Phylogeography of a Widely Distributed Atlantic Species: The Case of the Ghost Crab Ocypode quadrata (Fabricius, 1787) (Decapoda: Brachyura: Ocypodidae)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shih, H.; Ng, P.K.L.; Davie, P.J.F.; Schubart, C.D.; Türkay, M.; Naderloo, R.; Jones, D.; Liu, M. Systematics of the family Ocypodidae Rafinesque, 1815 (Crustacea: Brachyura), based on phylogenetic relationships, with a reorganization of subfamily rankings and a review of the taxonomic status of Uca Leach, 1814, sensu lato and its subgenera. Raffles Bull. Zool. 2016, 64, 139–175. [Google Scholar]
- Melo, G.A.S. Manual de Identificação dos Brachyura (Caranguejos e Siris) do Litoral Brasileiro; Plêiade/FAPESP; Museu de Zoologia, Universidade de São Paulo: São Paulo, Brazil, 1996. [Google Scholar]
- Sakai, K.; Türkay, M. Revision of the genus Ocypode with the description of a new genus, Hoplocypode (Crustacea: Decapoda: Brachyura). Mem. Qld. Mus. 2013, 56, 665–693. [Google Scholar]
- Mantelatto, F.L.; Tamburus, A.F.; Magalhães, T.; Buranelli, R.C.; Terossi, M.; Negri, M.; Castilho, A.L.; Costa, R.C.; Zara, F.J. Checklist of decapod crustaceans from the coast of the São Paulo state (Brazil) supported by integrative molecular and morphological data: III. Infraorder Brachyura Latreille, 1802. Zootaxa 2020, 4872, 1–108. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.R.; Pfeiffer, W.J. Deposit feeding by the ghost crab Ocypode quadrata (Fabricius). J. Exp. Mar. Biol. Ecol. 1982, 56, 165–177. [Google Scholar] [CrossRef]
- Mattos, G.; Seixas, V.C.; Paiva, P.C. Comparative phylogeography and genetic connectivity of two crustacean species with contrasting life histories on South Atlantic Sandy beaches. Hydrobiologia 2019, 826, 319–330. [Google Scholar] [CrossRef]
- O’Brien, C.; Bracken-Grissom, H.D.; Baeza, J.A. The complete mitochondrial genome of the Atlantic ghost crab Ocypode quadrata (Fabricius, 1787) (Brachyura: Ocypodidae: Ocypodinae). J. Crustac. Biol. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- Wolcott, T.G. Ecological role of ghost crabs, Ocypode quadrata (Fabricius) on an ocean beach: Scavengers or predators? J. Exp. Mar. Biol. Ecol. 1978, 31, 67–82. [Google Scholar] [CrossRef]
- Veloso, V.G.; Cardoso, R.S.; Fonseca, D.B. Adaptações e biologia da macrofauna de praias arenosas expostas com ênfase nas espécies da região entre-marés do litoral fluminense. Oecol. Bras. 1997, 3, 135–154. [Google Scholar] [CrossRef]
- Alberto, R.M.; Fontoura, N. Distribuição e estrutura etária de Ocypode quadrata (Fabricius, 1787) (Crustacea, Decapoda, Ocypodidae) em praia arenosa do litoral Sul do Brasil. Rev. Bras. Biol. 1999, 59, 95–108. [Google Scholar] [CrossRef]
- Blankensteyn, A. O uso do caranguejo maria-farinha Ocypode quadrata (Fabricius) (Crustacea, Ocypodidae) como indicador de impactos antropogênicos em praias arenosas da Ilha de Santa Catarina, Santa Catarina, Brasil. Rev. Bras. Zool. 2006, 23, 870–876. [Google Scholar] [CrossRef]
- Araujo, C.C.V.; Rosa, D.M.; Fernandes, J.M. Densidade e distribuição espacial do caranguejo Ocypode quadrata (Fabricius, 1787) (Crustacea, Ocypodidae) em três praias arenosas do Espírito Santo, Brasil. Biotemas 2008, 21, 73–80. [Google Scholar] [CrossRef]
- Pombo, M.; Campagnoli, M.; Castilho-Martins, E.A.; Turra, A. Continuous, video-recording assessment of daily activity cycle of the ghost crab Ocypode quadrata Fabricius, 1787 (Brachyura: Ocypodidae) in southeastern Brazil. J. Crustac. Biol. 2017, 38, 133–139. [Google Scholar] [CrossRef]
- Novais, W.R.R.; Couto, E.C.G.; Carvalho, F.L. The use of an endoscopic camera to estimate size of brachyuran crabs in burrows. J. Crustac. Biol. 2018, 38, 509–513. [Google Scholar] [CrossRef]
- Barboza, C.A.M.; Mattos, G.; Soares-Gomes, A.; Zalmon, I.R.; Costa, L.L. Low densities of the ghost crab Ocypode quadrata related to large scale human modification of sandy shores. Front. Mar. Sci. 2021, 8, 589542. [Google Scholar] [CrossRef]
