Vitamin D Receptor and CYP450 Enzyme Dysregulation May Mediate Oral Cancer Responsiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Cell Lines
2.2. Cell Line Verification
2.3. Growth Assays
2.4. RNA Isolation
2.5. cDNA Synthesis
2.6. qPCR Screening
- Positive controls
- GAPDH primers (metabolic control)
- GAPDH forward: 5′-ATCTTCCAGGAGCGAGATCC-3′; Tm: 66 °C
- GAPDH reverse: 5′-ACCACTGACACGTTGGCAGT-3′; Tm: 70 °C
- VitD Receptor primers
- VDR (Vitamin D receptor)
- VDR forward: 5′-CCAAACACTTCGAGCACAAGG-3′; Tm: 67 °C
- VDR reverse: 5′-AGAGCAGAGTTCCAAGCAGAGG-3′; Tm: 69 °C
- FOK1 primers
- FOK1 forward: 5′-CCAGCTATGTAGGGCGAATC-3′; Tm: 69 °C
- FOK1 reverse: 5′-CCTTCACAGGTCATAGCATTGA-3′; Tm: 64 °C
- P450 metabolic enzyme primers
- CYP2R1 (hydroxylase) primers
- CYP2R1 forward: 5′-AGAGGGAAGAGCAATGACATG-3′; Tm: 59 °C
- CYP2R1 reverse: 5′-TTAAGCCATCAGATTGGTGG-3′; Tm: 62 °C
- CYP24A1 (hydroxylase) primers
- CYP24A1 forward: 5′-GCAGCCTAGTGCAGATTT-3′; Tm: 62 °C
- CPR24A1 reverse: 5′-ATTCACCCAGAACTGTTG-3′; Tm: 59 °C
- CYP27A1 (hydroxylate) primers
- CYP27A1 forward: 5′-GGAAAGTACCCAGTACGG-3′; Tm: 61 °C
- CYP27A1 reverse: 5′-AGCAAATAGCTTCCAAGG-3′; Tm: 59 °C
- CYP27B1 (hydroxylate) primers
- CYP27B1 forward: 5′-GCGGACTGCTCACTGCGGAA-3′; Tm: 73 °C
- CYP27B1 reverse: 5′-GCCGCACAAGGTCGCAGACT-3′; Tm: 74 °C
2.7. Statistical Analysis
3. Results
3.1. Vitamin D3 Growth Assays
3.2. Vitamin D Receptor Expression
3.3. CYP450 Enzyme Expression
3.4. Vitamin D2 Growth Assays
3.5. Comparison of Vitamin D2 and Vitamin D3 Growth Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abboud, M.; Rizk, R.; AlAnouti, F.; Papandreou, D.; Haidar, S.; Mahboub, N. The Health Effects of Vitamin D and Probiotic Co-Supplementation: A Systematic Review of Randomized Controlled Trials. Nutrients 2020, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D and bone health: What vitamin D can and cannot do. Adv. Food Nutr. Res. 2024, 109, 43–66. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Aschner, M.; Tsatsakis, A.; Rocha, J.B.T.; Santamaria, A.; Spandidos, D.A.; Martins, A.C.; Lu, R.; Korobeinikova, T.V.; Chen, W.; et al. Role of vitamins beyond vitamin D3 in bone health and osteoporosis (Review). Int. J. Mol. Med. 2024, 53, 9. [Google Scholar] [CrossRef]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef]
- Poles, J.; Karhu, E.; McGill, M.; McDaniel, H.R.; Lewis, J.E. The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review. J. Clin. Transl. Res. 2021, 7, 333–376. [Google Scholar] [PubMed]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between vitamin D supplementation and mortality: Systematic review and meta-analysis. BMJ 2019, 366, l4673, Erratum in: BMJ 2020, 370, m2329. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Grübler, M.; Gaksch, M.; Schwetz, V.; Trummer, C.; Hartaigh, B.Ó.; Verheyen, N.; Tomaschitz, A.; März, W. Vitamin D and Mortality. Anticancer Res. 2016, 36, 1379–1387. [Google Scholar] [PubMed]
- Bjelakovic, G.; Gluud, L.L.; Nikolova, D.; Whitfield, K.; Wetterslev, J.; Simonetti, R.G.; Bjelakovic, M.; Gluud, C. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst. Rev. 2011, 7, CD007470, Erratum in: Cochrane Database Syst. Rev. 2014, 1, CD007470. [Google Scholar] [CrossRef]
