; Čupić, T. Improvement of forage nutritive quality of alfalfa and red clover through plant breeding. Agronomy 2021, 11, 2176. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, V.; Sale, P.W. Effect of cutting management on yield and quality of different selections of Guinea grass [Panicum maximum (Jacq.) L.] in a humid subtropical environment. Trop. Agric. 1995, 72, 181–187. Available online: https://journals.sta.uwi.edu/ojs/index.php/ta/article/view/2458 (accessed on 2 October 2025).
- Redfearn, D.D.; Moore, K.J.; Vogel, K.P.; Waller, S.S.; Mitchell, R.B. Canopy Architecture and Morphology of Switchgrass Populations Differing in Forage Yield. Agron. J. 1997, 89, 262–269. [Google Scholar] [CrossRef]
- Mackay, I.J.; Cockram, J.; Howell, P.; Powell, W. Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 2020, 19, 1873–1875. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.C.U.; Costa Lima Moraes, A.D.; Chiari, L.; Simeão, R.M.; Vigna, B.B.Z.; de Souza, A.P. An overview of the genetics and genomics of the Urochloa species most commonly used in pastures. Front. Plant Sci. 2021, 12, 770461. [Google Scholar] [CrossRef]
- Jank, L.; Valle, C.B.; Resende, R.M.S. Breeding tropical forages. Crop Breed. Appl. Biotechnol. 2011, 11, 27–34. [Google Scholar] [CrossRef]
- Ramstein, G.P.; Evans, J.; Kaeppler, S.M.; Mitchell, R.B.; Vogel, K.P.; Buell, C.R.; Casler, M.D. Accuracy of genomic prediction in switchgrass (Panicum virgatum L.) improved by accounting for linkage disequilibrium. G3 2016, 6, 1049–1062. [Google Scholar] [CrossRef]
- Alves, M.E.B.; Muller, A.G.; de Oliveira, A.D.; da Silva, F.A.M. Boletim Agrometeorológico do ano 2021 para Planaltina, DF; Documentos/Embrapa Cerrados, 402; Embrapa Cerrados: Planaltina, DF, Brazil, 2023; p. 49. ISSN 1517-5111. e-ISSN 2176-5081. [Google Scholar]
- Peterson, P.R.; Sheaffer, C.C.; Hall, M.H. Drought Effects on Perennial Forage Legume Yield and Quality. Agron. J. 1992, 84, 774–779. [Google Scholar] [CrossRef]
- Sheaffer, C.C.; Peterson, P.R.; Hall, M.H.; Stordahl, J.B. Drought effects on yield and quality of perennial grasses in the North Central United States. J. Prod. Agric. 1992, 5, 556–561. [Google Scholar] [CrossRef]
- Bittman, S.; Simpson, G.M.; Mir, Z. Leaf senescence and seasonal decline in nutritional quality of three temperate forage grasses as influenced by drought. Crop Sci. 1988, 28, 546–552. [Google Scholar] [CrossRef]
- Saeidnia, F.; Majidi, M.M.; Mirlohi, A.; Soltan, S. Physiological and tolerance indices useful for drought tolerance selection in smooth bromegrass. Crop Sci. 2017, 57, 282–289. [Google Scholar] [CrossRef]
- Casler, M.D.; Brummer, E.C. Theoretical expected genetic gains for among- and within-family selection methods in perennial forage crops. Crop Sci. 2008, 48, 890–902. [Google Scholar] [CrossRef]
- Stewart, A.; Hayes, R. Ryegrass breeding—Balancing trait priorities. Ir. J. Agric. Food Res. 2011, 50, 31–46. Available online: https://www.jstor.org/stable/41348154 (accessed on 2 October 2025).