- Arueira, V.F.; Zalmon, I.R.; Costa, L.L. Is the ghost crab’s feeding behavior a good early indicator of human pressure in sandy beaches? Reg. Stud. Mar. Sci. 2022, 53, 102381. [Google Scholar] [CrossRef]
- Diaz, H.; Costlow, J.D. Larval development of Ocypode quadrata (Brachyura: Crustacea) under laboratory conditions. Mar. Biol. 1972, 15, 120–131. [Google Scholar] [CrossRef]
- Haley, S.R. Reproductive cycling in the ghost crab, Ocypode quadrata (Fabr.) (Brachyura, Ocypodidae). Crustaceana 1972, 23, 1–11. [Google Scholar] [CrossRef]
- McDermott, J.J. Notes on the unusual megalopae of the ghost crab Ocypode quadrata and related species (Decapoda: Brachyura: Ocypodidae). Northeast. Nat. 2009, 16, 637–646. [Google Scholar] [CrossRef]
- Dawson, M.N.; Barber, P.H.; González-Guzmán, L.I.; Toonen, R.J.; Dugan, J.E.; Grosberg, R.K. Phylogeography of Emerita analoga (Crustacea, Decapoda, Hippidae), an eastern Pacific Ocean sand crab with long-lived pelagic larvae. J. Biogeogr. 2011, 38, 1600–1612. [Google Scholar] [CrossRef]
- Peña-Toribio, A.; López-López, E.; Flores-Martínez, J.J.; Sanchez-Cordero, V.; Gómez-Lunar, Z.; Ruiz, E.A. Genetic diversity of the Atlantic ghost crab Ocypode quadrata (Decapoda: Ocypodidae) in two beaches with different anthropogenic disturbance in the North Coast of Veracruz, Mexico. Trop. Conserv. Sci. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Matzen da Silva, J.; Creer, S.; Santos, A.; Costa, A.C.; Cunha, M.R.; Costa, F.O.; Carvalho, G.R. Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 2011, 6, e19449. [Google Scholar] [CrossRef]
- Carvalho-Batista, A.; Negri, M.; Pileggi, L.G.; Castilho, A.L.; Costa, R.C.; Mantelatto, F.L. Inferring population connectivity across the range of distribution of the stiletto shrimp Artemesia longinaris Spence Bate, 1888 (Decapoda, Penaeidae) from DNA barcoding: Implications for fishery management. Zookeys 2014, 457, 271–288. [Google Scholar] [CrossRef]
- Negri, M.; Schubart, C.D.; Mantelatto, F.L. Tracing the introduction history of the invasive swimming crab Charybdis hellerii (A. Milne-Edwards, 1867) in the western Atlantic: Evidences of high genetic diversity and multiple introductions. Biol. Invasions 2018, 20, 771–1798. [Google Scholar] [CrossRef]
- Buranelli, R.C.; Mantelatto, F.L. Comparative genetic differentiation study of three coexisting mangrove crabs in western Atlantic. J. Nat. Hist. 2019, 53, 2883–2903. [Google Scholar] [CrossRef]
- Nishikawa, K.S.; Negri, M.; Mantelatto, F.L. Unexpected absence of population structure and high genetic diversity of the western Atlantic hermit crab Clibanarius antillensis Stimpson, 1859 (Decapoda: Diogenidae) based on mitochondrial markers and morphological data. Diversity 2021, 13, 56. [Google Scholar] [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; DeWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Ebach, M.C.; Holdrege, C. More taxonomy, not DNA barcoding. BioScience 2005, 55, 822–824. [Google Scholar] [CrossRef]
- Miller, S.E. DNA barcoding and the renaissance of taxonomy. Proc. Natl. Acad. Sci. USA 2007, 104, 4775–4776. [Google Scholar] [CrossRef] [PubMed]
- Radulovici, A.E.; Archambault, P.; Dufresne, F. DNA barcodes for marine biodiversity: Moving fast forward? Diversity 2010, 2, 450–472. [Google Scholar] [CrossRef]
- Cook, B.D.; Bernays, S.; Pringle, C.M.; Hughes, J.M. Marine dispersal determines the genetic population structure of stream fauna of Puerto Rico: Evidence for island scale population recovery processes. J. N. Am. Benthol. Soc. 2009, 28, 709–718. [Google Scholar] [CrossRef]
- Terossi, M.; Mantelatto, F.L. Morphological and genetic variability in Hippolyte obliquimanus Dana, 1852 (Decapoda, Caridea, Hippolytidae) from Brazil and the Caribbean Sea. Crustaceana 2012, 85, 685–712. Available online: https://www.jstor.org/stable/23240252 (accessed on 10 February 2024).
