A 2-Year Longitudinal Neuropsychological Study in Relapsing-Remitting Multiple Sclerosis: A Selective Decline in Social Cognition?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive impairment in multiple sclerosis: Clinical management, MRI, and therapeutic avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, A.; Costabile, T.; Pontillo, G.; Moccia, M.; Falco, F.; Petracca, M.; Petruzzo, M.; Russo, C.V.; Di Stasi, M.; Paolella, C.; et al. Cognitive trajectories in multiple sclerosis: A long-term follow-up study. Neurol. Sci. 2022, 43, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, N.; Mostert, J.; Repovic, P.; Bowen, J.D.; Uitdehaag, B.M.J.; Strijbis, E.M.M.; Cutter, G.R.; Koch, M.W. Longitudinal Changes in Cognitive Test Scores in Patients With Relapsing-Remitting Multiple Sclerosis: An Analysis of the DECIDE Dataset. Neurology 2023, 101, e1–e11. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xu, G.; Wang, J.; Yin, N.; Meng, N. Clinical and MRI predictors of cognitive decline in patients with relapsing-remitting multiple sclerosis: A 2-year longitudinal study. Mult. Scler. Relat. Disord. 2022, 65, 103838. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Wojcik, C.; Wilding, G.E.; Pol, J.; Dwyer, M.G.; Weinstock-Guttman, B.; Zivadinov, R.; Benedict, R.H.B. Trait Conscientiousness predicts rate of longitudinal SDMT decline in multiple sclerosis. Mult. Scler. J. 2020, 26, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Huiskamp, M.; Eijlers, A.J.C.; Broeders, T.A.A.; Pasteuning, J.; Dekker, I.; Uitdehaag, B.M.J.; Barkhof, F.; Wink, A.M.; Geurts, J.J.G.; Hulst, H.E.; et al. Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple Sclerosis. Neurology 2021, 97, 794–802. [Google Scholar] [CrossRef] [PubMed]
- van Gorp, D.A.M.; van der Hiele, K.; Heerings, M.A.P.; Jongen, P.J.; van der Klink, J.J.L.; Reneman, M.F.; Arnoldus, E.P.J.; Beenakker, E.A.C.; van Eijk, J.J.J.; Frequin, S.T.F.M.; et al. Cognitive functioning as a predictor of employment status in relapsing-remitting multiple sclerosis: A 2-year longitudinal study. Neurol. Sci. 2019, 40, 2555–2564. [Google Scholar] [CrossRef]
- Wybrecht, D.; Reuter, F.; Pariollaud, F.; Zaaraoui, W.; Le Troter, A.; Rico, A.; Confort-Gouny, S.; Soulier, E.; Guye, M.; Maarouf, A.; et al. New brain lesions with no impact on physical disability can impact cognition in early multiple sclerosis: A ten-year longitudinal study. PLoS ONE 2017, 12, e0184650. [Google Scholar] [CrossRef]
- Healy, B.C.; Barker, L.; Bakshi, R.; Benedict, R.H.B.; Gonzalez, C.T.; Chitnis, T.; Weiner, H.L.; Glanz, B.I. Trajectories of Symbol Digit Modalities Test performance in individuals with multiple sclerosis. Mult. Scler. J. 2021, 27, 593–602. [Google Scholar] [CrossRef]
- Heled, E.; Aloni, R.; Achiron, A. Cognitive functions and disability progression in relapsing-remitting multiple sclerosis: A longitudinal study. Appl. Neuropsychol. Adult 2021, 28, 210–219. [Google Scholar] [CrossRef]