- Casler, M.D.; Fales, S.L.; McElroy, A.R.; Hall, M.H.; Hoffman, L.D.; Undersander, D.J.; Leath, K.T. Half-sib family selection for forage yield in orchardgrass. Plant Breed. 2002, 121, 43–48. [Google Scholar] [CrossRef]
- Wilkins, P.W.; Humphreys, M.O. Progress in breeding perennial forage grasses for temperate agriculture. J. Agric. Sci. 2003, 140, 129–150. [Google Scholar] [CrossRef]
- Casler, M.D.; Vogel, K.P. Selection for biomass yield in upland, lowland, and hybrid switchgrass. Crop Sci. 2014, 54, 626–636. [Google Scholar] [CrossRef]
- Casler, M.D.; Vogel, K.P. Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci. 1999, 39, 12–20. [Google Scholar] [CrossRef]
- Vogel, K.P. Comparison of two perennial grass breeding systems in switchgrass. Crop Sci. 2013, 53, 863–870. [Google Scholar] [CrossRef]
- Casler, M.D. Session 17-Forage Quality BREEDING FOR IMPROVED FORAGE QUALITY: POTENTIALS AND PROBLEMS. Agricultural and Food Sciences. Available online: https://www.semanticscholar.org/paper/Session-17-Forage-Quality-BREEDING-FOR-IMPROVED-%3A-Casler/0430c2216f4d60db1218581b6f5d7e5c15a62176 (accessed on 2 October 2025).
- Cardinal, A.J.; Lee, M.; Moore, K.M. Genetic mapping and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor. Appl. Genet. 2003, 106, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Casler, M.D. Agricultural fitness of smooth bromegrass populations selected for divergent fiber concentration. Crop Sci. 2005, 45, 36–43. [Google Scholar] [CrossRef]
- Fonseca, C.E.L.; Viands, D.R.; Hansen, J.; Pell, A. Associations among forage quality traits, vigor, and disease resistance in alfalfa. Crop Sci. 1999, 39, 1271–1276. [Google Scholar] [CrossRef]
- Tecle, I.Y.; Viands, D.R.; Hansen, J.L.; Pell, A.N. Response from selection for pectin concentration and indirect response in digestibility of alfalfa. Crop Sci. 2006, 46, 1081–1087. [Google Scholar] [CrossRef]
- Bélanger, G.; Michaud, R.; Jefferson, P.G.; Tremblay, G.F.; Brégard, A. Improving the nutritive value of timothy through management and breeding. Can. J. Plant Sci. 2001, 81, 577–585. [Google Scholar] [CrossRef]