- Buranelli, R.C.; Mantelatto, F.L. Broad-ranging low genetic diversity among populations of the yellow finger marsh crab Sesarma rectum Randall, 1840 (Sesarmidae) revealed by DNA barcode. Crustaceana 2017, 90, 845–864. [Google Scholar] [CrossRef]
- Mandai, S.S.; Buranelli, R.C.; Schubart, C.D.; Mantelatto, F.L. Phylogenetic and phylogeographic inferences based on two DNA markers reveal geographic structure of the orangeclaw hermit crab Calcinus tibicen (Anomura: Diogenidae) in the western Atlantic. Mar. Biol. Res. 2018, 14, 565–580. [Google Scholar] [CrossRef]
- Peres, P.A.; Mantelatto, F.L. Salinity tolerance explains the contrasting phylogeographic patterns of two swimming crabs species along the tropical western Atlantic. Evol. Ecol. 2020, 34, 589–609. [Google Scholar] [CrossRef]
- Peres, P.A.; Lopes, M.; Negri, M.; Robles, R.; Santos, C.R.M.; Mantelatto, F.L. Lack of population genetic structure among Brazilian populations of Callinectes danae (Brachyura: Portunidae): Implication for management and conservation. Reg. Stud. Mar. Sci. 2020, 37, 101336. [Google Scholar] [CrossRef]
- Schubart, C.D.; Cuesta, J.A. Phylogenetic relationships of the Plagusiidae Dana, 1851 (Brachyura), with description of a new genus and recognition of Percnidae Stevcic, 2005, as an independent family. In Studies on Brachyura: A Homage to Danièle Guinot; Castro, P., Davie, P.J.F., Ng, P.K.L., Richer de Forges, B., Eds.; Brill: Leiden, The Netherlands, 2010; pp. 279–300. [Google Scholar]
- Venera-Pontón, D.E.; Driskell, A.C.; De Grave, S.; Felder, D.L.; Scioli, J.A.; Collin, R. Documenting decapod biodiversity in the Caribbean from DNA barcodes generated during field training in taxonomy. Biodivers. Data J. 2020, 8, e47333. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.C.; Faleiros, R.O.; Brayner, F.A.; Alves, L.C.; Bianchini, A.; Romero, C.; Buranelli, R.C.; Mantelatto, F.L.; McNamara, J.C. Macroevolution of thermal tolerance in intertidal crabs from Neotropical provinces: A phylogenetic comparative evaluation of critical limits. Ecol. Evol. 2017, 7, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Mantelatto, F.L.; Terossi, M.; Negri, M.; Buranelli, R.C.; Robles, R.; Magalhães, T.; Tamburus, A.F.; Rossi, N.; Miyazaki, M.J. DNA sequence database as a tool to identify decapod crustaceans on the São Paulo coastline. Mitochondrial DNA Part A 2018, 29, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Estoup, A.; Largiader, C.; Perrot, E.; Chourrout, D. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol. Mar. Biol. Biotechnol. 1996, 5, 295–298. [Google Scholar]
- Buranelli, R.C.; Felder, D.L.; Mantelatto, F.L. Genetic diversity among populations of the Western Atlantic mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda: Brachyura: Ocypodidae): Evidence for panmixia and useful data for future management and conservation. J. Crustac. Biol. 2019, 39, 386–395. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial Cytochrome c Oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Palumbi, S.R.; Martin, A.; Romano, S.; McMillan, W.O.; Stice, L.; Grabowski, G. The Simple Fool’s Guide to PCR; University of Hawaii: Honolulu, HI, USA, 1991; pp. 1–45. [Google Scholar]
- Schubart, C.D.; Neigel, J.E.; Felder, D.L. Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustaceans Iss. 2000, 12, 817–830. [Google Scholar]