- Katsari, M.; Kasselimis, D.S.; Giogkaraki, E.; Breza, M.; Evangelopoulos, M.E.; Anagnostouli, M.; Andreadou, E.; Kilidireas, C.; Hotary, A.; Zalonis, I.; et al. A longitudinal study of cognitive function in multiple sclerosis: Is decline inevitable? J. Neurol. 2020, 267, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Motyl, J.; Friedova, L.; Vaneckova, M.; Krasensky, J.; Lorincz, B.; Dusankova, J.B.; Andelova, M.; Fuchs, T.A.; Havrdova, E.K.; Benedict, R.H.B.; et al. Isolated cognitive decline in neurologically stable patients with multiple sclerosis. Diagnostics 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- London, F.; De Haan, A.; Benyahia, Z.; Landenne, G.; Duprez, T.; van Pesch, V.; El Sankari, S. Cognitive trajectories in relapsing-remitting multiple sclerosis: Evidence of multiple evolutionary trends. Mult. Scler. Relat. Disord. 2023, 77, 104848. [Google Scholar] [CrossRef] [PubMed]
- Pike, A.R.; James, G.A.; Drew, P.D.; Archer, R.L. Neuroimaging predictors of longitudinal disability and cognition outcomes in multiple sclerosis patients: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022, 57, 103452. [Google Scholar] [CrossRef]
- Lomer, N.B.; Asalemi, K.A.A.; Saberi, A.; Sarlak, K. Predictors of multiple sclerosis progression: A systematic review of conventional magnetic resonance imaging studies. PLoS ONE 2024, 19, e0300415. [Google Scholar] [CrossRef]
- Simani, L.; Molaeipour, L.; Kian, S.; Leavitt, V.M. Correlation between cognitive changes and neuroradiological changes over time in multiple sclerosis: A systematic review and meta-analysis. J. Neurol. 2024, 271, 5498–5518. [Google Scholar] [CrossRef]
- Al-iedani, O.; Lea, S.; Alshehri, A.; Maltby, V.E.; Saugbjerg, B.; Ramadan, S.; Lea, R.; Lechner-Scott, J. Multi-modal neuroimaging signatures predict cognitive decline in multiple sclerosis: A 5-year longitudinal study. Mult. Scler. Relat. Disord. 2024, 81, 105379. [Google Scholar] [CrossRef]
- Covey, T.J.; Golan, D.; Doniger, G.M.; Sergott, R.; Zarif, M.; Bumstead, B.; Buhse, M.; Kaczmarek, O.; Mebrahtu, S.; Bergmann, C.; et al. Prolonged visual evoked potential latency predicts longitudinal worsening of fatigue in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 67, 66–74. [Google Scholar] [CrossRef]
- Nij Bijvank, J.A.; Hof, S.N.; Prouskas, S.E.; Schoonheim, M.M.; Uitdehaag, B.M.J.; van Rijn, L.J.; Petzold, A. A novel eye-movement impairment in multiple sclerosis indicating widespread cortical damage. Brain 2023, 146, 2476–2488. [Google Scholar] [CrossRef]
- Chalah, M.A.; Ayache, S.S. Deficits in Social Cognition: An Unveiled Signature of Multiple Sclerosis. J. Int. Neuropsychol. Soc. 2017, 23, 266–286. [Google Scholar] [CrossRef]
- Bora, E.; Özakbaş, S.; Velakoulis, D.; Walterfang, M. Social Cognition in Multiple Sclerosis: A Meta-Analysis. Neuropsychol. Rev. 2016, 26, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Sofologi, M.; Koutsouraki, E.; Tsolaki, M.; Tsolaki, A.; Koukoulidis, T.; Theofilidis, A.; Papantoniou, G.; Moraitou, D. Analyzing social cognition and understanding of social inferences in patients with multiple sclerosis. A comparative study. Hell. J. Nucl. Med. 2019, 22, 15–26. [Google Scholar] [PubMed]
- Batista, S.; d’Almeida, O.C.; Afonso, A.; Freitas, S.; Macário, C.; Sousa, L.; Castelo-Branco, M.; Santana, I.; Cunha, L. Impairment of social cognition in multiple sclerosis: Amygdala atrophy is the main predictor. Mult. Scler. 2017, 23, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Chalah, M.A.; Ayache, S.S. A Scope of the Social Brain in Multiple Sclerosis: Insights From Neuroimaging Studies. Cogn. Behav. Neurol. 2020, 33, 90–102. [Google Scholar] [CrossRef]