- Higgins, J.; Tomaszewska, P.; Pellny, T.K.; Castiblanco, V.; Arango, J.; Tohme, J.; Schwarzacher, T.; Mitchell, R.A.; Heslop-Harrison, J.S.; De Vega, J.J. Diverged subpopulations in tropical Urochloa (Brachiaria) forage species indicate a role for facultative apomixis and varying ploidy in their population structure and evolution. Annals of Botany 2022, 130, 657–669. [Google Scholar] [CrossRef]
- Mushagalusa, P.B.; Kimwemwe, P.K.; Katunga, D.M.; Mondo, J.M.; Cirezi, N.C.; Ayagirwe, R.B.; Bacigale, S.B.; Mutai, C.; Muktar, M.S.; Kimani, W.; et al. Population structure and genetic diversity of Brachiaria grass (Urochloa spp.) accessions from the Democratic Republic of Congo using DArTseq single nucleotide polymorphism markers. Crop Sci. 2025, 65, e70102. [Google Scholar] [CrossRef]
- Singh, L.; Wu, Y.; McCurdy, J.D.; Stewart, B.R.; Warburton, M.L.; Baldwin, B.S.; Dong, H. Genetic diversity and population structure of bermudagrass (Cynodon spp.) revealed by genotyping-by-sequencing. Front. Plant Sci. 2023, 14, 1155721. [Google Scholar] [CrossRef]



| Trait | Planaltina (Mean ± SE, Range) | BRS Sarandi (Mean ± SE, Range) | Overall (Mean ± SE, Range) | Pop. MS |
|---|---|---|---|---|
| DM Yield (t·ha−1·harvest−1) | 4.57 ± 0.06 (0.37–12.01) | 4.83 ± 0.06 (0.29–21.18) | 4.71 ± 0.05 (0.29–21.18) | 6.800 ns |
| CP (g·kg−1 DM) | 104.94 ± 0.23 (72.0–135.4) | 110.67 ± 0.24 (56.8–148.0) | 107.92 ± 0.20 (56.8–148.0) | 9.834 ** |
| IVDMD (g·kg−1 DM) | 537.11 ± 0.98 (359.0–648.6) | 537.91 ± 0.77 (379.0–653.8) | 537.59 ± 0.77 (359.0–653.8) | 47.100 ns |
| NDF (g·kg−1 DM) | 689.34 ± 0.70 (631.9–796.9) | 668.67 ± 0.57 (609.6–753.1) | 678.78 ± 0.56 (609.6–796.9) | 106.88 ** |
| ADF (g·kg−1 DM) | 399.63 ± 0.66 (347.5–516.5) | 389.90 ± 0.44 (325.4–461.7) | 394.40 ± 0.40 (325.4–516.5) | 52.960 ** |
| ADL (g·kg−1 DM) | 35.61 ± 0.12 (25.2–52.0) | 37.20 ± 0.14 (22.4–69.9) | 36.44 ± 0.10 (22.4–69.9) | 0.606 ns |
| CEL (g·kg−1 DM) | 364.03 ± 0.59 (310.4–471.5) | 352.70 ± 0.43 (270.1–424.4) | 358.14 ± 0.37 (270.1–471.5) | 133.23 ** |
| HEMIC (g·kg−1 DM) | 289.71 ± 0.22 (258.1–323.2) | 278.62 ± 0.26 (160.4–319.5) | 283.64 ± 0.20 (160.4–323.2) | 77.70 ** |
| Trait | Statistics | 2018 | 2019 | 2018–19 | 2018–19 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 2, 3 ɫ | 1 | 2 | 3 | 1, 2, 3 ɫ | 2, 3 and 2, 3 ǂ | 1, 2, 3, 4, 5 ɫ | ||
