In Silico Evaluation of Effect and Molecular Modeling of SNPs in Genes Related to Amyotrophic Lateral Sclerosis
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of SNP Effect
3.2. Variant Structure Prediction
3.2.1. VAPB p.P56S
3.2.2. MTHFR Variants (p.A222V and p.E429A)
3.2.3. MTR p.D919G
3.2.4. SLC19A1 p.H27R
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feldman, E.L.; Goutman, S.A.; Petri, S.; Mazzini, L.; Savelieff, M.G.; Shaw, P.J.; Sobue, G. Amyotrophic lateral sclerosis. Lancet 2022, 400, 1363–1380. [Google Scholar] [CrossRef]
- Akçimen, F.; Lopez, E.R.; Landers, J.E.; Nath, A.; Chiò, A.; Chia, R.; Traynor, B.J. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies. Nat. Rev. Genet. 2023, 24, 642–658. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; Van Den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef]
- Pereira, J.C.; Costa, J.O.; Costa, C.C.P.; Lima, N.S.; Barros, J.B.S.; Bento, D.C.P.; Reis, A.A.; Santos, R.S. Research Article New insights of miRNAs dysregulation in the molecular pathological basis of neurodegenerative sclerosis: A systematic review. Genet. Mol. Res. 2021, 20, gmr18843. [Google Scholar] [CrossRef]
- Goutman, S.A.; Hardiman, O.; Al-Chalabi, A.; Chió, A.; Savelieff, M.G.; Kiernan, M.C.; Feldman, E.L. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 2022, 21, 480–493. [Google Scholar] [CrossRef]
- de Lima, N.S.; da Costa, C.C.P.; Assunção, L.d.P.; Santos, K.d.F.; Bento, D.d.C.P.; da Silva Reis, A.A.; Santos, R.D. One-carbon metabolism pathway genes and their non-association with the development of amyotrophic lateral sclerosis. J. Cell Biochem. 2022, 123, 620–627. [Google Scholar] [CrossRef]
- Sharma, M.; Tiwari, M.; Tiwari, R.K. Hyperhomocysteinemia: Impact on Neurodegenerative Diseases. Basic. Clin. Pharmacol. Toxicol. 2015, 117, 287–296. [Google Scholar] [CrossRef]
- Moretti, R.; Caruso, P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. Int. J. Mol. Sci. 2019, 20, 231. [Google Scholar] [CrossRef]
- Kim, Y. Folate and colorectal cancer: An evidence-based critical review. Mol. Nutr. Food Res. 2007, 51, 267–292. [Google Scholar] [CrossRef]
- Coppedè, F.; Stoccoro, A.; Tannorella, P.; Gallo, R.; Nicolì, V.; Migliore, L. Association of Polymorphisms in Genes Involved in One-Carbon Metabolism with MTHFR Methylation Levels. Int. J. Mol. Sci. 2019, 20, 3754. [Google Scholar] [CrossRef]
- Chen, J.; Bassot, A.; Giuliani, F.; Simmen, T. Amyotrophic Lateral Sclerosis (ALS): Stressed by Dysfunctional Mitochondria-Endoplasmic Reticulum Contacts (MERCs). Cells 2021, 10, 1789. [Google Scholar] [CrossRef]
- Borgese, N.; Iacomino, N.; Colombo, S.F.; Navone, F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021, 10, 1865. [Google Scholar] [CrossRef]
- Little, J.; Higgins, J.P.T.; Ioannidis, J.P.A.; Moher, D.; Gagnon, F.; Von Elm, E.; Khoury, M.J.; Cohen, B.; Davey-Smith, G.; Grimshaw, J.; et al. STrengthening the Reporting of Genetic Association Studies (STREGA)—An extension of the STROBE Statement. PLoS Med. 2009, 6, e1000022. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov (accessed on 15 August 2023).
- UniProt. Available online: https://www.uniprot.org/ (accessed on 6 August 2023).
- Protein Data Bank (PDB). Available online: https://www.rcsb.org/ (accessed on 7 April 2023).
- SNAP2. Available online: https://github.com/Rostlab/SNAP2 (accessed on 15 May 2023).