- Mantelatto, F.L.; Robles, R.; Felder, D.L. Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae). Zool. J. Linn. Soc. 2007, 150, 211–220. [Google Scholar] [CrossRef]
- Mantelatto, F.L.; Pardo, L.M.; Pileggi, L.G.; Felder, D.L. Taxonomic re-examination of the hermit crab species Pagurus forceps and Pagurus comptus (Decapoda: Paguridae) by molecular analysis. Zootaxa 2009, 2133, 20–32. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Huelsenbeck, J.P.; Crandall, K.A. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 1997, 28, 437–466. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Clement, M.; Snell, Q.; Walker, P.; Posada, D.; Crandall, K. TCS: Estimating gene genealogies. In Proceedings of the 16th International Parallel and Distributed Processing Symposium, Fort Lauderdale, FL, USA, 15–19 April 2002; Volume 2, p. 184. [Google Scholar] [CrossRef]
- Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.X. Statistical test of neutrality of mutations against population growth, hitchhicking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M.; Hudson, R.R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing population. Genetics 1991, 129, 555–562. [Google Scholar] [CrossRef]
- Harpending, H.C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 1994, 66, 591–600. [Google Scholar] [PubMed]
- Gopurenko, D.; Huges, J.M. Regional patterns of genetic structure among Australian populations of the mud crab, Scylla serrata (Crustacea: Decapoda): Evidence from mitochondrial DNA. Mar. Freshw. Res. 2002, 53, 849–857. [Google Scholar] [CrossRef]
- Wieman, A.C.; Berendzen, P.B.; Hampton, K.R.; Jang, J.; Hopkins, M.J.; Jurgenson, J.; Mcnamara, J.C.; Thurman, C.I. A panmictic fiddler crab from the coast of Brazil? Impact of divergent ocean currents and larval dispersal potential on genetic and morphological variation in Uca maracoani. Mar. Biol. 2014, 161, 173–185. [Google Scholar] [CrossRef]
- Kawane, M.; Wada, K.; Watanabe, K. Comparisons of genetic population structures in four intertidal brachyuran species of contrasting habitat characteristics. Mar. Biol. 2008, 156, 193–203. [Google Scholar] [CrossRef]
- Futuyma, D.J. Evolutionary Biology, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 1986. [Google Scholar]
- Avise, J.C. Molecular Markers, Natural History, and Evolution, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2004. [Google Scholar]
- Addison, J.A.; Ort, B.S.; Mesa, K.A.; Pogson, G.H. Range-wide genetic homogeneity in the California sea mussel (Mytilus californianus): A comparison of allozymes, nuclear DNA markers, and mitochondrial DNA sequences. Mol. Ecol. 2008, 17, 4222–4232. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.J. The distribution of Ocypode quadrata, atlantic ghost crab (Decapoda: Brachyura: Ocypodidae) megalopae, beyond the presumptive northern boundary of adult populations in the Northwest Atlantic. Northeast. Nat. 2013, 20, 578–586. [Google Scholar] [CrossRef]
- Rossby, T. The North Atlantic Current and surrounding waters: At the crossroads. Rev. Geophys. 1996, 34, 463–481. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chow, L.H.; Wong, K.J.; Chen, H.N.; Ip, B.H.; Schubart, C.D.; Tsang, L.M.; Chan, B.K.K.; Chu, K.H. Speciation pattern of the horned ghost crab Ocypode ceratophthalmus (Pallas, 1772): An evaluation of the drivers of Indo-Pacific marine biodiversity using a widely distributed species. J. Biogeogr. 2018, 45, 2658–2668. [Google Scholar] [CrossRef]
- Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 2004, 13, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Kong, X.Y.; Yu, Z.N.; Kong, J.; Ma, S.; Chen, L.M. Genetic diversity and historical demography of chinese shrimp Feneropenaeus chinensis in Yellow Sea and Bohai Sea based on mitochondrial DNA analysis. Afr. J. Biotechnol. 2009, 8, 1193–1202. [Google Scholar]
- Waqairatu, S.S.; Dierens, L.; Cowley, J.A.; Dixon, T.J.; Johnson, K.N.; Barnes, A.C.; Yutao, L. Genetic analysis of Black Tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands. Ecol. Evol. 2012, 2, 2057–2071. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Furukawa, F.; Wada, K. Geographical variations in waving display and barricade-building behaviour, and genetic population structure in the intertidal brachyuran crab Ilyoplax pusilla (de Haan, 1835). J. Nat. Hist. 2009, 43, 17–34. [Google Scholar] [CrossRef]
- Peres, P.A.; Bracken-Grissom, H.; Timm, L.E.; Mantelatto, F.L. Genomic analyses implicate the Amazon–Orinoco Plume as the driver of cryptic speciation in a swimming crab. Genes 2022, 13, 2263. [Google Scholar] [CrossRef] [PubMed]
- Watts, R.J.; Johnson, M.S. Estuaries, lagoons and enclosed embayments: Habitats that enhance population subdivision of inshore fishes. Mar. Freshw. Res. 2004, 55, 641–651. [Google Scholar] [CrossRef]
- Wilke, T.; Davis, G.M. Infraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia bentrosa (Hydrobiidae: Rissooidea: Gastropoda): Do their different life histories affct biogeographic patterns and gene flow? Biol. J. Linn. Soc. 2000, 70, 89–105. [Google Scholar] [CrossRef]
- Bell, J.J. Similarity in connectivity patterns for two gastropod species lacking pelagic larvae. Mar. Ecol. Prog. Ser. 2008, 357, 185–194. [Google Scholar] [CrossRef]
- Peres, P.A.; Mantelatto, F.L. Demographic changes and life-history strategies predict the genetic diversity in crabs. J. Evol. Biol. 2022, 36, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Emílsson, I. The shelf and coastal waters off Southern Brazil. Bol. Inst. Oceanogr. 1962, 11, 101–112. [Google Scholar] [CrossRef]
- Shanks, A.L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 2009, 216, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Marochi, M.Z.; Tangerina, M.M.P.; Oliveira Rodrigues, R.; Laurenzano, C.; Vilegas, W.; Costa, T.M.; Schubart, C.D. Phylogeographic structure within the fiddler crabs Leptuca thayeri and Uca maracoani (Brachyura, Ocypodidae) along the tropical West Atlantic. Zool. Stud. 2022, 61, e67. [Google Scholar] [CrossRef] [PubMed]
- Thurman, C.L.; Shih, H.T.; McNamara, J.C. Minuca panema (Coelho, 1972): Resurrection of a fiddler crab species from Brazil closely related to Minuca burgersi (Holthuis, 1967) (Crustacea, Decapoda, Brachyura, Ocypodidae). Zool. Stud. 2023, 62, e45. [Google Scholar] [CrossRef] [PubMed]
- Silveira, I.C.A.; Schimidt, A.C.K.; Campos, E.J.D.; Godoi, S.S.; Ikeda, Y. A Corrente do Brasil ao largo da costa leste brasileira. Rev. Bras. Oceanogr. 2000, 48, 171–183. [Google Scholar] [CrossRef]
- Peterson, R.; Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 1991, 26, 1–73. [Google Scholar] [CrossRef]