| DM Yield (t/ha) | Mean ± SE | 6.07 ± 0.06 | 7.09 ± 0.08 | 6.58 ± 0.05 | 3.86 ± 0.05 | 2.30 ± 0.03 | 2.80 ± 0.04 | 2.99 ± 0.03 | 4.56 ± 0.06 | 4.42 ± 0.05 |
| Range | 2.80–10.61 | 0.37–12.01 | 0.37–12.01 | 0.41–9.59 | 1.18–5.40 | 1.20–7.74 | 0.41–9.59 | 0.37–12.01 | 0.37–12.01 | |
| σHS2 | 0.581 | 0.594 | 0.125 | 0.059 | 0.032 | 0.056 | 0.023 | 0.057 | 0.069 | |
| CP (g·kg−1) | Mean ± SE | 102.50 ± 0.51 | 107.67 ± 0.39 | 105.10 ± 0.33 | 89.51 ± 0.47 | 103.81 ± 0.45 | 105.76 ± 0.41 | 99.69 ± 0.32 | 104.93 ± 0.23 | 101.85 ± 0.24 |
| Range | 72.0–135.4 | 79.5–133.2 | 72.0–135.4 | 60.7–130.3 | 81.7–128.4 | 75.2–133.4 | 60.7–133.4 | 72.0–135.4 | 60.7–135.4 | |
| σHS2 | 0.077 | 0.080 | 0.071 | 0.085 | 0.042 | 0.074 | 0.045 | 0.025 | 0.036 | |
| IVDMD (g·kg−1) | Mean ± SE | 494.50 ± 1.80 | 536.69 ± 1.58 | 515.59 ± 1.39 | 487.1 ± 1.44 | 551.48 ± 1.40 | 565.73 ± 1.1 | 534.77 ± 1.20 | 537.10 ± 0.97 | 527.10 ± 0.93 |
| Range | 359.0–587.5 | 428.5–648.6 | 359.0–648.6 | 389.2–581.9 | 629.0–436.6 | 423.1–618.6 | 389.2–629.0 | 359.0–648.6 | 359.0–648.6 | |
| σHS2 | 1.451 | 0.650 | 0.383 | 0.517 | 0.070 | 0.759 | 0.222 | 0.440 | 0.315 | |
| NDF (g·kg−1) | Mean ± SE | 727.29 ± 1.04 | 695.84 ± 0.79 | 711.57 ± 0.83 | 674.66 ± 0.61 | 669.19 ± 0.63 | 665.01 ± 0.55 | 669.62 ± 0.36 | 689.33 ± 0.70 | 686.40 ± 0.58 |
| Range | 668.1–796.9 | 648.4–731.6 | 648.4–796.9 | 639.1–742.5 | 713.5–634.9 | 631.9–709.8 | 631.9–742.5 | 631.9–796.9 | 631.9–796.9 | |
| σHS2 | 0.534 | 0.153 | 0.048 | 0.186 | 0.135 | 0.169 | 0.152 | 0.128 | 0.114 | |
| ADF (g·kg−1) | Mean ± SE | 436.60 ± 1.11 | 401.20 ± 0.65 | 418.90 ± 0.87 | 413.23 ± 0.62 | 380.03 ± 0.58 | 380.66 ± 0.47 | 391.31 ± 0.53 | 399.62 ± 0.65 | 402.35 ± 0.55 |
| Range | 372.1–516.5 | 360.7–442.5 | 360.7–516.5 | 378.4–469.9 | 422.6–347.5 | 353.6–429.8 | 347.5–469.9 | 347.5–516.5 | 347.5–516.5 | |
| σHS2 | 0.574 | 0.137 | 0.029 | 0.254 | 0.167 | 0.198 | 0.163 | 0.099 | 0.110 | |
| ADL (g·kg−1) | Mean ± SE | 39.03 ± 0.18 | 38.22 ± 0.25 | 38.63 ± 0.15 | 32.58 ± 0.17 | 33.75 ± 0.16 | 31.41 ± 0.11 | 32.58 ± 0.09 | 35.60 ± 0.12 | 35.00 ± 0.10 |
| Range | 28.8–51.6 | 25.2–52.0 | 25.2–52.0 | 22.6–43.4 | 49.8–26.8 | 26.0–46.2 | 22.6–49.8 | 25.2–52.0 | 22.6–52.0 | |
| σHS2 | 0.019 | 0.010 | 0.006 | 0.000 | 0.001 | 0.002 | 0.000 | 0.004 | 0.002 | |