- Ebert, R.; Schütze, N.; Adamski, J.; Jakob, F. Vitamin D signaling is modulated on multiple levels in health and disease. Mol. Cell Endocrinol. 2006, 248, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.; Heaney, R.P. Vitamin D: The iceberg nutrient. J. Ren. Nutr. 2011, 21, 134–139. [Google Scholar] [CrossRef]
- Pludowski, P. Supplementing Vitamin D in Different Patient Groups to Reduce Deficiency. Nutrients 2023, 15, 3725. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Eekhoff, M.; van Schoor, N.; Oosterwerff, M.; de Jongh, R.; Krul-Poel, Y.; Simsek, S. Vitamin D and type 2 diabetes. J. Steroid Biochem. Mol. Biol. 2017, 173, 280–285. [Google Scholar] [CrossRef]
- Szymczak-Pajor, I.; Śliwińska, A. Analysis of Association between Vitamin D Deficiency and Insulin Resistance. Nutrients 2019, 11, 794. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sharma, P.; Girgis, C.M.; Gunton, J.E. Vitamin D and Beta Cells in Type 1 Diabetes: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 14434. [Google Scholar] [CrossRef] [PubMed]
- Khoo, A.L.; Chai, L.; Koenen, H.; Joosten, I.; Netea, M.; van der Ven, A. Translating the role of vitamin D3 in infectious diseases. Crit. Rev. Microbiol. 2012, 38, 122–135. [Google Scholar] [CrossRef]
- Decyk, A.; Kobylińska, M.; Antosik, K.; Kurowska, K. Vitamin D in SARS-CoV-2 infection. Rocz. Panstw. Zakl. Hig. 2022, 73, 5–12. [Google Scholar] [CrossRef]
- Nitsa, A.; Toutouza, M.; Machairas, N.; Mariolis, A.; Philippou, A.; Koutsilieris, M. Vitamin D in Cardiovascular Disease. Vivo 2018, 32, 977–981. [Google Scholar] [CrossRef]
- Pál, É.; Ungvári, Z.; Benyó, Z.; Várbíró, S. Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023, 15, 334. [Google Scholar] [CrossRef]
- Chirumbolo, S. Vitamin D3 in cancer prevention and therapy: The nutritional issue. Horm. Mol. Biol. Clin. Investig. 2015, 23, 71–78. [Google Scholar] [CrossRef]
- Henn, M.; Martin-Gorgojo, V.; Martin-Moreno, J.M. Vitamin D in Cancer Prevention: Gaps in Current Knowledge and Room for Hope. Nutrients 2022, 14, 4512. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Vitamins for Cancer Prevention and Treatment: An Insight. Curr. Mol. Med. 2017, 17, 321–340. [Google Scholar] [CrossRef]
- Holick, M.F. Sunlight, UV Radiation, Vitamin D, and Skin Cancer: How Much Sunlight Do We Need? Adv. Exp. Med. Biol. 2020, 1268, 19–36. [Google Scholar] [CrossRef]
- Mahendra, A.; Karishma Choudhury, B.K.; Sharma, T.; Bansal, N.; Bansal, R.; Gupta, S. Vitamin D and gastrointestinal cancer. J. Lab. Physicians 2018, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, M.; Malaguarnera, M.; Zanghì, A.; Passaniti, A.; Malaguarnera, L. Vitamin D3 insufficiency and colorectal cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 594–612. [Google Scholar] [CrossRef]
- Barreto, S.G.; Neale, R.E. Vitamin D and pancreatic cancer. Cancer Lett. 2015, 368, 1–6. [Google Scholar] [CrossRef]
- Yi, Z.; Wang, L.; Tu, X. Effect of Vitamin D Deficiency on Liver Cancer Risk: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2021, 22, 991–997. [Google Scholar] [CrossRef]
- Chlebowski, R.T. Vitamin D and breast cancer incidence and outcome. Anticancer Agents Med. Chem. 2013, 13, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Segovia-Mendoza, M.; García-Quiroz, J.; Díaz, L.; García-Becerra, R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int. J. Mol. Sci. 2021, 22, 12741. [Google Scholar] [CrossRef]