- Laurenzano, C.; Mantelatto, F.L.; Schubart, C.D. South American homogeneity versus Caribbean heterogeneity: Population genetic structure of the western Atlantic fiddler crab Uca rapax (Brachyura, Ocypodidae). J. Exp. Mar. Biol. Ecol. 2013, 449, 22–27. [Google Scholar] [CrossRef]
- Yang, D.; Song, S.; Ma, J.; Li, P.; Zhang, H.; Price, M.R.S.; Li, C.; Jiang, Z. Stepping-stones and dispersal flow: Establishment of a metapopulation of Milu (Elaphurus davidianus) through natural re-wilding. Sci. Rep. 2016, 6, 27297. [Google Scholar] [CrossRef] [PubMed]
- Saura, S.; Bodin, O.; Fortin, M. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
Species | Locality | Catalogue Number | GenBank Accession Numbers | Reference Numbers | |
---|---|---|---|---|---|
16S (N) | COI (N) | ||||
Ocypode quadrata Fabricius, 1787 | USA, Georgia, Jekyll Island | ULLZ 4261 | FN539018 (1) | - | [37] |
USA, Virginia | USNM IZ 1287556 | - | KU905799 (1) | unpublished | |
Mexico, Veracruz | - | - | KY568733; KY568753-KY568756 (5) | [21] | |
Panama, Bocas del Toro | ULLZ 13411 | MK971527 (1) | MN184090 (1) | [38] | |
CCDB 3562 | - | OR354404 (1) | present study | ||
French Guiana | MZUSP 21560 | - | OR354405 (1) | present study | |
Brazil, Amapá (AP), Calçoene | CCDB 5409 | OR352135-OR352137 (3) | OR354406-OR354409 (4) | present study | |
- | MG805792-MG805798 (7) | - | [6] | ||
Brazil, Pará (PA), Ajuruteua | - | MG805700-MG805707 (8) | - | [6] | |
- | MG805698, MG805699 (2) | - | |||
Brazil, Caeará (CE), Caucaia | CCDB 4506 | OR352138 (1) | OR354410, OR354411 (2) | present study | |
Brazil, Rio Grande do Norte (RN), Parnamirim | CCDB 3395 | OR352139 (1) | OR354412 (1) | present study | |
Brazil, Rio Grande do Norte (RN), Tabatinga | - | MG805713-MG805721 (9) | - | 6 | |
Brazil, Rio Grande do Norte (RN), Tibau do Sul | CCDB 5559 | - | OR354413, OR354414, OR355675 (3) | present study | |
Brazil, Rio Grande do Norte (RN), Natal | CCDB 5422 | - | OR354426 (1) | present study | |
Brazil, Paraíba (PB), Intermares | - | MG805728-MG805730 (3) | - | [6] | |
Brazil, Pernambuco (PE), Ipojuca | CCDB 5733 | OR352140, KT279697 (2) | OR354415 (1) | present study, [39] | |
CCDB 2926 | OR352141 (1) | OR354416 (1) | present study | ||
Brazil, Fernando de Noronha (FN-PE), Conceição | - | MG805687-MG805696 (10) | - | [6] | |
Brazil, Alagoas (AL), Barra do Camaragibe | CCDB 4225, CCDB 5409 | - | OR354417 (1) | present study | |
Brazil, Alagoas (AL), Jequiá | CCDB 2966 | OR352142 (1) | OR355676 (1) | present study | |
Brazil, Alagoas (AL) | NCHUZOOL 14920 | LC150368 (1) | LC150423 (1) | [1] | |
Brazil, Sergipe (SE), Atalaia | MG805722-MG805726 (5) | - | [6] | ||
Brazil, Bahia (BA), Canavieiras | MG805751 (1) | - | [6] | ||
Brazil, Bahia (BA), Forte | MG805750, MG805782-MG805784 (3) | - | [6] | ||
Brazil, Bahia (BA), Itacimirim | CCDB 2189, CCDB 2190 | OR352144, OR352145, OR352147 (3) | OR354422, OR354423, OR354427 (3) | present study | |
Brazil, Bahia (BA), Lauro de Freitas | CCDB 3797 | - | OR354424 (1) | present study | |
Brazil, Bahia (BA), Prado | CCDB 4264 | - | OR354420, OR354421 (2) | present study | |
Brazil, Bahia (BA), Mata de São João | CCDB 6126 | OR352146 (1) | OR354425 (1) | present study | |
Brazil, Bahia (BA), Salvador | CCDB 1016 | OR352143 (1) | OR354419 (1) | present study | |
Brazil, Espírito Santo (ES), Marataízes | CCDB 3973 | - | OR354418 (1) | present study | |
Brazil, Espírito Santo (ES), Setiba Pina | - | MG805727 (1) | - | [6] | |