| CEL (g·kg−1) | Mean ± SE | 397.57 ± 1.01 | 362.97 ± 0.58 | 380.27 ± 0.82 | 380.65 ± 0.61 | 346.28 ± 0.54 | 349.26 ± 0.46 | 358.73 ± 0.52 | 364.02 ± 0.58 | 367.35 ± 0.5 |
| Range | 330.6–471.5 | 329.4–397.2 | 329.4–471.5 | 345.9–429.5 | 387.6–310.4 | 324.4–383.6 | 310.4–429.5 | 310.4–471.5 | 310.4–471.5 | |
| σHS2 | 0.448 | 0.131 | 0.048 | 0.227 | 0.163 | 0.210 | 0.163 | 0.099 | 0.110 | |
| HEMIC (g·kg−1) | Mean ± SE | 290.69 ± 0.33 | 294.63 ± 0.48 | 292.66 ± 0.30 | 261.42 ± 0.47 | 289.16 ± 0.40 | 284.35 ± 0.35 | 278.31 ± 0.40 | 289.71 ± 0.21 | 284.05 ± 0.31 |
| Range | 271.2–309.9 | 258.1–323.2 | 258.1–323.2 | 230.2–290.6 | 313.2–263.5 | 263.6–308.5 | 230.2–313.2 | 258.1–323.2 | 230.2–323.2 | |
| σHS2 | 0.039 | 0.022 | 0.026 | 0.057 | 0.019 | 0.066 | 0.041 | 0.036 | 0.040 | |
| Trait | Statistics | 2018 | 2019 | 2018–19 | 2018–19 | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 2, 3 ɫ | 1 | 2 | 3 | 1, 2, 3 ɫ | 2, 3 and 2, 3 ǂ | 1, 2, 3, 4, 5 ɫ | ||
| DM Yield (t/ha) | Mean ± SE | 5.43 ± 0.07 | 8.38 ± 0.10 | 6.9 ± 0.08 | 3.43 ± 0.04 | 2.58 ± 0.03 | 2.78 ± 0.03 | 2.93 ± 0.02 | 4.79 ± 0.06 | 4.52 ± 0.05 |
| Range | 1.6–13.3 | 3.3–21.2 | 1.6–21.2 | 0.3–9.8 | 1.1–6.6 | 0.3–6.2 | 0.3–9.8 | 0.3–21.2 | 0.3–21.2 | |
| σHS2 | 0.393 | 0.430 | 0.186 | 0.133 | 0.067 | 0.040 | 0.068 | 0.077 | 0.069 | |
| CP (g·kg−1) | Mean ± SE | 118.43 ± 0.43 | 93.42 ± 0.49 | 105.92 ± 0.52 | 117.28 ± 0.45 | 111.09 ± 0.39 | 121.13 ± 0.4 | 116.5 ± 0.26 | 111.01 ± 0.33 | 112.27 ± 0.28 |
| Range | 93.2–145.3 | 56.8–128.6 | 56.8–145.3 | 82–148 | 143.3–84.6 | 95.8–144.9 | 82.0–148.0 | 56.8–145.3 | 56.8–148 | |
| σHS2 | 0.115 | 0.051 | 0.047 | 0.164 | 0.166 | 0.099 | 0.125 | 0.069 | 0.036 | |
| IVDMD (g·kg−1) | Mean ± SE | 569.36 ± 1.34 | 466.13 ± 1.32 | 517.74 ± 1.93 | 563.37 ± 1.33 | 560.64 ± 1.13 | 605.05 ± 0.96 | 576.35 ± 0.86 | 550.29 ± 1.33 | 552.91 ± 1.1 |
| Range | 488.5–644.1 | 379.2–559 | 379.2–644.1 | 497.2–645.9 | 616.5–478.3 | 501.4–685.3 | 478.3–685.3 | 379.2–685.3 | 379.2–685.3 | |
| σHS2 | 0.647 | 0.268 | 0.318 | 1.466 | 0.643 | 0.833 | 0.840 | 0.430 | 0.315 | |
| NDF (g·kg−1) | Mean ± SE | 686.86 ± 1.00 | 650.37 ± 1.47 | 668.62 ± 1.07 | 673.51 ± 0.57 | 667.97 ± 0.72 | 654.26 ± 0.72 | 665.25 ± 0.45 | 664.87 ± 0.61 | 666.6 ± 0.51 |