- Genova, H.M.; Lancaster, K.; Lengenfelder, J.; Bober, C.P.; DeLuca, J.; Chiaravalloti, N.D. Relationship between social cognition and fatigue, depressive symptoms, and anxiety in multiple sclerosis. J. Neuropsychol. 2020, 14, 213–225. [Google Scholar] [CrossRef]
- Radlak, B.; Cooper, C.; Summers, F.; Phillips, L.H. Multiple sclerosis, emotion perception and social functioning. J. Neuropsychol. 2021, 15, 500–515. [Google Scholar] [CrossRef]
- Oliveira, R.; de Pinho, G.D.; Silva, D.; Chester, C.; Marques, I.B. Altered social cognition in early relapsing remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2023, 78, 104924. [Google Scholar] [CrossRef]
- Dulau, C.; Deloire, M.; Diaz, H.; Saubusse, A.; Charre-Morin, J.; Prouteau, A.; Brochet, B. Social cognition according to cognitive impairment in different clinical phenotypes of multiple sclerosis. J. Neurol. 2017, 264, 740–748. [Google Scholar] [CrossRef]
- Henry, A.; Tourbah, A.; Chaunu, M.P.; Bakchine, S.; Montreuil, M. Social Cognition Abilities in Patients With Different Multiple Sclerosis Subtypes. J. Int. Neuropsychol. Soc. 2017, 23, 653–664. [Google Scholar] [CrossRef]
- Lin, X.G.; Zhang, X.L.; Liu, Q.Q.; Zhao, P.W.; Zhong, J.G.; Pan, P.L.; Wang, G.D.; Yi, Z.Q. Social cognition in multiple sclerosis and its subtypes: A meta-analysis. Mult. Scler. Relat. Disord. 2021, 52, 102973. [Google Scholar] [CrossRef]
- Jehna, M.; Neuper, C.; Petrovic, K.; Wallner-Blazek, M.; Schmidt, R.; Fuchs, S.; Fazekas, F.; Enzinger, C. An exploratory study on emotion recognition in patients with a clinically isolated syndrome and multiple sclerosis. Clin. Neurol. Neurosurg. 2010, 112, 482–484. [Google Scholar] [CrossRef]
- Giazkoulidou, A.; Messinis, L.; Nasios, G. Cognitive functions and social cognition in multiple sclerosis: An overview. Hell. J. Nucl. Med. 2019, 22, 102–110. [Google Scholar] [PubMed]
- Marafioti, G.; Cardile, D.; Culicetto, L.; Quartarone, A.; Lo Buono, V. The Impact of Social Cognition Deficits on Quality of Life in Multiple Sclerosis: A Scoping Review. Brain Sci. 2024, 14, 691. [Google Scholar] [CrossRef]
- Doskas, T.; Vavougios, G.D.; Karampetsou, P.; Kormas, C.; Synadinakis, E.; Stavrogianni, K.; Sionidou, P.; Serdari, A.; Vorvolakos, T.; Iliopoulos, I.; et al. Neurocognitive impairment and social cognition in multiple sclerosis. Int. J. Neurosci. 2022, 132, 1229–1244. [Google Scholar] [CrossRef] [PubMed]
- Pitteri, M.; Genova, H.; Lengenfelder, J.; DeLuca, J.; Ziccardi, S.; Rossi, V.; Calabrese, M. Social cognition deficits and the role of amygdala in relapsing remitting multiple sclerosis patients without cognitive impairment. Mult. Scler. Relat. Disord. 2019, 29, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, M.; Bagutti, S.; Yaldizli, O.; Zwahlen, D.; Schaub, S.; Frey, B.; Fischer-Barnicol, B.; Burgunder, J.M.; Martory, M.D.; Pöttgen, J.; et al. Characterization of social cognition impairment in multiple sclerosis. Eur. J. Neurol. 2018, 25, 90–96. [Google Scholar] [CrossRef] [PubMed]