Brazil, Rio de Janeiro (RJ), Bananal | - | MG805753-MG805761 (9) | - | [6] | |
Brazil, Rio de Janeiro (RJ), Restinga da Marambaia | - | MG805785 (1) | - | ||
Brazil, São Paulo (SP), Ilha Comprida | CCDB 3677 | OR352148, OR352149 (2) | OR354428, OR354429, MT623344 (3) | present study, [40] | |
Brazil, São Paulo (SP), Registro | CCDB 3186 | OR352150 (1) | OR354430, OR355677, MT623342 (3) | present study, [40] | |
Brazil, São Paulo (SP), Ubatuba | CCDB 5087 | - | OR354431, MT623343 (2) | present study, [40] | |
Brazil, São Paulo (SP), Ubatuba | CCDB 1926 | KU313182 (1) | KU313197 (1) | [40] | |
Brazil, Santa Catarina (SC), Florianópolis | UFRGS 1859 | - | OR354432, OR354433 (2) | present study | |
MZUSP 25171 | - | OR354434 (1) | present study | ||
Brazil, Santa Catarina (SC), Praia de Ubatuba | - | MG805665-MG805674 (10) | - | [6] | |
Sister Groups | |||||
Ocypode africana De Man, 1881 | Liberia | SMF 9823 | LC150354 | LC150409 | [1] |
Ocypode ceratophthalmus (Pallas, 1772) | Taiwan, Tainan | NCHUZOOL 14916 | LC150355 | LC150410 | |
Ocypode macrocera H. Milne Edwards, 1837 | India, Tamil, Nadi | ZRC | LC150361 | LC150416 | |
Ocypode nobilii De Man, 1902 | Malaysia, Kuching | NCHUZOOL 14918 | LC150362 | LC150417 | |
Ocypode cordimana Latreille, 1818 | Guam | NCHUZOOL 14917 | LC150358 | LC150413 | |
Ocypode gaudichaudii H. Milne Edwards & Lucas, 1843 | Panama, Culebra | ZRC | LC150359 | LC150414 | |
Ocypode kuhlii De Haan, 1835 | Christmas I. | ZRC | LC150360 | LC150415 | |
Ocypode occidentalis Stimpson, 1860 | Costa Rica | ZRC 2012.0125 | LC150365 | LC150420 | |
Ocypode rotundata Miers, 1882 | Iran | SMF 40586 | LC150369 | LC150424 | |
Ocypode ryderi Kingsley, 1880 | Mozambique, Inharrime | ZRC | LC150370 | LC150425 | |
Ocypode sinensis Dai & Yang in Song & Yang, 1985 | Taiwan, Pingtung | NCHUZOOL 14806 | LC150372 | LC150427 | |
Ocypode stimpsoni Ortmann, 1897 | Taiwan, Hsinchu | NCHUZOOL 14921 | LC150373 | LC150428 | |
Outgroup | |||||
Afruca tangeri (Eydoux, 1835) | Spain, Puerto de Santa Maria, Cadiz | NCHUZOOL 13585 | AB813666 | AB813682 | [1] |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
1 | USA | ||||||||||||||
2 | Mexico | 0.6 | |||||||||||||
3 | Panama | 11.0 | 11.3 | ||||||||||||
4 | French Guiana | 13.4 | 13.6 | 3.5 | |||||||||||
5 | Brazil—Amapá | 11.5 | 11.8 | 0.6 | 3.1 | ||||||||||
6 | Brazil—Ceará | 10.7 | 11.0 | 1.4 | 4.2 | 1.7 | |||||||||
7 | Brazil—Rio Grande do Norte | 11.5 | 11.8 | 0.7 | 3.3 | 0.4 | 1.8 | ||||||||
8 | Brazil—Pernambuco | 11.7 | 12.0 | 0.9 | 3.5 | 1.0 | 1.9 | 1.1 | |||||||
9 | Brazil—Alagoas | 11.4 | 11.7 | 0.8 | 3.4 | 0.6 | 1.3 | 0.8 | 1.3 | ||||||
10 | Brazil—Bahia | 11.6 | 11.9 | 0.9 | 3.7 | 0.8 | 1.9 | 1.0 | 1.3 | 1.2 | |||||
11 | Brazil—Espírito Santo | 11.5 | 11.8 | 0.5 | 3.0 | 0.1 | 1.6 | 0.4 | 0.9 | 0.5 | 0.7 | ||||
12 | Brazil—São Paulo | 11.9 | 12.1 | 0.9 | 3.6 | 0.6 | 2.0 | 0.9 | 1.4 | 1.1 | 1.2 | 0.6 | |||
13 | Brazil—Santa Catarina | 11.4 | 11.7 | 0.7 | 3.4 | 0.6 | 1.7 | 0.7 | 0.9 | 0.9 | 1.0 | 0.5 | 1.0 | ||
14 | Sister Group | 15.9 | 16.1 | 17.9 | 19.7 | 18.2 | 17.9 | 18.1 | 18.2 | 18.3 | 18.2 | 18.2 | 18.5 | 18.0 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | ||
1 | USA | |||||||||||||||||
2 | Panama | 3.7 | ||||||||||||||||
3 | Brazil—Amapá | 3.7 | 0.1 | |||||||||||||||
4 | Brazil—Pará | 3.8 | 0.2 | 0.3 | ||||||||||||||