- Guo, H.; Guo, J.; Xie, W.; Yuan, L.; Sheng, X. The role of vitamin D in ovarian cancer: Epidemiology, molecular mechanism and prevention. J. Ovarian Res. 2018, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.; Almpani, K.; Thao, B.; Sudweeks, K.; Lipsky, M.S. Vitamin D in the Prevention and Treatment of Oral Cancer: A Scoping Review. Nutrients 2023, 15, 2346. [Google Scholar] [CrossRef] [PubMed]
- Fathi, N.; Ahmadian, E.; Shahi, S.; Roshangar, L.; Khan, H.; Kouhsoltani, M.; Maleki Dizaj, S.; Sharifi, S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed. Pharmacother. 2019, 109, 391–401. [Google Scholar] [CrossRef]
- Rai, V.; Abdo, J.; Agrawal, S.; Agrawal, D.K. Vitamin D Receptor Polymorphism and Cancer: An Update. Anticancer Res. 2017, 37, 3991–4003. [Google Scholar] [CrossRef]
- Köstner, K.; Denzer, N.; Müller, C.S.; Klein, R.; Tilgen, W.; Reichrath, J. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: A review of the literature. Anticancer Res. 2009, 29, 3511–3536. [Google Scholar]
- Abouzid, M.; Karazniewicz-Lada, M.; Glowka, F. Genetic Determinants of Vitamin D-Related Disorders; Focus on Vitamin D Receptor. Curr. Drug Metab. 2018, 19, 1042–1052. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones, G.; Kottler, M.L.; Schlingmann, K.P. Genetic Diseases of Vitamin D Metabolizing Enzymes. Endocrinol. Metab. Clin. North Am. 2017, 46, 1095–1117. [Google Scholar] [CrossRef]
- Meyer, M.B.; Pike, J.W. Mechanistic homeostasis of vitamin D metabolism in the kidney through reciprocal modulation of Cyp27b1 and Cyp24a1 expression. J. Steroid Biochem. Mol. Biol. 2020, 196, 105500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, Y.; He, B.; Pan, Y.; Deng, Q.; Sun, H.; Li, R.; Gao, T.; Song, G.; Wang, S. Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumour Biol. 2014, 35, 4153–4169. [Google Scholar] [CrossRef]
- Anand, A.; Singh, S.; Sonkar, A.A.; Husain, N.; Singh, K.R.; Singh, S.; Kushwaha, J.K. Expression of vitamin D receptor and vitamin D status in patients with oral neoplasms and effect of vitamin D supplementation on quality of life in advanced cancer treatment. Contemp Oncol. 2017, 21, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Osafi, J.; Hejazi, A.; Stutz, D.D.; Keiserman, M.A.; Bergman, C.J.; Kingsley, K. Differential effects of 1,25-dihydroxyvitamin D3 on oral squamous cell carcinomas in vitro. J. Diet. Suppl. 2014, 11, 145–154. [Google Scholar] [CrossRef]
- Belnap, C.; Divis, T.; Kingsley, K.; Howard, K.M. Differential Expression of MicroRNA MiR-145 and MiR-155 Downstream Targets in Oral Cancers Exhibiting Limited Chemotherapy Resistance. Int. J. Mol. Sci. 2024, 25, 2167. [Google Scholar] [CrossRef]
- Huni, K.C.; Cheung, J.; Sullivan, M.; Robison, W.T.; Howard, K.M.; Kingsley, K. Chemotherapeutic Drug Resistance Associated with Differential miRNA Expression of miR-375 and miR-27 among Oral Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 1244. [Google Scholar] [CrossRef]
- Heaney, R.P. Vitamin D—Baseline status and effective dose. N. Engl. J. Med. 2012, 367, 77–78. [Google Scholar] [CrossRef]