- van Egmond, E.E.A.; van der Hiele, K.; de Rooij, M.J.; van Gorp, D.A.M.; Jongen, P.J.; van der Klink, J.J.L.; Reneman, M.F.; Beenakker, E.A.C.; van Eijk, J.J.J.; Frequin, S.T.F.M.; et al. Longitudinal determinants of employment status in people with relapsing-remitting multiple sclerosis. IBRO Neurosci. Rep. 2024, 16, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, A.; Arcara, G.; Orefice, G.; Cerillo, I.; Giannino, V.; Rasulo, M.; Iodice, R.; Bambini, V. Communication in Multiple Sclerosis: Pragmatic Deficit and its Relation with Cognition and Social Cognition. Arch. Clin. Neuropsychol. 2018, 33, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Henry, A.; Lannoy, S.; Chaunu, M.P.; Tourbah, A.; Montreuil, M. Social cognition and executive functioning in multiple sclerosis: A cluster-analytic approach. J. Neuropsychol. 2022, 16, 97–115. [Google Scholar] [CrossRef]
- Ziccardi, S.; Pitteri, M.; Genova, H.M.; Calabrese, M. Social cognition in multiple sclerosis: A 3-year follow-up MRI and behavioral study. Diagnostics 2021, 11, 484. [Google Scholar] [CrossRef]
- Carlomagno, V.; Mirabella, M.; Lucchini, M. Current Status of Oral Disease-Modifying Treatment Effects on Cognitive Outcomes in Multiple Sclerosis: A Scoping Review. Bioengineering 2023, 10, 848. [Google Scholar] [CrossRef] [PubMed]
- Ehrlé, N.; Henry, A.; Pesa, A.; Bakchine, S. Présentation d’une batterie d’évaluation des fonctions sociocognitives chez des patients atteints d’affections neurologiques Application dans la démence frontale. Geriatr. Psychol. Neuropsychiatr. Vieil. 2011, 9, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Ehrlé, N.; Hody, A.; Lecrique, M.; Gury, P.; Bakchine, S. Social norms in patients with relapsing-remitting multiple sclerosis: Impairment of the moral/conventional distinction? Soc. Neurosci. 2020, 15, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Gury, P.; Moulin, M.; Laroye, R.; Montazel, M.; Trachino, M.; Narme, P.; Ehrlé, N. Explicit and implicit abilities in humor processing in patients with relapsing-remitting multiple sclerosis. Soc. Neurosci. 2024, 19, 1–13. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef]
- Meyers, J.E.; Zellinger, M.M.; Kockler, T.; Wagner, M.; Miller, R.M. A Validated Seven-Subtest Short Form for the WAIS-IV. Appl. Neuropsychol. Adult 2013, 20, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Adult Intelligence Scale, 3rd ed.; Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Grober, E.; Buschke, H.; Crystal, H.; Bang, S.; Dresner, R. Screening for dementia by memory testing. Neurology 1988, 38, 900–903. [Google Scholar] [CrossRef]
- Osterrieth, P.A. Le test de copie d’une figure complexe: Contribution à l’étude de la perception et de la mémoire. Arch. Psychol. 1944, 30, 286–356. [Google Scholar]
- Taylor, L.B. Localisation of cerebral lesions by psychological testing. Clin. Neurosurg. 1969, 16, 269–287. [Google Scholar] [CrossRef]
- De Renzi, E.; Vignolo, L.A. The token test: A sensitive test to detect receptive disturbances in aphasics. Brain 1962, 85, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Cardebat, D.; Démonet, J.F.; Viallard, G.; Faure, S.; Puel, M.; Celsis, P. Brain functional profiles in formal and semantic fluency tasks: A SPECT study in normal. Brain Lang. 1996, 52, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Deloche, G.; Hannequin, D. DO 80: Test de dénomination orale d’images; Éditions du Centre de Psychologie Appliquée: Paris, France, 1997. [Google Scholar]