5 | Brazil—Ceará | 6.4 | 2.5 | 2.6 | 2.7 | |||||||||||||
6 | Brazil—Rio Grande do Norte | 3.7 | 0.1 | 0.2 | 0.3 | 2.6 | ||||||||||||
7 | Brazil—Fernando de Noronha | 3.7 | 0.0 | 0.1 | 0.2 | 2.5 | 0.1 | |||||||||||
8 | Brazil—Paraíba | 3.7 | 0.0 | 0.1 | 0.2 | 2.5 | 0.1 | 0.0 | ||||||||||
9 | Brazil—Pernambuco | 3.9 | 0.3 | 0.4 | 0.5 | 2.8 | 0.4 | 0.3 | 0.3 | |||||||||
10 | Brazil—Alagoas | 3.7 | 0.0 | 0.3 | 0.4 | 2.5 | 0.3 | 0.2 | 0.2 | 0.4 | ||||||||
11 | Brazil—Sergipe | 3.8 | 0.2 | 0.2 | 0.3 | 2.6 | 0.2 | 0.2 | 0.2 | 0.4 | 0.3 | |||||||
12 | Brazil—Bahia | 3.7 | 0.1 | 0.1 | 0.3 | 2.5 | 0.2 | 0.1 | 0.1 | 0.4 | 0.2 | 0.2 | ||||||
13 | Brazil—Espírito Santo | 3.7 | 0.0 | 0.1 | 0.2 | 2.5 | 0.1 | 0.0 | 0.0 | 0.3 | 0.2 | 0.2 | 0.1 | |||||
14 | Brazil—Rio de Janeiro | 3.7 | 0.1 | 0.1 | 0.3 | 2.5 | 0.1 | 0.1 | 0.1 | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 | ||||
15 | Brazil—São Paulo | 3.8 | 0.1 | 0.2 | 0.4 | 2.6 | 0.2 | 0.2 | 0.1 | 0.5 | 0.2 | 0.3 | 0.2 | 0.1 | 0.2 | |||
16 | Brazil—Santa Catarina | 3.8 | 0.1 | 0.2 | 0.3 | 2.5 | 0.2 | 0.1 | 0.1 | 0.4 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.2 | ||
17 | Sister Group | 9.5 | 10.0 | 10.1 | 10.2 | 12.8 | 10.1 | 10.1 | 10.1 | 10.4 | 9.9 | 10.2 | 10.1 | 10.1 | 10.1 | 10.2 | 10.1 |
N | h | S | π | k | Hd | |
---|---|---|---|---|---|---|
COI | 45 | 33 | 121 | 0.0373 | 20.853 | 0.9707 |
16S | 89 | 24 | 53 | 0.01108 | 5.243 | 0.6014 |
df | Variance Components | Percentage of Variation | Fixation Index | |
---|---|---|---|---|
COI | ||||
Among populations | 12 | 0.04141 | 8.46 | FST = 0.08463 |
Within populations | 32 | 0.44792 | 91.54 | |
Total | 44 | 0.48933 | ||
16S | ||||
Among populations | 15 | 0.00914 | 3.03 | FST = 0.03032 |
Within populations | 73 | 0.29231 | 96.97 | |
Total | 88 | 0.30146 |
COI | |||
FST (p value) | Amapá, Brazil | Ceará, Brazil | Bahia, Brazil |
Mexico | - | 0. 28571 (0.04861) | - |
Ceará, Brazil | - | - | 0.27150 (0.04415) |
São Paulo, Brazil | 0. 22239 (0.01317) | 0.27150 (0.04811) | - |
16S | |||
FST (p value) | Fernando de Noronha, Brazil | ||
Pará, Brazil | 0.22374 (0.99990) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamburus, A.F.; Miranda, I.; Naves, B.B.; Mantelatto, F.L. Phylogeography of a Widely Distributed Atlantic Species: The Case of the Ghost Crab Ocypode quadrata (Fabricius, 1787) (Decapoda: Brachyura: Ocypodidae). Arthropoda 2024, 2, 130-148. https://doi.org/10.3390/arthropoda2020010
Tamburus AF, Miranda I, Naves BB, Mantelatto FL. Phylogeography of a Widely Distributed Atlantic Species: The Case of the Ghost Crab Ocypode quadrata (Fabricius, 1787) (Decapoda: Brachyura: Ocypodidae). Arthropoda. 2024; 2(2):130-148. https://doi.org/10.3390/arthropoda2020010
Chicago/Turabian StyleTamburus, Ana Francisca, Ivana Miranda, Bárbara Benati Naves, and Fernando Luis Mantelatto. 2024. "Phylogeography of a Widely Distributed Atlantic Species: The Case of the Ghost Crab Ocypode quadrata (Fabricius, 1787) (Decapoda: Brachyura: Ocypodidae)" Arthropoda 2, no. 2: 130-148. https://doi.org/10.3390/arthropoda2020010
APA StyleTamburus, A. F., Miranda, I., Naves, B. B., & Mantelatto, F. L. (2024). Phylogeography of a Widely Distributed Atlantic Species: The Case of the Ghost Crab Ocypode quadrata (Fabricius, 1787) (Decapoda: Brachyura: Ocypodidae). Arthropoda, 2(2), 130-148. https://doi.org/10.3390/arthropoda2020010