- Akutsu, N.; Lin, R.; Bastien, Y.; Bestawros, A.; Enepekides, D.J.; Black, M.J.; White, J.H. Regulation of gene Expression by 1α,25-dihydroxyvitamin D3 and Its analog EB1089 under growth-inhibitory conditions in squamous carcinoma Cells. Mol. Endocrinol. 2001, 15, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Nagai, Y.; Sladek, R.; Bastien, Y.; Ho, J.; Petrecca, K.; Sotiropoulou, G.; Diamandis, E.P.; Hudson, T.J.; White, J.H. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol. Endocrinol. 2002, 16, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Cohen, D.J.; Jacobs, T.W.; Boyan, B.D.; Schwartz, Z. The Relative Expression of ERα Isoforms ERα66 and ERα36 Controls the Cellular Response to 24R,25-Dihydroxyvitamin D3 in Breast Cancer. Mol. Cancer Res. 2021, 19, 99–111. [Google Scholar] [CrossRef]
- Ben-Eltriki, M.; Deb, S.; Guns, E.S.T. 1α,25-Dihydroxyvitamin D3 synergistically enhances anticancer effects of ginsenoside Rh2 in human prostate cancer cells. J. Steroid Biochem. Mol. Biol. 2021, 209, 105828. [Google Scholar] [CrossRef]
- Xiao, T.T.; Li, X.; Feng, J.L.; Li, Y. Combined effects of aspirin and vitamin D3 on two OSCC cell lines: A preliminary study. Biotechnol. Lett. 2018, 40, 551–559. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Raimondi, S.; Aristarco, V.; Johansson, H.; Bellerba, F.; Corso, F.; De Angelis, S.P.; Belloni, P.; Caini, S.; Gandini, S. Ethnicity as modifier of risk for Vitamin D receptors polymorphisms: Comprehensive meta-analysis of all cancer sites. Crit. Rev. Oncol. Hematol. 2021, 158, 103202. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Gnagnarella, P.; Serrano, D.; Pasquali, E.; Raimondi, S. Vitamin D receptor polymorphisms and cancer. Adv. Exp. Med. Biol. 2014, 810, 69–105. [Google Scholar] [CrossRef]
- Sundaram, K.; Sambandam, Y.; Tsuruga, E.; Wagner, C.L.; Reddy, S.V. 1α,25-dihydroxyvitamin D3 modulates CYP2R1 gene expression in human oral squamous cell carcinoma tumor cells. Horm. Cancer. 2014, 5, 90–97. [Google Scholar] [CrossRef]
- Latacz, M.; Snarska, J.; Kostyra, E.; Fiedorowicz, E.; Savelkoul, H.F.; Grzybowski, R.; Cieślińska, A. Single Nucleotide Polymorphisms in 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase (CYP27B1) Gene: The Risk of Malignant Tumors and Other Chronic Diseases. Nutrients 2020, 12, 801. [Google Scholar] [CrossRef] [PubMed]
- Vincent-Chong, V.K.; DeJong, H.; Attwood, K.; Hershberger, P.A.; Seshadri, M. Preclinical Prevention Trial of Calcitriol: Impact of Stage of Intervention and Duration of Treatment on Oral Carcinogenesis. Neoplasia 2019, 21, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Zeljic, K.; Supic, G.; Stamenkovic Radak, M.; Jovic, N.; Kozomara, R.; Magic, Z. Vitamin D receptor, CYP27B1 and CYP24A1 genes polymorphisms association with oral cancer risk and survival. J. Oral. Pathol. Med. 2012, 41, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Wisinski, K.B.; Ledesma, W.M.; Kolesar, J.; Wilding, G.; Liu, G.; Douglas, J.; Traynor, A.M.; Albertini, M.; Mulkerin, D.; Bailey, H.H. A phase I study to determine the maximum tolerated dose and safety of oral LR-103 (1α,24(S)Dihydroxyvitamin D2) in patients with advanced cancer. J. Oncol. Pharm. Pract. 2015, 21, 416–424. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, X.; Pham, K.; Luna, A.; Studzinski, G.P.; Liu, C. Enhancement of sorafenib-mediated death of Hepatocellular carcinoma cells by Carnosic acid and Vitamin D2 analog combination. J. Steroid Biochem. Mol. Biol. 2020, 197, 105524. [Google Scholar] [CrossRef] [PubMed]
HGF-1 (CRL-2014) | SCC-15 (CRL-1623) | SCC-25 (CRL-1628) | SCC-4 (CRL-1624) | SCC-9 (CRL-1629) | CAL 27 (CRL-2095) | |
---|---|---|---|---|---|---|