- Hecht, M.; Bromberg, Y.; Rost, B. Better prediction of functional effects for sequence variants. BMC Genom. 2015, 16, S1. [Google Scholar] [CrossRef]
- PolyPhen-2. Available online: http://genetics.bwh.harvard.edu/pph2/ (accessed on 7 May 2023).
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Marx, V. Method of the Year: Protein structure prediction. Nat. Methods 2022, 19, 5–10. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Yuan, S.; Chan, H.C.S.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1298. [Google Scholar] [CrossRef]
- Nishimura, A.L. A novel locus for late onset amyotrophic lateral sclerosis/motor neurone disease variant at 20q13. J. Med. Genet. 2004, 41, 315–320. [Google Scholar] [CrossRef]
- Kumar, C.V.; Kumar, K.M.; Swetha, R.; Ramaiah, S.; Anbarasu, A. Protein aggregation due to nsSNP resulting in P56S VAPB protein is associated with amyotrophic lateral sclerosis. J. Theor. Biol. 2014, 354, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Nunes Gonçalves, J.P.; Leoni, T.B.; Martins, M.P.; Peluzzo, T.M.; Dourado, M.E.T.; Saute, J.A.M.; Covaleski, A.P.; de Oliveira, A.S.; Claudino, R.; Marques, W., Jr.; et al. Genetic epidemiology of familial ALS in Brazil. Neurobiol. Aging 2021, 102, e1–e227. [Google Scholar] [CrossRef]
- Liew, S.-C.; Gupta, E.D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015, 58, 1–10. [Google Scholar] [CrossRef]
- He, R.; Yan, X.; Guo, J.; Xu, Q.; Tang, B.; Sun, Q. Recent Advances in Biomarkers for Parkinson’s Disease. Front. Aging Neurosci. 2018, 10, 305. [Google Scholar] [CrossRef]
- Zara-Lopes, T.; Gimenez-Martins, A.P.; Nascimento-Filho, C.H.; Castanhole-Nunes, M.M.; Galbiatti-Dias, A.L.; Padovani-Júnior, J.A.; Maniglia, J.V.; Francisco, J.L.; Pavarino, E.C.; Goloni-Bertollo, E.M. Role of MTHFR C677T and MTR A2756G polymorphisms in thyroid and breast cancer development. Genet. Mol. Res. 2016, 15, gmr.15028222. [Google Scholar] [CrossRef] [PubMed]
- Abhinand, P.A.; Shaikh, F.; Bhakat, S.; Radadiya, A.; Bhaskar, L.V.; Shah, A.; Ragunath, P.K. Insights on the structural perturbations in human MTHFR Ala222Val mutant by protein modeling and molecular dynamics. J. Biomol. Struct. Dyn. 2016, 34, 892–905. [Google Scholar] [CrossRef]
- Tanwar, H.; Sneha, P.; Thirumal Kumar, D.; Siva, R.; Walter, C.E.J.; George Priya Doss, C. A Computational Approach to Identify the Biophysical and Structural Aspects of Methylenetetrahydrofolate Reductase (MTHFR) Mutations (A222V, E429A, and R594Q) Leading to Schizophrenia. In Advances in Protein Chemistry and Structural Biology, 1st ed.; Donev, R., Ed.; Biomed Consult Ltd.: Swansea, UK, 2017; Volume 108, pp. 105–125. [Google Scholar] [CrossRef]