| Range | 561.8–753.1 | 499.6–705.1 | 499.6–753.1 | 634.9–706.6 | 721.9–625.2 | 606.4–699.4 | 606.4–721.9 | 499.6–753.1 | 499.6–753.1 | |
| σHS2 | 0.105 | 0.336 | 0.071 | 0.205 | 0.183 | 0.121 | 0.130 | 0.055 | 0.114 | |
| ADF (g·kg−1) | Mean ± SE | 398.63 ± 0.7 | 406.44 ± 0.8 | 402.54 ± 0.55 | 384.47 ± 0.58 | 374.85 ± 0.63 | 367.87 ± 0.48 | 375.73 ± 0.37 | 386.95 ± 0.5 | 386.45 ± 0.41 |
| Range | 343.4–446 | 325.4–461.7 | 325.4–461.7 | 347.3–424 | 420.2–333.9 | 331.9–403.8 | 331.9–424 | 325.4–461.7 | 325.4–461.7 | |
| σHS2 | 0.105 | 0.135 | 0.123 | 0.200 | 0.129 | 0.043 | 0.063 | 0.060 | 0.110 | |
| ADL (g·kg−1) | Mean ± SE | 41.15 ± 0.32 | 37.16 ± 0.33 | 39.15 ± 0.24 | 37.52 ± 0.17 | 34.96 ± 0.14 | 32.91 ± 0.25 | 35.13 ± 0.12 | 36.54 ± 0.15 | 36.74 ± 0.13 |
| Range | 26.3–69.9 | 22.4–69.3 | 22.4–69.9 | 27.8–51.7 | 43.6–28.1 | 22.7–43.9 | 22.7–51.7 | 22.4–69.9 | 22.4–69.9 | |
| σHS2 | 0.030 | 0.015 | 0.006 | 0.005 | 0.008 | 0.006 | 0.006 | 0.003 | 0.002 | |
| CEL (g·kg−1) | Mean ± SE | 357.48 ± 0.64 | 369.29 ± 0.98 | 363.39 ± 0.61 | 346.95 ± 0.56 | 339.89 ± 0.62 | 334.96 ± 0.52 | 340.60 ± 0.35 | 350.41 ± 0.48 | 349.72 ± 0.4 |
| Range | 293.7–393.9 | 270.1–424.4 | 270.1–424.4 | 308.7–386.8 | 386.2–298.1 | 295.6–370 | 295.6–386.8 | 270.1–424.4 | 270.1–424.4 | |
| σHS2 | 0.136 | 0.239 | 0.096 | 0.189 | 0.115 | 0.040 | 0.071 | 0.064 | 0.110 | |
| HEMIC (g·kg−1) | Mean ± SE | 288.23 ± 0.77 | 243.92 ± 1.02 | 266.08 ± 0.97 | 289.04 ± 0.45 | 293.12 ± 0.4 | 286.40 ± 0.56 | 289.52 ± 0.28 | 277.92 ± 0.58 | 280.14 ± 0.48 |
| Range | 212–315.7 | 160.4–279.9 | 160.4–315.7 | 259.7–313.9 | 319.5–266.3 | 249.8–311.7 | 249.8–319.5 | 160.4–319.5 | 160.4–319.5 | |
| σHS2 | 0.155 | 0.082 | 0.024 | 0.020 | 0.102 | 0.049 | 0.052 | 0.037 | 0.040 | |
| Year | Harvest | DM Yield | CP | IVDMD | NDF | ADF | ADL | CEL | HEMIC |
|---|---|---|---|---|---|---|---|---|---|
| 2018 | 2 | 0.68 ± 0.14 | 0.25 ± 0.15 | 0.46 ± 0.14 | 0.37 ± 0.14 | 0.37 ± 0.15 | 0.50 ± 0.14 | 0.34 ± 0.15 | 0.29 ± 0.15 |
| 3 | 0.54 ± 0.14 | 0.35 ± 0.15 | 0.20 ± 0.15 | 0.23 ± 0.15 | 0.24 ± 0.15 | 0.21 ± 0.15 | 0.30 ± 0.15 | 0.15 ± 0.15 | |
| 2, 3 ɫ | 0.13 ± 0.07 | 0.16 ± 0.07 | 0.07 ± 0.07 | 0.02 ± 0.07 | 0.01 ± 0.07 | 0.08 ± 0.07 | 0.03 ± 0.07 | 0.10 ± 0.08 | |
| 2019 | 1 | 0.29 ± 0.15 | 0.27 ± 0.15 | 0.23 ± 0.15 | 0.35 ± 0.15 | 0.43 ± 0.14 | 0.00 ± 0.16 | 0.42 ± 0.14 | 0.22 ± 0.15 |
