High-Fat Diet—Shared Environmental Risk Factor for Amyotrophic Lateral Sclerosis and Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Method
3. Comparative Overview of ALS and MS Pathophysiological Mechanisms
4. Relevant Research in Animal Models and Humans
4.1. High-Fat Diets and MS
4.2. High-Fat Diets and ALS
5. Dietary Changes as Potential Therapeutic Interventions
6. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Toldi, J.; Vécsei, L. Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int. J. Mol. Sci. 2020, 21, 2431. [Google Scholar] [CrossRef] [PubMed]
- Boentert, M.; Hermann, A.; Großkreutz, J. Amyotrophic Lateral Sclerosis: Advances and Prospects. J. Clin. Med. 2023, 12, 5055. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, A.A.; El-Sharkawy, K.A.; Mahmoudy, A.M.; Hashim, N.A. Burden of multiple sclerosis: Impact on the patient, family and society. Mult. Scler. Relat. Disord. 2022, 63, 103864. [Google Scholar] [CrossRef]
- Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 2023, 22, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- Duan, Q.Q.; Jiang, Z.; Su, W.M.; Gu, X.J.; Wang, H.; Cheng, Y.F. Risk factors of amyotrophic lateral sclerosis: A global meta-summary. Front. Neurosci. 2023, 17, 1177431. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Tofersen: First Approval. Drugs 2023, 83, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Hoxhaj, P.; Hastings, N.; Kachhadia, M.P.; Gupta, R.; Sindhu, U.; Durve, S.A.; Azam, A.; Vinueza, M.J.; Win, S.H.; Rathod, D.C.; et al. Exploring Advancements in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review of Current Modalities and Future Prospects. Cureus 2023, 15, e45489. [Google Scholar] [CrossRef] [PubMed]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology 2019, 92, e1029–e1040, Erratum in Neurology 2019, 93, 688. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van Der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Heer, Y.; Karamasioti, E.; Rouzic, E.M.-L.; Marcelli, G.; Di Maio, D.; Braune, S.; Kobelt, G.; Wasem, J. The socioeconomic impact of disability progression in multiple sclerosis: A retrospective cohort study of the German NeuroTransData (NTD) registry. Mult. Scler. J. Exp. Transl. Clin. 2023, 9, 20552173231187810. [Google Scholar] [CrossRef] [PubMed]
- Bebo, B.; Cintina, I.; LaRocca, N.; Ritter, L.; Talente, B.; Hartung, D.; Ngorsuraches, S.; Wallin, M.; Yang, G. The Economic Burden of Multiple Sclerosis in the United States: Estimate of Direct and Indirect Costs. Neurology 2022, 98, e1810–e1817. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390.e2. [Google Scholar] [CrossRef]
- Allogmanny, S.; Probst, Y. Dietary Modification Combined with Nutrition Education and Counseling for Metabolic Comorbidities in Multiple Sclerosis: Implications for Clinical Practice and Research. Curr. Nutr. Rep. 2024, 13, 106–112. [Google Scholar] [CrossRef] [PubMed]
- D’Antona, S.; Caramenti, M.; Porro, D.; Castiglioni, I.; Cava, C. Amyotrophic Lateral Sclerosis: A Diet Review. Foods 2021, 10, 3128. [Google Scholar] [CrossRef] [PubMed]
- Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest 2019, 155, 401–408. [Google Scholar] [CrossRef]
- Eisen, A.; Vucic, S.; Mitsumoto, H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin. Neurophysiol. Pract. 2023, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chiò, A.; Mazzini, L.; D’Alfonso, S.; Corrado, L.; Canosa, A.; Moglia, C.; Manera, U.; Bersano, E.; Brunetti, M.; Barberis, M.; et al. The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology 2018, 91, e635–e642. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Deng, M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy. Front. Neurosci. 2023, 17, 1170996. [Google Scholar] [CrossRef]
