Effects of Organic Amendments on Phenol Oxidase, Peroxidase, Urease, and Nitrogen Mineralization: A Laboratory Incubation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Collection and Preparation
2.2. Physical and Chemical Determination of Soil Samples
2.3. Chemical Property Determination of Soil Amendments
2.4. Laboratory Incubations
2.5. Accumulated Mineralized N Analysis
2.6. Soil Enzyme Analysis
2.7. Data Analysis
3. Results
3.1. Soil Enzyme Activity
3.2. Net Mineralized NO3− and NH4+ Content
3.3. Net Mineralized N
4. Discussion
4.1. Effects of Soil Amendment Type on Enzyme Activity
4.2. Effects of Soil Amendment Type on Accumulated Inorganic N
4.3. The Implications of Soil Amendment Applications for Sustainable Agriculture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Lou, X.F.; Nair, J. The impact of landfilling and composting on greenhouse gas emissions—A review. Bioresour. Technol. 2009, 100, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jaenicke, E.C. Estimating Food Waste as Household Production Inefficiency. Am. J. Agric. Econ. 2020, 102, 525–547. [Google Scholar] [CrossRef]
- Dong, W.; Armstrong, K.; Jin, M.; Nimbalkar, S.; Guo, W.; Zhuang, J.; Cresko, J. A framework to quantify mass flow and assess food loss and waste in the US food supply chain. Commun. Earth Environ. 2022, 3, 83. [Google Scholar] [CrossRef]
- Buzby, J.C.; Farah-Wells, H.; Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States. USDA-ERS Econ. Inf. Bull. 2014, 121, 1–2. [Google Scholar] [CrossRef]
- Kelley, A.; Wilkie, A.C.; Maltais-Landry, G. Food-Based Composts Provide More Soil Fertility Benefits Than Cow Manure-Based Composts in Sandy Soils. Agriculture 2020, 10, 69. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Yin Chan, K.; Donovan, N.J.; Saleh, F.; Orr, L.; Barchia, I. Agronomic and economic benefits of green-waste compost for peri-urban vegetable production: Implications for food security. Nutr. Cycl. Agroecosyst. 2018, 111, 155–173. [Google Scholar] [CrossRef]
- Selvi, R.V.; Kalpana, R. Potentials of green manure in integrated nutrient management for rice—A review. Agric. Rev. 2009, 30, 40–47. [Google Scholar]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
- Evanylo, G.; Sherony, C.; Spargo, J.; Starner, D.; Brosius, M.; Haering, K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 2008, 127, 50–58. [Google Scholar] [CrossRef]
- Eghball, B.; Gilley, J.E. Phosphorus and Nitrogen in Runoff following Beef Cattle Manure or Compost Application. J. Environ. Qual. 1999, 28, 1201–1210. [Google Scholar] [CrossRef]
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Jacobs, K.; Wind, L.; Krometis, L.-A.; Hession, W.C.; Pruden, A. Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. J. Environ. Qual. 2019, 48, 1038–1046. [Google Scholar] [CrossRef]
- Habteweld, A.; Brainard, D.; Kravchencko, A.; Grewal, P.S.; Melakeberhan, H. Effects of integrated application of plant-based compost and urea on soil food web, soil properties, and yield and quality of a processing carrot cultivar. J. Nematol. 2020, 52, 1–17. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Ruysschaert, G.; Vandecasteele, B.; Houot, S.; Baken, S.; Smolders, E.; Cougnon, M.; Reheul, D.; Merckx, R. The long term use of farmyard manure and compost: Effects on P availability, orthophosphate sorption strength and P leaching. Agric. Ecosyst. Environ. 2016, 216, 23–33. [Google Scholar] [CrossRef]
- Sullivan, D.M.; Bary, A.I.; Nartea, T.J.; Myrhe, E.A.; Cogger, C.G.; Fransen, S.C. Nitrogen Availability Seven Years After a High-Rate Food Waste Compost Application. Compos. Sci. Util. 2003, 11, 265–275. [Google Scholar] [CrossRef]
- Wolka, K.; Melaku, B. Exploring selected plant nutrient in compost prepared from food waste and cattle manure and its effect on soil properties and maize yield at Wondo Genet, Ethiopia. Environ. Syst. Res. 2015, 4, 9. [Google Scholar] [CrossRef]
- Kaur, K.; Kapoor, K.K.; Gupta, A.P. Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. J. Plant Nutr. Soil Sci. 2005, 168, 117–122. [Google Scholar] [CrossRef]
- Lentz, R.D.; Lehrsch, G.A. Net Nitrogen Mineralization from Past Years’ Manure and Fertilizer Applications. Soil Sci. Soc. Am. J. 2012, 76, 1005–1015. [Google Scholar] [CrossRef]
- Cabrera, F.; Martín-Olmedo, P.; López, R.; Murillo, J.M. Nitrogen mineralization in soils amended with composted olive mill sludge. Nutr. Cycl. Agroecosyst. 2005, 71, 249–258. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E.; Vigil, M.F. Nitrogen Mineralization from Organic Residues. J. Environ. Qual. 2005, 34, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Sinsabaugh, R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.S.; Formanek, P. Enzymatic Degradation of Lignin in Soil: A Review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef]