- Desai, M.; Chauhan, J.B. Computational analysis for the determination of deleterious nsSNPs in human MTHFR gene. Comput. Biol. Chem. 2018, 74, 20–30. [Google Scholar] [CrossRef]
- Shivkar, R.R.; Gawade, G.C.; Padwal, M.K.; Diwan, A.G.; Mahajan, S.A.; Kadam, C.Y. Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) Polymorphisms with Serum Homocysteine, Folate and Vitamin B12 in Patients with Young Coronary Artery Disease. Indian. J. Clin. Biochem. 2022, 37, 224–231. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Colagar, A.H.; Karimian, M. Association of Human Methionine Synthase-A2756G Transition with Prostate Cancer: A Case-Control Study and in Silico Analysis. Acta Med. Iran. 2017, 55, 297–303. [Google Scholar]
- Periñán, M.T.; Macías-García, D.; Jesús, S.; Martín-Rodríguez, J.F.; Muñoz-Delgado, L.; Jimenez-Jaraba, M.V.; Buiza-Rueda, D.; Bonilla-Toribio, M.; Adarmes-Gómez, A.D.; Gómez-Garre, P.; et al. Homocysteine levels, genetic background, and cognitive impairment in Parkinson’s disease. J. Neurol. 2023, 270, 477–485. [Google Scholar] [CrossRef]
- Fan, Y.; Wu, L.; Zhuang, W. Methylenetetrahydrofolate Reductase Gene rs1801133 and rs1801131 Polymorphisms and Essential Hypertension Risk: A Comprehensive Analysis. Cardiovasc. Ther. 2022, 2022, 2144443. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.B. Folate in Health and Disease, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 84–94. [Google Scholar]
- Wan, L.; Li, Y.; Zhang, Z.; Sun, Z.; He, Y.; Li, R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl. Psychiatry 2018, 8, 242. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.; Chauhan, J.B. Predicting the functional and structural consequences of nsSNPs in human methionine synthase gene using computational tools. Syst. Biol. Reprod. Med. 2019, 65, 288–300. [Google Scholar] [CrossRef]
- Naushad, S.M.; Devi, A.R.R.; Hussain, T.; Alrokayan, S.A.; Ramaiah, M.J.; Kutala, V.K. In silico analysis of the structural and functional implications of SLC19A1 R27H polymorphism. J. Genet. 2019, 98, 85. [Google Scholar] [CrossRef]
- Skolnick, J.; Gao, M.; Zhou, H.; Singh, S. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function. J. Chem. Inf. Model. 2021, 61, 4827–4831. [Google Scholar] [CrossRef]
- Guo, H.B.; Perminov, A.; Bekele, S.; Kedziora, G.; Farajollahi, S.; Varaljay, V.; Hinkle, K.; Molinero, V.; Meister, K.; Hung, C.; et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci. Rep. 2022, 12, 10696. [Google Scholar] [CrossRef]