- Berdyński, M.; Miszta, P.; Safranow, K.; Andersen, P.M.; Morita, M.; Filipek, S.; Żekanowski, C.; Kuźma-Kozakiewicz, M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci. Rep. 2022, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Arnold, F.J.; Putka, A.F.; Raychaudhuri, U.; Hsu, S.; Bedlack, R.S.; Bennett, C.L.; La Spada, A.R. Revisiting Glutamate Excitotoxicity in Amyotrophic Lateral Sclerosis and Age-Related Neurodegeneration. Int. J. Mol. Sci. 2024, 25, 5587. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, L.T.; Trotti, D. EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis. Adv. Neurobiol. 2017, 16, 117–136. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Youssef, M.M.M.; Santos, J.R.; Lee, J.; Park, J. Microglia and Astrocytes in Amyotrophic Lateral Sclerosis: Disease-Associated States, Pathological Roles, and Therapeutic Potential. Biology 2023, 12, 1307. [Google Scholar] [CrossRef]
- Bradley, W.G.; Mash, D.C. Beyond Guam: The cyanobacteria/BMAA hypothesis of the cause of ALS and other neurodegenerative diseases. Amyotroph. Lateral Scler. 2009, 10 (Suppl. S2), 7–20. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, E.; Grosso, G.; Nieves, J.W.; Zanghì, A.; Factor-Litvak, P.; Mitsumoto, H. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 2021, 13, 2273. [Google Scholar] [CrossRef] [PubMed]
- Daverey, A.; Agrawal, S.K. Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia. Neurosci. Lett. 2020, 738, 135351. [Google Scholar] [CrossRef]
- Peters, S.; Broberg, K.; Gallo, V.; Levi, M.; Kippler, M.; Vineis, P.; Veldink, J.; van Den Berg, L.; Middleton, L.; Travis, R.C.; et al. Blood Metal Levels and Amyotrophic Lateral Sclerosis Risk: A Prospective Cohort. Ann. Neurol. 2021, 89, 125–133. [Google Scholar] [CrossRef]
- Oggiano, R.; Pisano, A.; Sabalic, A.; Farace, C.; Fenu, G.; Lintas, S.; Forte, G.; Bocca, B.; Madeddu, R. An overview on amyotrophic lateral sclerosis and cadmium. Neurol. Sci. 2021, 42, 531–537. [Google Scholar] [CrossRef]
- Figueroa-Romero, C.; Mikhail, K.A.; Gennings, C.; Curtin, P.; Bello, G.A.; Botero, T.M.; Goutman, S.A.; Feldman, E.L.; Arora, M.; Austin, C. Early life metal dysregulation in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 872–882. [Google Scholar] [CrossRef]
- Moser, T.; Akgün, K.; Proschmann, U.; Sellner, J.; Ziemssen, T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun. Rev. 2020, 19, 102647. [Google Scholar] [CrossRef]
- Comi, G.; Bar-Or, A.; Lassmann, H.; Uccelli, A.; Hartung, H.P.; Montalban, X.; Sørensen, P.S.; Hohlfeld, R.; Hauser, S.L. Role of B Cells in Multiple Sclerosis and Related Disorders. Ann. Neurol. 2021, 89, 13–23. [Google Scholar] [CrossRef]
- Soldan, S.S.; Lieberman, P.M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Sun, M.; Wu, N.; Liu, B.; Yi, X.; Ge, R.; Fan, X. Microglia in the context of multiple sclerosis. Front. Neurol. 2023, 14, 1157287. [Google Scholar] [CrossRef]
- Guerrero, B.L.; Sicotte, N.L. Microglia in Multiple Sclerosis: Friend or Foe? Front. Immunol. 2020, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Tryfonos, C.; Mantzorou, M.; Fotiou, D.; Vrizas, M.; Vadikolias, K.; Pavlidou, E.; Giaginis, C. Dietary Supplements on Controlling Multiple Sclerosis Symptoms and Relapses: Current Clinical Evidence and Future Perspectives. Medicines 2019, 6, 95. [Google Scholar] [CrossRef]
- Kabir, M.T.; Rahman, M.H.; Shah, M.; Jamiruddin, M.R.; Basak, D.; Al-Harrasi, A.; Bhatia, S.; Ashraf, G.M.; Najda, A.; El-Kott, A.F.; et al. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed. Pharmacother. 2022, 146, 112610. [Google Scholar] [CrossRef] [PubMed]
- Gombash, S.E.; Lee, P.W.; Sawdai, E.; Lovett-Racke, A.E. Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective? Front. Neurol. 2022, 13, 796933. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.R.; Shaygannajad, V.; Mirpourian, M.; Gholamrezaei, A. Vitamin B(12) Deficiency and Multiple Sclerosis; Is there Any Association? Int. J. Prev. Med. 2012, 3, 286–289. [Google Scholar] [PubMed]
- Park, H.R.; Yang, E.J. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations. Diagnostics 2021, 11, 1546. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, F.J.; Alonso-Navarro, H.; Salgado-Cámara, P.; García-Martín, E.; Agúndez, J.A.G. Oxidative Stress Markers in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 6289. [Google Scholar] [CrossRef] [PubMed]