Type | Human gingival fibroblast | Oral squamous cell carcinoma | Oral squamous cell carcinoma | Oral squamous cell carcinoma | Oral squamous cell carcinoma | Oral squamous cell carcinoma |
Tissue | Gingiva | Tongue | Tongue | Tongue | Tongue | Tongue |
Donor age | 28 years | 55 years | 70 years | 55 years | 25 years | 56 years |
Donor sex | Male | Male | Male | Male | Male | Male |
STR match | 100% | 94% | 100% | 92% | 100% | 93% |
STR analysis (ATCC.com) | Amelogenin: X,Y CSF1PO: 11 D13S317: 8,12 D16S539: 11,13 D5S818: 12 D7S820: 10 TH01: 6,7 TPOX: 8,11 vWA: 17,18 D3S1358: 17 D21S11: 28,29 D18S51: 16,20 Penta_E: 17,20 Penta_D: 13 D8S1179: 12,13 FGA: 24 D19S433: 12,14 D2S1338: 17,24 | Amelogenin: X,Y CSF1PO: 10,13 D13S317: 9,14 D16S539: 12,15 D5S818: 12 D7S820: 10,11 TH01: 9,9.3 TPOX: 8 vWA: 15,17 D3S1358: 16 D21S11: 30,31.2 D18S51: 16 Penta_E: 7,13 Penta_D: 9,13 D8S1179: 10,13 FGA: 19,24 D19S433: 15 D2S1338: 16,23 | Amelogenin: X CSF1PO: 10 D13S317: 13 D16S539: 11,12 D5S818: 12 D7S820: 12 TH01: 8 TPOX: 8,12 vWA: 17,19 D3S1358: 17 D21S11: 30 D18S51: 16 Penta_E: 14,15 Penta_D: 13 D8S1179: 13 FGA: 20,24 D19S433: 13,14 D2S1338: 17,19 | D3S1358: 18 TH01: 9.3 D21S11: 32.2 D18S51: 15 Penta_E: 14 D5S818: 13 D13S317: 11,13 D7S820: 9,11 D16S539: 12 CSF1PO: 11 Penta_D: 12 Amelogenin: X,Y vWA: 15,17 D8S1179: 14 TPOX: 8 FGA: 21,22 D19S433: 12,14 D2S1338: 16,24 | Amelogenin: X,Y CSF1PO: 11 D13S317: 9 D16S539: 10,11 D5S818: 12 D7S820: 8 TH01: 8,9 TPOX: 9,11 vWA: 17 D3S1358: 15 D21S11: 28 D18S51: 12,14 Penta_E: 11 Penta_D: 9 D8S1179: 13 FGA: 20,25 D19S433: 12,14 D2S1338: 19,21 | D3S1358: 16 TH01: 6,9.3 D21S11: 28,29 D18S51: 13 Penta_E: 7 D5S818: 11,12 D13S317: 10,11 D7S820: 10 D16S539: 11,12 CSF1PO: 10,12 Penta_D: 9,10 Amelogenin: X vWA: 14,17 D8S1179: 13,15 TPOX: 8 FGA: 25 D19S433: 14,15.2 D2S1338: 23,24 |
Additional characteristics: | HGF-1 cells exhibit fibroblast morphology and demonstrate expression of Bradykinin. | SCC15 cells express epidermal keratins (including 40 kD keratin), as well as detectable levels of involucrin. | SCC25 cells demonstrate expression of epidermal keratins as well as low levels of involucrin. | SCC4 cells have been characterized as epithelial, with positive expression of. epidermal keratins (including 40 kD keratin). | SCC9 cells demonstrate expression of epidermal keratins as well as low levels of involucrin. | CAL27 cells have been characterized as epithelial, with a cytoplasm that is highly granular. Immunohistochemistry has revealed positive staining with anti-keratin antibodies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunsaker, D.; Moore, J.L.; Howard, K.M.; Kingsley, K. Vitamin D Receptor and CYP450 Enzyme Dysregulation May Mediate Oral Cancer Responsiveness. Targets 2025, 3, 6. https://doi.org/10.3390/targets3010006
Hunsaker D, Moore JL, Howard KM, Kingsley K. Vitamin D Receptor and CYP450 Enzyme Dysregulation May Mediate Oral Cancer Responsiveness. Targets. 2025; 3(1):6. https://doi.org/10.3390/targets3010006
Chicago/Turabian StyleHunsaker, Dustin, James Landon Moore, Katherine M. Howard, and Karl Kingsley. 2025. "Vitamin D Receptor and CYP450 Enzyme Dysregulation May Mediate Oral Cancer Responsiveness" Targets 3, no. 1: 6. https://doi.org/10.3390/targets3010006
APA StyleHunsaker, D., Moore, J. L., Howard, K. M., & Kingsley, K. (2025). Vitamin D Receptor and CYP450 Enzyme Dysregulation May Mediate Oral Cancer Responsiveness. Targets, 3(1), 6. https://doi.org/10.3390/targets3010006