| 2 | 0.35 ± 0.15 | 0.23 ± 0.15 | 0.04 ± 0.16 | 0.28 ± 0.15 | 0.35 ± 0.15 | 0.04 ± 0.16 | 0.37 ± 0.14 | 0.12 ± 0.15 | |
| 3 | 0.31 ± 0.15 | 0.36 ± 0.15 | 0.43 ± 0.14 | 0.40 ± 0.14 | 0.50 ± 0.14 | 0.14 ± 0.15 | 0.53 ± 0.14 | 0.38 ± 0.14 | |
| 1, 2, 3 ɫ | 0.11 ± 0.05 | 0.10 ± 0.05 | 0.05 ± 0.05 | 0.15 ± 0.05 | 0.17 ± 0.05 | 0.01 ± 0.06 | 0.18 ± 0.05 | 0.08 ± 0.05 | |
| 2018–19 | 2, 3 and 2, 3 ǂ | 0.07 ± 0.01 | 0.04 ± 0.02 | 0.05 ± 0.02 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.04 ± 0.02 | 0.06 ± 0.02 | 0.07 ± 0.02 |
| Year | Harvest | DM Yield | CP | IVDMD | NDF | ADF | ADL | CEL | HEMIC |
|---|---|---|---|---|---|---|---|---|---|
| 2018 | 2 | 0.53 ± 0.14 | 0.51 ± 0.14 | 0.34 ± 0.14 | 0.09 ± 0.15 | 0.21 ± 0.15 | 0.36 ± 0.14 | 0.26 ± 0.15 | 0.21 ± 0.15 |
| 3 | 0.32 ± 0.15 | 0.18 ± 0.15 | 0.13 ± 0.15 | 0.16 ± 0.15 | 0.19 ± 0.15 | 0.16 ± 0.15 | 0.24 ± 0.15 | 0.08 ± 0.15 | |
| 2, 3 ɫ | 0.15 ± 0.07 | 0.13 ± 0.07 | 0.09 ± 0.07 | 0.02 ± 0.08 | 0.11 ± 0.08 | 0.03 ± 0.08 | 0.07 ± 0.08 | 0.01 ± 0.08 | |
| 2019 | 1 | 0.43 ± 0.14 | 0.47 ± 0.14 | 0.56 ± 0.14 | 0.46 ± 0.14 | 0.39 ± 0.14 | 0.22 ± 0.15 | 0.39 ± 0.14 | 0.09 ± 0.15 |
| 2 | 0.42 ± 0.14 | 0.55 ± 0.14 | 0.39 ± 0.14 | 0.27 ± 0.15 | 0.24 ± 0.15 | 0.33 ± 0.14 | 0.22 ± 0.15 | 0.39 ± 0.14 | |
| 3 | 0.25 ± 0.15 | 0.43 ± 0.14 | 0.49 ± 0.14 | 0.27 ± 0.15 | 0.15 ± 0.15 | 0.23 ± 0.15 | 0.14 ± 0.15 | 0.23 ± 0.15 | |
| 1, 2, 3 ɫ | 0.27 ± 0.05 | 0.24 ± 0.05 | 0.24 ± 0.05 | 0.12 ± 0.05 | 0.07 ± 0.05 | 0.11 ± 0.05 | 0.08 ± 0.05 | 0.09 ± 0.05 | |
| 2018–19 | 2, 3 and 2, 3 ǂ | 0.07 ± 0.01 | 0.11 ± 0.01 | 0.08 ± 0.01 | 0.02 ± 0.02 | 0.04 ± 0.02 | 0.02 ± 0.02 | 0.04 ± 0.02 | 0.02 ± 0.02 |
| Year | Harvest | DM Yield (t/ha) | CP (g·kg−1) | IVDMD (g·kg−1) | NDF (g·kg−1) | ADF (g·kg−1) | ADL (g·kg−1) | CEL (g·kg−1) | HEMIC (g·kg−1) |
|---|---|---|---|---|---|---|---|---|---|
| 2018 | 2 | 2.19 | - | 284.48 | 156.46 | 159.39 | 33.94 | 135.34 | 36.90 |
| 3 | 1.97 | 57.90 | - | - | - | - | 68.60 | - | |
| 2, 3 ɫ | - | 37.14 | - | - | - | - | - | - | |
| 2019 | 1 | - | - | - | 88.90 | 116.62 | - | 107.48 | - |
| 2 | 0.37 | - | - | 68.18 | 85.01 | - | 87.01 | - | |
| 3 | 0.46 | 57.11 | 198.08 | 90.06 | 109.63 | - | 116.50 | 55.26 | |