- Sanabria-Castro, A.; Alape-Girón, A.; Flores-Díaz, M.; Echeverri-McCandless, A.; Parajeles-Vindas, A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: A literature review. Rev. Neurosci. 2024, 35, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Motataianu, A.; Serban, G.; Barcutean, L.; Balasa, R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors. Int. J. Mol. Sci. 2022, 23, 9339. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Esiri, M.M.; Ansorge, O.; DeLuca, G.C. Concurrent multiple sclerosis and amyotrophic lateral sclerosis: Where inflammation and neurodegeneration meet? J. Neuroinflamm. 2012, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Mado, H.; Adamczyk-Sowa, M.; Sowa, P. Role of Microglial Cells in the Pathophysiology of MS: Synergistic or Antagonistic? Int. J. Mol. Sci. 2023, 24, 1861. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.E.; Patani, R. The microglial component of amyotrophic lateral sclerosis. Brain 2020, 143, 3526–3539. [Google Scholar] [CrossRef] [PubMed]
- van Langelaar, J.; Rijvers, L.; Smolders, J.; van Luijn, M.M. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front. Immunol. 2020, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Coutinho Costa, V.G.; Araújo, S.E.; Alves-Leon, S.V.; Gomes, F.C.A. Central nervous system demyelinating diseases: Glial cells at the hub of pathology. Front. Immunol. 2023, 14, 1135540. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, W.; Wei, C.; Jiang, S.; Li, S.; Wang, X.; Xu, R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen. Res. 2024, 19, 1036–1044. [Google Scholar] [CrossRef]
- Davanzo, G.G.; Castro, G.; Monteiro, L.B.; Castelucci, B.G.; Jaccomo, V.H.; da Silva, F.C.; Marques, A.M.; Francelin, C.; de Campos, B.B.; de Aguiar, C.F.; et al. Obesity increases blood-brain barrier permeability and aggravates the mouse model of multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 72, 104605. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.K.; Ghimire, S.; Lehman, P.; Mangalam, A.K. Obesity induced gut dysbiosis contributes to disease severity in an animal model of multiple sclerosis. Front. Immunol. 2022, 13, 966417. [Google Scholar] [CrossRef]
- Timmermans, S.; Bogie, J.F.; Vanmierlo, T.; Lütjohann, D.; Stinissen, P.; Hellings, N.; Hendriks, J.J.A. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the Renin Angiotensin system. J. Neuroimmune Pharmacol. 2014, 9, 209–217. [Google Scholar] [CrossRef]
- Asgharzadeh, V.; Rezaei, S.A.S.; Poor, B.M.; Asgharzadeh, M.; Nobari, H.J.; Taghinejad, Z.; Kazemi, A.; Rashedi, J. The Association between Diet and Multiple Sclerosis. Endocr. Metab. Immune Disord. Drug Targets 2024, 24, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, K.S.; Halang, L.; Woods, I.; Prehn, J.H. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice. Dis. Models Mech. 2016, 9, 1029–1037. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, T.; Yang, H.; Zhou, X.; Cao, J. Effect of complete high-caloric nutrition on the nutritional status and survival rate of amyotrophic lateral sclerosis patients after gastrostomy. Am. J. Transl. Res. 2022, 14, 7842–7851. [Google Scholar] [PubMed]
- Janse van Mantgem, M.R.; van Rheenen, W.; Hackeng, A.V.; van Es, M.A.; Veldink, J.H.; van den Berg, L.H.; van Eijk, R.P.A. Association Between Serum Lipids and Survival in Patients with Amyotrophic Lateral Sclerosis: A Meta-Analysis and Population-Based Study. Neurology 2023, 100, e1062–e1071. [Google Scholar] [CrossRef] [PubMed]
- Dorst, J.; Doenz, J.; Kandler, K.; Dreyhaupt, J.; Tumani, H.; Witzel, S.; Schuster, J.; Ludolph, A.C. Fat-rich versus carbohydrate-rich nutrition in ALS: A randomised controlled study. J. Neurol. Neurosurg. Psychiatry 2022, 93, 298–302. [Google Scholar] [CrossRef]