- Saiya-Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Iyyemperumal, K.; Shi, W. Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate. Appl. Soil Ecol. 2008, 38, 128–136. [Google Scholar] [CrossRef]
- Schimel, J.; Schaeffer, S. Microbial control over carbon cycling in soil. Front. Microbiol. 2012, 3, 348. [Google Scholar] [CrossRef]
- Freeman, C.; Ostle, N.J.; Fenner, N.; Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 2004, 36, 1663–1667. [Google Scholar] [CrossRef]
- Sherene, T. Role of soil enzymes in nutrient transformation: A review. Bio Bull. 2017, 3, 109–131. [Google Scholar]
- Barthelemy, H.; Stark, S.; Michelsen, A.; Olofsson, J. Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra: Insights from a 15N-enriched urea tracer experiment. J. Ecol. 2018, 106, 367–378. [Google Scholar] [CrossRef]
- Dey, D.; Mavi, M.S. Biochar and urea co-application regulates nitrogen availability in soil. Environ. Monit. Assess. 2021, 193, 326. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2017, 17, 794–807. [Google Scholar] [CrossRef] [Green Version]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.d.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Bray, S.R.; Kitajima, K.; Mack, M.C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 2012, 49, 30–37. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad Shah, J.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Henriksen, T.M.; Breland, T.A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol. Biochem. 1999, 31, 1121–1134. [Google Scholar] [CrossRef]
- Chen, J.; Luo, Y.; García-Palacios, P.; Cao, J.; Dacal, M.; Zhou, X.; Li, J.; Xia, J.; Niu, S.; Yang, H.; et al. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Glob. Chang. Biol. 2018, 24, 4816–4826. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Zak, D.R. Response of Oxidative Enzyme Activities to Nitrogen Deposition Affects Soil Concentrations of Dissolved Organic Carbon. Ecosystems 2006, 9, 921–933. [Google Scholar] [CrossRef]
- Hassan, W.; Chen, W.; Cai, P.; Huang, Q. Oxidative Enzymes, the Ultimate Regulator: Implications for Factors Affecting Their Efficiency. J. Environ. Qual. 2013, 42, 1779–1790. [Google Scholar] [CrossRef]
- Dong, N.; Hu, G.; Zhang, Y.; Qi, J.; Chen, Y.; Hao, Y. Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard. Sci. Rep. 2021, 11, 16882. [Google Scholar] [CrossRef] [PubMed]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green Manure Approaches to Crop Production: A Synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Maguire, R.; Heckendorn, S.E. Laboratory Procedures: Virginia Tech Soil Testing Laboratory. Available online: https://vtechworks.lib.vt.edu/handle/10919/55039 (accessed on 31 March 2022).
- Kettler, T.; Doran, J.W.; Gilbert, T. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 2001, 65, 849–852. [Google Scholar] [CrossRef]
- Armstrong, F. Determination of nitrates in water by ultraviolet spectrophotometry. Anal. Chem. 1963, 35, 1292. [Google Scholar] [CrossRef]
- Lei, L.; McDonald, L.M. Soil Moisture and Temperature Effects on Nitrogen Mineralization in a High Tunnel Farming System. Commun. Soil Sci. Plant Anal. 2019, 50, 2140–2150. [Google Scholar] [CrossRef]
- Schulte, E. Recommended Soil Organic Matter Tests. In Recommended Soil Testing Procedures for the North Eastern USA; Northeastern Regional Publication: New York, NY, USA, 1995; pp. 52–60. [Google Scholar]
- Goswami, L.; Nath, A.; Sutradhar, S.; Bhattacharya, S.S.; Kalamdhad, A.; Vellingiri, K.; Kim, K.-H. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017, 200, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Grewal, K.; Buchan, G.; Tonkin, P. Estimation of field capacity and wilting point of some New Zealand soils from their saturation percentages. N. Z. J. Crop Hortic. Sci. 1990, 18, 241–246. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Wallenstein, M.; Steinweg, J.M.; McMahon, S. Recent Advancements in Understanding the Ecology of Soil Extracellular Enzymes. Nat. Preced. 2009. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Reynolds, H.; Long, T.M. Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biol. Biochem. 2000, 32, 2095–2097. [Google Scholar] [CrossRef]
- Nyiraneza, J.; Vernon, R.; Yvonne, U.; Fraser, T.D.; Erin, S.; Fillmore, S.; Mills, A. Long-Term Manure Application Effects on Nutrients and Selected Enzymes Involved in Their Cycling. Soil Sci. Soc. Am. J. 2018, 82, 1404–1414. [Google Scholar] [CrossRef]