- Gauthier, L.; Dehaut, F.; Joanette, Y. The bells test: A quantitative and qualitative test for visual neglect. J. Clin. Exp. Neuropsychol. 1989, 11, 49–54. [Google Scholar]
- Gronwall, D.M. Paced Auditory Serial-Addition Task: A measure of recovery from concussion. Percept. Mot. Ski. 1977, 44, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Burgess, P.W.; Shallice, T. The Hayling and Brixton Tests; Thames Valley Test Company: Thurston, UK, 1997. [Google Scholar]
- Heaton, R.K. Wisconsin Card Sorting Test; Psychological Assessment Resources: Odessa, FL, USA, 1981. [Google Scholar]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Dewey, M. Living with Asperger’s syndrome. In Autism and Asperger Syndrome; Frith, U., Ed.; Cambridge University Press: Cambridge, UK, 1991; pp. 84–206. [Google Scholar]
- Blair, R.J.; Cipolotti, L. Impaired social response reversal. A case of ‘acquired sociopathy’. Brain 2000, 123, 1122–1141. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Killen, M.; Helwig, C.C. Morality: Its structure, functions, and vagaries. In The Emergence of Morality in Young Children; Kagan, J., Lamb, S., Eds.; University of Chicago Press: Chicago, IL, USA, 1987; pp. 155–243. [Google Scholar]
- Narme, P.; Clément, S.; Ehrlé, N.; Schiaratura, L.; Vachez, S.; Courtaigne, B.; Munsch, F.; Samson, S. Efficacy of musical interventions in dementia: Evidence from a randomized controlled trial. J. Alzheimer’s Dis. 2014, 38, 359–369. [Google Scholar] [CrossRef]
- Ehrlé, N.; Espi, P.; Labire, J.; Loizeau, A.; Menard, C.; Bakchine, S. Impairments of humour comprehension in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 39, 101443. [Google Scholar] [CrossRef] [PubMed]
- Kołtuniuk, A.; Kazimierska-Zając, M.; Cisek, K.; Chojdak-Łukasiewicz, J. The Role of Stress Perception and Coping with Stress and the Quality of Life Among Multiple Sclerosis Patients. Psychol. Res. Behav. Manag. 2021, 14, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Bisecco, A.; Altieri, M.; Santangelo, G.; Di Nardo, F.; Docimo, R.; Caiazzo, G.; Capuano, R.; Pappacena, S.; d’Ambrosio, A.; Bonavita, S.; et al. Resting-State Functional Correlates of Social Cognition in Multiple Sclerosis: An Explorative Study. Front. Behav. Neurosci. 2020, 13, 276. [Google Scholar] [CrossRef]
- Golde, S.; Heine, J.; Pöttgen, J.; Mantwill, M.; Lau, S.; Wingenfeld, K.; Otte, C.; Penner, I.K.; Engel, A.K.; Heesen, C.; et al. Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis. Front. Neurol. 2020, 11, 507. [Google Scholar] [CrossRef] [PubMed]
- Labbe, T.P.; Zurita, M.; Montalba, C.; Ciampi, E.L.; Cruz, J.P.; Vasquez, M.; Uribe, S.; Crossley, N.; Cárcamo, C. Social cognition in Multiple Sclerosis is associated to changes in brain connectivity: A resting-state fMRI study. Mult. Scler. Relat. Disord. 2020, 45, 102333. [Google Scholar] [CrossRef] [PubMed]