- Prado, M.B., Jr.; Pedro, K.M.; Adiao, K.J.B. Efficacy, safety and tolerability of high caloric diet in amyotrophic lateral sclerosis patients: A systematic review and meta-analysis. Rev. Neurol. 2023, 179, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.T.; Tu, B.H.; Titcomb, T.J.; Saxby, S.M.; Shemirani, F.; Ten Eyck, P.; Rubenstein, L.M.; Snetselaar, L.G.; Wahls, T.L. Association between improved metabolic risk factors and perceived fatigue during dietary intervention trial in relapsing-remitting multiple sclerosis: A secondary analysis of the WAVES trial. Front. Neurol. 2023, 13, 1022728. [Google Scholar] [CrossRef]
- Dean, Z.; Penesova, A.; Radikova, Z.; Dean, Z.; Kollar, B. Pilot study of longterm low fat diet in relapsing-remitting multiple sclerosis. Neuro Endocrinol. Lett. 2022, 43, 135–139. [Google Scholar] [PubMed]
- Harirchian, M.H.; Karimi, E.; Bitarafan, S. Diet and disease-related outcomes in multiple sclerosis: A systematic review of clinical trials. Curr. J. Neurol. 2022, 21, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Parks, N.E.; Jackson-Tarlton, C.S.; Vacchi, L.; Merdad, R.; Johnston, B.C. Dietary interventions for multiple sclerosis-related outcomes. Cochrane Database Syst. Rev. 2020, 5, CD004192. [Google Scholar]
- Snetselaar, L.G.; Cheek, J.J.; Fox, S.S.; Healy, H.S.; Schweizer, M.L.; Bao, W.; Kamholz, J.; Titcomb, T.J. Efficacy of Diet on Fatigue and Quality of Life in Multiple Sclerosis: A Systematic Review and Network Meta-analysis of Randomized Trials. Neurology 2023, 100, e357–e366. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, M.; Michońska, I. Effectiveness of various diet patterns among patients with multiple sclerosis. Postep. Psychiatr. Neurol. 2023, 32, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Garodia, P.; Hegde, M.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin, inflammation, and neurological disorders: How are they linked? Integr. Med. Res. 2023, 12, 100968. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; et al. Safety and Efficacy of Nanocurcumin as Add-On Therapy to Riluzole in Patients With Amyotrophic Lateral Sclerosis: A Pilot Randomized Clinical Trial. Neurotherapeutics 2018, 15, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Sathyabhama, M.; Priya Dharshini, L.C.; Karthikeyan, A.; Kalaiselvi, S.; Min, T. The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules 2022, 12, 1405. [Google Scholar] [CrossRef]
- Pastula, D.M.; Moore, D.H.; Bedlack, R.S. Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 2012, 12, CD005225. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kamyab, A.; Hosseini, S.; Ebrahimi, S.; Ashkani-Esfahani, S. Involvement of Coenzyme Q10 in Various Neurodegenerative and Psychiatric Diseases. Biochem. Res. Int. 2023, 2023, 5510874. [Google Scholar] [CrossRef]
- Hathcock, J.N.; Shao, A. Risk assessment for coenzyme Q10 (Ubiquinone). Regul. Toxicol. Pharmacol. 2006, 45, 282–288. [Google Scholar] [CrossRef]
- Novak, V.; Rogelj, B.; Župunski, V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants 2021, 10, 1328. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta, R.; Navarro, X. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014, 11, 419–432. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Cohort Details | Measured Outcomes | Limitations | Conclusions | |
---|---|---|---|---|---|
Research in animal models | Davanzo et al. (2023) [50] | C57BL/6 J females randomized into two groups (a standard diet or a high-fat diet) | Spinal cord lesions and pro-inflammatory biomarkers | EAE animal model No difference in innate or adaptive immune cell compartments | Spinal cord lesions in myelinated regions and BBB disruption Higher levels of pro-inflammatory cells |
Shahi et al. (2022) [51] | 19 HLA-DR3 transgenic mice randomized into three groups (prediet, high-fat diet, normal chow) | Gut microbiota depletion Microbiome analysis Intestinal permeability and inflammatory mediator measurement | EAE animal model | Mice on high-fat diet showed gut microbiota alterations, increased gut permeability, and systemic inflammation | |