- Khan, M.I.; Gwon, H.S.; Alam, M.A.; Song, H.J.; Das, S.; Kim, P.J. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Appl. Soil Ecol. 2020, 147, 103400. [Google Scholar] [CrossRef]
- Li, Q.; Jia, W.; Zhang, Q.; Cheng, X. Localized plant-soil-microbe interactions regulate spatial variations of soil oxidase activities within afforested systems in a subtropical area. Geoderma 2022, 406, 115499. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Gallo, M.E.; Lauber, C.; Waldrop, M.P.; Zak, D.R. Extracellular Enzyme Activities and Soil Organic Matter Dynamics for Northern Hardwood Forests receiving Simulated Nitrogen Deposition. Biogeochemistry 2005, 75, 201–215. [Google Scholar] [CrossRef]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef]
- Hendel, B.; Sinsabaugh, R.L.; Marxsen, J. Lignin-Degrading Enzymes: Phenoloxidase and Peroxidase. In Methods to Study Litter Decomposition: A Practical Guide; Bärlocher, F., Gessner, M.O., Graça, M.A.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 425–431. [Google Scholar]
- Dari, K.; Béchet, M.; Blondeau, R. Isolation of soil Streptomyces strains capable of degrading humic acids and analysis of their peroxidase activity. FEMS Microbiol. Ecol. 1995, 16, 115–121. [Google Scholar] [CrossRef]
- Serra-Wittling, C.; Houot, S.; Barriuso, E. Soil enzymatic response to addition of municipal solid-waste compost. Biol. Fertil. Soils 1995, 20, 226–236. [Google Scholar] [CrossRef]
- Hashempoor, J.; Asadi-Sanam, S.; Mirza, M.; Ghanbari Jahromi, M. The Effect of Different Fertilizer Sources on Soil Nutritional Status and Physiological and Biochemical Parameters of Cone Flower (Echinacea purpurea L.). Commun. Soil Sci. Plant Anal. 2022, 53, 1246–1260. [Google Scholar] [CrossRef]
- Agehara, S.; Warncke, D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef]
- Flavel, T.C.; Murphy, D.V. Carbon and Nitrogen Mineralization Rates after Application of Organic Amendments to Soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef]
- Fang, C.; Smith, P.; Smith, J.U. Is resistant soil organic matter more sensitive to temperature than the labile organic matter? Biogeosciences 2006, 3, 65–68. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Błońska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic activity of soils and soil organic matter stabilization as an effect of components released from the decomposition of litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Freedman, Z.; Zak, D.R. Atmospheric N deposition increases bacterial laccase-like multicopper oxidases: Implications for organic matter decay. Appl. Environ. Microbiol. 2014, 80, 4460–4468. [Google Scholar] [CrossRef]
- Zhong, W.; Gu, T.; Wang, W.; Zhang, B.; Lin, X.; Huang, Q.; Shen, W. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 2010, 326, 511–522. [Google Scholar] [CrossRef]
- Fan, J.; Xiao, J.; Liu, D.; Ye, G.; Luo, J.; Houlbrooke, D.; Laurenson, S.; Yan, J.; Chen, L.; Tian, J.; et al. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: A lysimeter study. Sci. Total Environ. 2017, 592, 206–214. [Google Scholar] [CrossRef]
- Zhang, J.; Sayer, E.J.; Zhou, J.; Li, Y.; Li, Y.; Li, Z.; Wang, F. Long-term fertilization modifies the mineralization of soil organic matter in response to added substrate. Sci. Total Environ. 2021, 798, 149341. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
pH | 7.5 |
TC (%) | 3.88 |
TN (%) | 0.31 |
C:N | 12.5 |
NO3− (mg kg−1) | 3.48 |
NH4+ (mg kg−1) | 5.53 |
CEC (meq/100 g) | 16.4 |
P (mg kg−1) | 142 |
K (mg kg−1) | 380 |
Mg (mg kg−1) | 561 |
Ca (mg kg−1) | 5541 |
SOM (%) | 8.77 |
Sand (%) | 27.08 |
Silt (%) | 47.7 |
Clay (%) | 25.21 |
Amendment | pH | TC (%) | TN (%) | C:N | NO3− (mg kg−1) | NH4+ (mg kg−1) |
---|---|---|---|---|---|---|
Black Kow (CM) | 7.5 | 31.3 | 1.43 | 21.96 | 350.60 | 146.20 |
Blue Ribbon Organics (GM) | 7.3 | 20.57 | 1.48 | 13.90 | 271.21 | 98.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leaseburg, E.E.; Lei, L.; Fink, L.S. Effects of Organic Amendments on Phenol Oxidase, Peroxidase, Urease, and Nitrogen Mineralization: A Laboratory Incubation Study. Agrochemicals 2022, 1, 3-16. https://doi.org/10.3390/agrochemicals1010002
Leaseburg EE, Lei L, Fink LS. Effects of Organic Amendments on Phenol Oxidase, Peroxidase, Urease, and Nitrogen Mineralization: A Laboratory Incubation Study. Agrochemicals. 2022; 1(1):3-16. https://doi.org/10.3390/agrochemicals1010002
Chicago/Turabian StyleLeaseburg, Emma E., Lili Lei, and Linda S. Fink. 2022. "Effects of Organic Amendments on Phenol Oxidase, Peroxidase, Urease, and Nitrogen Mineralization: A Laboratory Incubation Study" Agrochemicals 1, no. 1: 3-16. https://doi.org/10.3390/agrochemicals1010002