- Grainger, S.A.; Crawford, J.D.; Riches, J.C.; Kochan, N.A.; Chander, R.J.; Mather, K.A.; Sachdev, P.S.; Henry, J.D. Aging is associated with multidirectional changes in social cognition: Findings from an adult life-span sample ranging from 18 to 101 years. J. Gerontol. B Psychol. Sci. Soc. Sci. 2023, 78, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Hoe, M.; Nakagami, E.; Green, M.F.; Brekke, J.S. The causal relationships between neurocognition, social cognition and functional outcome over time in schizophrenia: A latent difference score approach. Psychol. Med. 2012, 42, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Foteini, C.; Raffaella, M.; Hernando, S.G.; Gabriella, S.; Francesca, T. Social Cognition Dysfunctions in neurodegenerative diseases: Neuroanatomical correlates and clinical implications. Behav. Neurol. 2018, 2018, 1849794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landmeyer, N.C.; Bürkner, P.C.; Wiendl, H.; Ruck, T.; Hartung, H.P.; Holling, H.; Meuth, S.G.; Johnen, A. Disease-modifying treatments and cognition in relapsing-remitting multiple sclerosis: A meta-analysis. Neurology 2020, 94, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
- Yap, S.M.; Davenport, L.; Cogley, C.; Craddock, F.; Kennedy, A.; Gaughan, M.; Kearney, H.; Tubridy, N.; De Looze, C.; O’Keeffe, F.; et al. Word finding, prosody and social cognition in multiple sclerosis. J. Neuropsychol. 2023, 17, 32–62. [Google Scholar] [CrossRef] [PubMed]
First Assessment (Mean ± Standard Deviation) | Second Assessment (Mean ± Standard Deviation) | Wilcoxon Test | |
---|---|---|---|
Efficiency (WAIS-III) | |||
Global IQ | 91.8 ± 13.2 | 95.7 ± 13.6 | W = 81, p < 0.001 * |
Verbal IQ | 90.9 ± 14.8 | 93.1 ± 12.8 | W = 195.5, p = 0.03 |
Performance IQ | 90.7 ± 19 | 98.8 ± 16.1 | W = 119, p < 0.001 * |
Information | 7.3 ± 2.7 | 8.3 ± 3.3 | W = 28, p < 0.001 * |
Digit memory (spans) | 9.2 ± 2.8 | 9.8 ± 2.8 | W = 155, p = 0.04 |
Arithmetic | 8.8 ± 3 | 9 ± 3.1 | W = 192, NS |
Similarities | 9.8 ± 3 | 9.6 ± 2.3 | W = 340, NS |
Picture completion | 9.2 ± 3.1 | 11.2 ± 2.5 | W = 90, p = 0.002 |
Cubes | 8.8 ± 2.4 | 9.4 ± 3.3 | W = 170, NS |
Digit symbols | 8.9 ± 2.7 | 9.2 ± 3 | W = 177.5, NS |
Memory | |||
Forward digit span | 6.1 ± 1.2 | 6.3 ± 1.9 | W = 132, NS |
Backward digit span | 5 ± 1.4± | 5.3 ± 1.7 | W = 146, NS |
GB Encoding AF (/16) | 15.8 ± 0.4 | 15.7 ± 0.6 | W = 22, NS |
GB immediate free recall 1 AF (/16) | 9.3 ± 2.5 | 9.5 ± 2.4 | W = 216.5, NS |
GB immediate free recall 2 AF (/16) | 11.3 ± 2.2 | 11.6 ± 2.1 | W = 194, NS |
GB immediate free recall 3 AF (/16) | 12.3 ± 2 | 12.4 ± 2.3 | W = 272.5, NS |
GB immediate total recall 1 AF (/16) | 15.3 ± 1.1 | 15.3 ± 1 | W = 114, NS |
GB immediate total recall 2 AF (/16) | 15.8 ± 0.5 | 15.7 ± 0.8 | W = 255, NS |
GB immediate total recall 3 AF (/16) | 15.7 ± 0.6 | 15.9 ± 0.4 | W = 8, NS |
GB total immediate recognition AF (/16) | 15.8 ± 0.5 | 16 ± 0 | W = 43, p = 0.02 |
Neutral false recognition (/16) | 0.03 ± 1.6 | 0 ± 0 | W = 0, NS |
GB delayed free recall AF | 11.8 ± 2.9 | 12.5 ± 2.2 | W = 160, NS |
GB total delayed recall AF | 15.6 ± 1.1 | 15.9 ± 0.3 | W = 38, NS |
Rey/Taylor immediate recall AF (/36) | 17.3 ± 6.3 | 20.9 ± 6.6 | W = 480, p < 0.001 * |
Rey/Taylor figure delayed recall AF (/36) | 16.8 ± 5.4 | 20.5 ± 6.4 | W = 89, p < 0.001 * |
Rey/Taylor figure delayed recognition AF (/24) | 21 ± 1.6 | 20.1 ± 1.7 | W = 233, p = 0.02 |
Language | |||
Token test (/163) | 161.6 ± 1.6 | 161.8 ± 1.8 | W = 45.5, NS |