Timmermans et al. (2014) [52] | 20 Female EAE mice randomized into two groups (normal rodent chow versus Western-type diet) | Immunohistochemical staining and real-time PCR to determine immune cell infiltration and inflammatory mediators | EAE animal model | Activation of the renin–angiotensin system, increased immune cell infiltration and inflammatory mediator production in high-fat diet-treated EAE mice | |
Research in humans | Asgharzadeh et al. (2024) [53] | 467 MS patients, 260 controls, age under 15 Azeri population | Dietary demographic questionnaire | Use of questionnaires Homogeneous small cohort | MS patients had a significantly higher consumption of high-fat foods |
Author (Year) | Cohort Details | Type of Diet | Measured Outcomes | Limitations | Conclusions | |
---|---|---|---|---|---|---|
Research in animal models | Coughlan et al., 2016 [54] | 39 TDP-43A315T male mice randomized into three groups | High-fat jelly diet low-fat jelly diet standard pellet diet | Assessment of lifespan and disease progression in vivo | New animal model for the study of ALS | High-fat diet prevented sudden death and extended survival in this animal model |
Research in humans | Dorst et al., 2022 [57] | 64 Patients with possible, probable, or definite ALS randomized into four groups | High-caloric fatty supplements ultra-high-caloric fatty supplements ultra-high-caloric, carbohydrate-rich supplements control group | Follow-up over four weeks for gastrointestinal side effects and weight modification | Small and heterogeneous cohort | Despite gastrointestinal side effects, a non-significant trend for weight gain was observed in the groups receiving high-caloric supplements |
Targeted Disorder | Dietary Intervention | Findings | Evidence/Limitations |
---|---|---|---|
Amyotrophic lateral sclerosis | Curcumin | Antioxidant and anti-inflammatory effects; potential synergy with Riluzole | Mixed human trial results Nausea and gastrointestinal side effects. |
Creatine | Neuroprotection in animal models | Limited improvements in human trials Further research required | |
CoQ10 | Antioxidant with mitochondrial benefits | Safe Potential drug interactions and gastrointestinal side effects. | |
Phytochemicals (e.g., carotenoids, resveratrol, terpenoids) | Antioxidative and anti-inflammatory effects; cognitive benefits (resveratrol) | Preliminary evidence from in vitro and animal studies Further human trials needed | |
Multiple sclerosis | Low-saturated-fat diets | Benefits on weight, cholesterol levels, fatigue (Swank, Wahls diets) | Small pilot studies High dropout rate Limited data on long-term adherence and efficacy |
Plant-based diets | Improved fatigue and quality of life in MS patients | Evidence from systematic reviews Variability in diet composition and patient adherence | |
Antioxidants | Mixed results for neuroprotection | Limited large-scale evidence Variable study designs and outcomes | |
Polyunsaturated fatty acids (PUFAs) | Uncertain impact on relapse rates or disability | Mixed evidence Further research required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiner, T.G.; Iacob, L.; Croitoru, C.G.; Hodorog, D.N.; Cuciureanu, D.I. High-Fat Diet—Shared Environmental Risk Factor for Amyotrophic Lateral Sclerosis and Multiple Sclerosis. Sclerosis 2025, 3, 1. https://doi.org/10.3390/sclerosis3010001
Schreiner TG, Iacob L, Croitoru CG, Hodorog DN, Cuciureanu DI. High-Fat Diet—Shared Environmental Risk Factor for Amyotrophic Lateral Sclerosis and Multiple Sclerosis. Sclerosis. 2025; 3(1):1. https://doi.org/10.3390/sclerosis3010001
Chicago/Turabian StyleSchreiner, Thomas Gabriel, Liviu Iacob, Cristina Georgiana Croitoru, Diana Nicoleta Hodorog, and Dan Iulian Cuciureanu. 2025. "High-Fat Diet—Shared Environmental Risk Factor for Amyotrophic Lateral Sclerosis and Multiple Sclerosis" Sclerosis 3, no. 1: 1. https://doi.org/10.3390/sclerosis3010001
APA StyleSchreiner, T. G., Iacob, L., Croitoru, C. G., Hodorog, D. N., & Cuciureanu, D. I. (2025). High-Fat Diet—Shared Environmental Risk Factor for Amyotrophic Lateral Sclerosis and Multiple Sclerosis. Sclerosis, 3(1), 1. https://doi.org/10.3390/sclerosis3010001