GENE | UniProt CODE | PDB CODE | SNP | Substitution | FASTA |
---|---|---|---|---|---|
VAPB | O95292 | AF_AFO95292F1 | rs74315431 | Pro56Ser (P56S) | MAKVEQVLSLEPQHELKFRGPFTDVVTTNLKLGNPTDRNVCFKVKTTAPRRYCVRSNSGIIDAGASINVSVMLQPFDYDPNEKSKHKFMVQSMFAPTDTSDMEAVWKEAKPEDLMDSKLRCVFELPAENDKPHDVEINKIISTTASKTETPIVSKSLSSSLDDTEVKKVMEECKRLQGEVQRLREENKQFKEEDGLRMRKTVQSNSPISALAPTGKEEGLSTRLLALVVLFFIVGVIIGKIAL |
MTHFR | P42898 | 6FCX | rs1801133 | Ala222Val (A222V) | MVNEARGNSSLNPCLEGSASSGSESSKDSSRCSTPGLDPERHERLREKMRRRLESGDKWFSLEFFPPRTAEGAVNLISRFDRMAAGGPLYIDVTWHPAGDPGSDKETSSMMIASTAVNYCGLETILHMTCCRQRLEEITGHLHKAKQLGLKNIMALRGDPIGDQWEEEEGGFNYAVDLVKHIRSEFGDYFDICVAGYPKGHPEAGSFEADLKHLKEKVSAGVDFIITQLFFEADTFFRFVKACTDMGITCPIVPGIFPIQGYHSLRQLVKLSKLEVPQEIKDVIEPIKDNDAAIRNYGIELAVSLCQELLASGLVPGLHFYTLNREMATTEVLKRLGMWTEDPRRPLPWALSAHPKRREEDVRPIFWASRPKSYIYRTQEWDEFPNGRWGNSSSPAFGELKDYYLFYLKSKSPKEELLKMWGEELTSEESVFEVFVLYLSGEPNRNGHKVTCLPWNDEPLAAETSLLKEELLRVNRQGILTINSQPNINGKPSSDPIVGWGPSGGYVFQKAYLEFFTSRETAEALLQVLKKYELRVNYHLVNVKGENITNAPELQPNAVTWGIFPGREIIQPTVVDPVSFMFWKDEAFALWIERWGKLYEEESPSRTIIQYIHDNYFLVNLVDNDFPLDNCLWQVVEDTLELLNRPTQNARETEAP |
rs1801131 | Glu429Ala (E429A) | MVNEARGNSSLNPCLEGSASSGSESSKDSSRCSTPGLDPERHERLREKMRRRLESGDKWFSLEFFPPRTAEGAVNLISRFDRMAAGGPLYIDVTWHPAGDPGSDKETSSMMIASTAVNYCGLETILHMTCCRQRLEEITGHLHKAKQLGLKNIMALRGDPIGDQWEEEEGGFNYAVDLVKHIRSEFGDYFDICVAGYPKGHPEAGSFEADLKHLKEKVSAGADFIITQLFFEADTFFRFVKACTDMGITCPIVPGIFPIQGYHSLRQLVKLSKLEVPQEIKDVIEPIKDNDAAIRNYGIELAVSLCQELLASGLVPGLHFYTLNREMATTEVLKRLGMWTEDPRRPLPWALSAHPKRREEDVRPIFWASRPKSYIYRTQEWDEFPNGRWGNSSSPAFGELKDYYLFYLKSKSPKEELLKMWGEELTSEESVFEVFVLYLSGEPNRNGHKVTCLPWNDEPLAAETSLLKEALLRVNRQGILTINSQPNINGKPSSDPIVGWGPSGGYVFQKAYLEFFTSRETAEALLQVLKKYELRVNYHLVNVKGENITNAPELQPNAVTWGIFPGREIIQPTVVDPVSFMFWKDEAFALWIERWGKLYEEESPSRTIIQYIHDNYFLVNLVDNDFPLDNCLWQVVEDTLELLNRPTQNARETEAP | |||
MTR | Q99707 | AF_AFQ99707F1 | rs1805087 | Aps919Gly (D919G) | MSPALQDLSQPEGLKKTLRDEINAILQKRIMVLDGGMGTMIQREKLNEEHFRGQEFKDHARPLKGNNDILSITQPDVIYQIHKEYLLAGADIIETNTFSSTSIAQADYGLEHLAYRMNMCSAGVARKAAEEVTLQTGIKRFVAGALGPTNKTLSVSPSVERPDYRNITFDELVEAYQEQAKGLLDGGVDILLIETIFDTANAKAALFALQNLFEEKYAPRPIFISGTIVDKSGRTLSGQTGEGFVISVSHGEPLCIGLNCALGAAEMRPFIEIIGKCTTAYVLCYPNAGLPNTFGDYDETPSMMAKHLKDFAMDGLVNIVGGCCGSTPDHIREIAEAVKNCKPRVPPATAFEGHMLLSGLEPFRIGPYTNFVNIGERCNVAGSRKFAKLIMAGNYEEALCVAKVQVEMGAQVLDVNMDDGMLDGPSAMTRFCNLIASEPDIAKVPLCIDSSNFAVIEAGLKCCQGKCIVNSISLKEGEDDFLEKARKIKKYGAAMVVMAFDEEGQATETDTKIRVCTRAYHLLVKKLGFNPNDIIFDPNILTIGTGMEEHNLYAINFIHATKVIKETLPGARISGGLSNLSFSFRGMEAIREAMHGVFLYHAIKSGMDMGIVNAGNLPVYDDIHKELLQLCEDLIWNKDPEATEKLLRYAQTQGTGGKKVIQTDEWRNGPVEERLEYALVKGIEKHIIEDTEEARLNQKKYPRPLNIIEGPLMNGMKIVGDLFGAGKMFLPQVIKSARVMKKAVGHLIPFMEKEREETRVLNGTVEEEDPYQGTIVLATVKGDVHDIGKNIVGVVLGCNNFRVIDLGVMTPCDKILKAALDHKADIIGLSGLITPSLDEMIFVAKEMERLAIRIPLLIGGATTSKTHTAVKIAPRYSAPVIHVLDASKSVVVCSQLLDENLKDEYFEEIMEEYEDIRQGHYESLKERRYLPLSQARKSGFQMDWLSEPHPVKPTFIGTQVFEDYDLQKLVDYIDWKPFFDVWQLRGKYPNRGFPKIFNDKTVGGEARKVYDDAHNMLNTLISQKKLRARGVVGFWPAQSIQDDIHLYAEAAVPQAAEPIATFYGLRQQAEKDSASTEPYYCLSDFIAPLHSGIRDYLGLFAVACFGVEELSKAYEDDGDDYSSIMVKALGDRLAEAFAEELHERVRRELWAYCGSEQLDVADLRRLRYKGIRPAPGYPSQPDHTEKLTMWRLADIEQSTGIRLTESLAMAPASAVSGLYFSNLKSKYFAVGKISKDQVEDYALRKNISVAEVEKWLGPILGYDTD |
SLC19A1 | P41440 | 7XTK | rs1051266 | His27Arg (H27R) | MVPSSPAVEKQVPVEPGPDPELRSWRRLVCYLCFYGFMAQIRPGESFITPYLLGPDKNFTREQVTNEITPVLSYSYLAVLVPVFLLTDYLRYTPVLLLQGLSFVSVWLLLLLGHSVAHMQLMELFYSVTMAARIAYSSYIFSLVRPARYQRVAGYSRAAVLLGVFTSSVLGQLLVTVGRVSFSTLNYISLAFLTFSVVLALFLKRPKRSLFFNRDDRGRCETSASELERMNPGPGGKLGHALRVACGDSVLARMLRELGDSLRRPQLRLWSLWWVFNSAGYYLVVYYVHILWNEVDPTTNSARVYNGAADAASTLLGAITSFAAGFVKIRWARWSKLLIAGVTATQAGLVFLLAHTRHPSSIWLCYAAFVLFRGSYQFLVPIATFQIASSLSKELCALVFGVNTFFATIVKTIITFIVSDVRGLGLPVRKQFQLYSVYFLILSIIYFLGAMLDGLRHCQRGHHPRQPPAQGLRSAAEEKAAQALSVQDKGLGGLQPAQSPPLSPEDSLGAVGPASLEQRQSDPYLAQAPAPQAAEFLSPVTTPSPCTLCSAQASGPEAADETCPQLAVHPPGVSKLGLQCLPSDGVQNVNQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roza, G.R.; da Costa, C.C.P.; de Lima, N.S.; da Silva Reis, A.A.; da Silva Santos, R. In Silico Evaluation of Effect and Molecular Modeling of SNPs in Genes Related to Amyotrophic Lateral Sclerosis. Sclerosis 2025, 3, 27. https://doi.org/10.3390/sclerosis3030027
Roza GR, da Costa CCP, de Lima NS, da Silva Reis AA, da Silva Santos R. In Silico Evaluation of Effect and Molecular Modeling of SNPs in Genes Related to Amyotrophic Lateral Sclerosis. Sclerosis. 2025; 3(3):27. https://doi.org/10.3390/sclerosis3030027
Chicago/Turabian StyleRoza, Gustavo Ronconi, Caroline Christine Pincela da Costa, Nayane Soares de Lima, Angela Adamski da Silva Reis, and Rodrigo da Silva Santos. 2025. "In Silico Evaluation of Effect and Molecular Modeling of SNPs in Genes Related to Amyotrophic Lateral Sclerosis" Sclerosis 3, no. 3: 27. https://doi.org/10.3390/sclerosis3030027
APA StyleRoza, G. R., da Costa, C. C. P., de Lima, N. S., da Silva Reis, A. A., & da Silva Santos, R. (2025). In Silico Evaluation of Effect and Molecular Modeling of SNPs in Genes Related to Amyotrophic Lateral Sclerosis. Sclerosis, 3(3), 27. https://doi.org/10.3390/sclerosis3030027