R fluency in 2 min | 15.6 ± 6 | 17.3 ± 7 | W = 378.5, p = 0.03 |
Fruits fluency in 2 min | 21.8 ± 4.6 | 21.2 ± 3.9 | W = 448, NS |
DO 80 (/80) | 76.4 ± 3.4 | 78.6 ± 2 | W = 475.5, p < 0.001 * |
Visuo-spatial abilities | |||
Bells Test number (/35) | 33.6 ± 2 | 34.6 ± 0.7 | W = 275, p = 0.01 |
Bells Test time (seconds) | 138.9 ± 47.5 | 121.1 ± 42.9 | W = 502, p = 0.02 |
Rey/Taylor figure copy AF (/36) | 28.4 ± 3.4 | 28.3 ± 3.9 | W = 266, NS |
Executive functioning | |||
PASAT | 54 ± 16.6 | 47.2 ± 7.8 | W = 110, NS |
Brixton (/55) | 41.1 ± 7.4 | 44 ± 5.1 | W = 111, p = 0.002 |
WCST categories number (/6) | 5.5 ± 1.3 | 5.9 ± 0.8 | W = 7, NS |
WCST cards number (max 128) | 83.2 ± 20.7 | 78.11 ± 11.9 | W = 353, NS |
WCST perseverative errors | 8.5 ± 10.4 | 4.7 ± 2.7 | W = 401, p = 0.002 |
WCST perseverative responses | 10.5 ± 13.7 | 5.3 ± 3.5 | W = 606, p = 0.009 |
WCST % conceptual responses | 75.5 ± 19.1 | 80.7 ± 9.1 | W = 215, NS |
WCST failures to maintain set | 0.4 ± 1 | 0.3 ± 0.6 | W = 41.5, NS |
Bimanual sequence (/1) | 0.9 ± 0.3 | 1 ± 0.2 | W = 2.5, NS |
Finger tapping (/1) | 0.9 ± 0.4 | 0.8 ± 0.4 | W = 20, NS |
Conflicting instructions (/1) | 0.9 ± 0.3 | 1 ± 0.2 | W = 2, NS |
Go/No-go (/1) | 0.8 ± 0.4 | 1 ± 0.2 | W = 2, p = 0.01 |
First Assessment (Mean ± Standard Deviation) | Second Assessment (Mean ± Standard Deviation) | Wilcoxon Test | |
---|---|---|---|
Emotion recognition | |||
Emotion recognition total score (/60) | 53.3 ± 8.3 | 52.2 ± 7.1 | W = 94, p = 0.04 |
Emotion recognition for anger items (/10) | 7.9 ± 2.6 | 6.9 ± 2.8 | W = 172, p = 0.01 |
Emotion recognition for disgust items (/10) | 9.1 ± 1.7 | 9.1 ± 1.6 | W = 42, NS |
Emotion recognition for happiness items (/10) | 9.9 ± 0.3 | 9.9 ± 0.2 | W = 2, NS |
Emotion recognition for fear items (/10) | 8.2 ± 2.6 | 8.3 ± 2.2 | W = 74, NS |
Emotion recognition for sadness items (/10) | 8.6 ± 2.4 | 8.5 ± 2.1 | W = 39.5, NS |
Emotion recognition for surprise items (/10) | 9.6 ± 0.8 | 9.6 ± 1 | W = 24.5, NS |
Emotion discrimination | |||
Emotion discrimination for easy identical pairs (/12) | 11.9 ± 0.5 | 11.9 ± 0.4 | W = 2, NS |
Emotion discrimination for difficult identical pairs (/12) | 10.9 ± 2.3 | 9.7 ± 3.2 | W = 25, p = 0.048 |
Emotion discrimination for different pairs (/30) | 27.1 ± 2.5 | 27.6 ± 2.6 | W = 108.5, NS |
Intensity judgment | |||
Intensity judgement for anger | 3.1 ± 0.7 | 3 ± 0.7 | W = 90, NS |
Intensity judgement for disgust | 3.3 ± 0.7 | 3.1 ± 0.6 | W = 93.5, NS |
Intensity judgement for fear | 3.5 ± 0.6 | 3.6 ± 0.7 | W = 171, NS |
Intensity judgement for happiness | 3.2 ± 0.7 | 3.3 ± 0.6 | W = 136.5, NS |
Intensity judgement for sadness | 2.6 ± 0.7 | 2.5 ± 0.4 | W = 102, NS |
Intensity judgement for surprise | 2.9 ± 0.6 | 2.9 ± 0.7 | W = 90.5, NS |
Theory of mind | |||
1st order AF (/9) | 7.9 ± 0.8 | 7.9 ± 0.8 | W = 234.5, NS |
2nd order AF (/9) | 7.3 ± 0.7 | 7.1 ± 0.8 | W = 90.5, NS |
Faux-pas AF (/14) | 12.9 ± 2 | 12.4 ± 2.1 | W = 137.5, p = 0.03 |
Social situation task | |||
Adapted social situations AF (/8) | 7 ± 0.9 | 6.9 ± 0.8 | W = 33, NS |
Non-adapted social situations AF (/8) | 7.6 ± 0.5 | 7.3 ± 0.6 | W = 38.5, NS |
Moral/conventional distinction task | |||
Initial permissibility for moral transgressions AF (/5) | 4.7 ± 0.06 | 4.7 ± 0.06 | W = 2, NS |