| 1, 2, 3 ɫ | 0.17 | 22.41 | - | 52.12 | 57.57 | - | 58.97 | - | |
| 2018–19 | 2, 3 and 2, 3 ǂ | 0.22 | - | 51.19 | 30.16 | 23.28 | 4.18 | 25.21 | 16.51 |
| Year | Harvest | DM Yield (t/ha) | CP (g·kg−1) | IVDMD (g·kg−1) | NDF (g·kg−1) | ADF (g·kg−1) | ADL (g·kg−1) | CEL (g·kg−1) | HEMIC (g·kg−1) |
|---|---|---|---|---|---|---|---|---|---|
| 2018 | 2 | 1.58 | 84.40 | 163.92 | 35.30 | 50.87 | 35.77 | 64.84 | 62.31 |
| 3 | 1.29 | - | - | - | - | - | - | - | |
| 2, 3 ɫ | 0.58 | - | - | - | - | - | - | - | |
| 2019 | 1 | 0.83 | 97.07 | 317.02 | 106.69 | 98.84 | 11.98 | 94.03 | 14.75 |
| 2 | 0.58 | 105.57 | 177.41 | - | - | 17.76 | 56.67 | 70.25 | |
| 3 | - | 71.90 | 222.67 | - | - | - | - | - | |
| 1, 2, 3 ɫ | 0.47 | 59.83 | 154.57 | 43.12 | - | 9.11 | - | - | |
| 2018–19 | 2, 3 and 2, 3 ǂ | 0.24 | 29.40 | 64.13 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Fonseca, C.E.L.; Carvalho, M.A.; Pessoa-Filho, M.; Ramos, A.K.B.; Karia, C.T.; Braga, G.J.; Maciel, N.B.A.; Tameirão, S.N.D. Genetic Variability, Heritability, and Expected Gains for Yield and Forage Quality in Gamba Grass (Andropogon gayanus) Populations. Grasses 2025, 4, 44. https://doi.org/10.3390/grasses4040044
da Fonseca CEL, Carvalho MA, Pessoa-Filho M, Ramos AKB, Karia CT, Braga GJ, Maciel NBA, Tameirão SND. Genetic Variability, Heritability, and Expected Gains for Yield and Forage Quality in Gamba Grass (Andropogon gayanus) Populations. Grasses. 2025; 4(4):44. https://doi.org/10.3390/grasses4040044
Chicago/Turabian Styleda Fonseca, Carlos Eduardo Lazarini, Marcelo Ayres Carvalho, Marco Pessoa-Filho, Allan Kardec Braga Ramos, Cláudio Takao Karia, Gustavo José Braga, Natália Bortoleto Athayde Maciel, and Suelen Nogueira Dessaune Tameirão. 2025. "Genetic Variability, Heritability, and Expected Gains for Yield and Forage Quality in Gamba Grass (Andropogon gayanus) Populations" Grasses 4, no. 4: 44. https://doi.org/10.3390/grasses4040044
APA Styleda Fonseca, C. E. L., Carvalho, M. A., Pessoa-Filho, M., Ramos, A. K. B., Karia, C. T., Braga, G. J., Maciel, N. B. A., & Tameirão, S. N. D. (2025). Genetic Variability, Heritability, and Expected Gains for Yield and Forage Quality in Gamba Grass (Andropogon gayanus) Populations. Grasses, 4(4), 44. https://doi.org/10.3390/grasses4040044