Initial permissibility for conventional transgressions AF (/5) | 4.6 ± 0.2 | 4.6 ± 0.1 | W = 7.5, NS |
Initial permissibility for normal situations AF (/5) | 5 ± 0.1 | 5 ± 0.1 | W = 9, NS |
Gravity for moral transgressions AF | 4.6 ± 0.4 | 4.5 ± 0.6 | W = 160.5, NS |
Gravity for conventional transgressions AF | 3.6 ± 0.8 | 3.5 ± 1 | W = 223, NS |
Permissibility in generalization for moral transgressions AF (/5) | 5 ± 0.1 | 5 ± 0.1 | W = 2, NS |
Permissibility in generalization for conventional transgressions AF (/5) | 4.9 ± 0.2 | 4.9 ± 0.2 | W = 13, NS |
Permissibility in dependency for moral transgressions AF (/5) | 5 ± 0.1 | 5 ± 0.1 | W = 2, NS |
Permissibility in dependency for conventional transgressions AF (/5) | 4.9 ± 0.2 | 4.9 ± 0.2 | W = 18, NS |
Humor identification | |||
Funny items AF (/8) | 6.5 ± 1.4 | 5.6 ± 2 | W = 35.5, p = 0.01 |
Non funny items AF (/8) | 7 ± 0.9 | 6.8 ± 1.1 | W = 68, NS |
Scores Significantly Different Between the Two Assessments | Age | Education Level | EDSS at Baseline | Disease Duration |
---|---|---|---|---|
GB total immediate recognition AF (/16) | −0.1, NS | −0.15, NS | 0.19, NS | 0.07, NS |
Rey/Taylor immediate recall AF (/36) | −0.05, NS | 0.48, NS | −0.22, NS | −0.03, NS |
Rey/Taylor figure delayed recall AF (/36) | −0.08, NS | 0.15, NS | −0.27, NS | −0.12, NS |
Rey/Taylor figure delayed recognition AF (/24) | −0.29, NS | −0.04, NS | −0.04, NS | 0.1, NS |
R fluency in 2 min | −0.22, NS | 0.048, p = 0.002 | −0.27, NS | −0.21, NS |
DO 80 (/80) | −0.14, NS | −0.15, NS | 0.22, NS | −0.14, NS |
Bells Test number (/35) | −0.08, NS | 0.009, NS | 0.03, NS | −0.04, NS |
Bells Test time (seconds) | −0.09, NS | −0.09, NS | −0.02, NS | 0.1, NS |
Brixton (/55) | −0.16, NS | −0.03, NS | −0.25, NS | −0.27, NS |
WCST perseverative errors | −0.15, NS | 0.4, p = 0.01 | −0.17, NS | 0.21, NS |
WCST perseverative responses | −0.15, NS | 0.37, p = 0.018 | 0.21, NS | 0.26, NS |
Go/No-go (/1) | −0.05, NS | 0.23, NS | 0.006, NS | −0.12, NS |
Emotion recognition total score (/60) | 0.17, NS | −0.27, NS | 0.15, NS | 0.09, NS |
Emotion discrimination for difficult identical pairs (/12) | 0.23, NS | −0.24, NS | 0.3, NS | −0.06, NS |
Funny items AF (/8) | 0.15, NS | 0.15, NS | 0.19, NS | 0.13, NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrlé, N.; Papinsac, M. A 2-Year Longitudinal Neuropsychological Study in Relapsing-Remitting Multiple Sclerosis: A Selective Decline in Social Cognition? Sclerosis 2024, 2, 365-377. https://doi.org/10.3390/sclerosis2040024
Ehrlé N, Papinsac M. A 2-Year Longitudinal Neuropsychological Study in Relapsing-Remitting Multiple Sclerosis: A Selective Decline in Social Cognition? Sclerosis. 2024; 2(4):365-377. https://doi.org/10.3390/sclerosis2040024
Chicago/Turabian StyleEhrlé, Nathalie, and Margot Papinsac. 2024. "A 2-Year Longitudinal Neuropsychological Study in Relapsing-Remitting Multiple Sclerosis: A Selective Decline in Social Cognition?" Sclerosis 2, no. 4: 365-377. https://doi.org/10.3390/sclerosis2040024
APA StyleEhrlé, N., & Papinsac, M. (2024). A 2-Year Longitudinal Neuropsychological Study in Relapsing-Remitting Multiple Sclerosis: A Selective Decline in Social Cognition? Sclerosis, 2(4), 365-377. https://doi.org/10.3390/sclerosis2040024