Antischistosomal Activity of 1,4-Dihydropyridines
Abstract
1. Introduction
2. Results
2.1. Antischistosomal Activity of Compounds 1–24 Against S. mansoni Adult Worms
2.2. Drug-Likeness and ADMET Predictions
2.2.1. Physicochemical and Drug-Likeness Predictions
2.2.2. ADMET Properties
2.3. Docking Studies
3. Discussion
3.1. Antischistosomal Activity of Compounds 1–24 Against S. mansoni Adult Worms
3.2. Drug-Likeness and ADMET Predictions
3.3. Docking Studies
4. Materials and Methods
4.1. Synthesis of Compounds 1–24
4.2. Antischistosomal Activity
4.2.1. Maintenance of S. mansoni Life Cycle
4.2.2. In Vitro Antichistosomal Activity of Compounds 1–24
4.3. In Silico Studies on the Most Active 1,4-DHPs
4.3.1. Physicochemical and Drug-Likeness Predictions
4.3.2. ADMET Properties
4.3.3. Docking Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olamiju, F.; Nebe, O.J.; Mogaji, H.; Marcus, A.; Amodu-Agbi, P.; Urude, R.O.; Apake, E.; Olamiju, O.; Okoronkwo, C.; Achu, I.; et al. Schistosomiasis outbreak during COVID-19 pandemic in Takum, Northeast Nigeria: Analysis of infection status and associated risk factors. PLoS ONE 2022, 17, e0262524. [Google Scholar] [CrossRef]
- Tabilin, E.J.; Gray, D.J.; Jiz, M.A.; Mationg, M.L.; Inobaya, M.; Avenido-Cervantes, E.; Sato, M.; Sato, M.O.; Sako, Y.; Mu, Y.; et al. Schistosomiasis in the Philippines: A comprehensive review of epidemiology and current control. Trop. Med. Infect. Dis. 2025, 10, 29. [Google Scholar] [CrossRef]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Primers 2018, 4, 13. [Google Scholar] [CrossRef]
- Essam Behiry, M. Katayama fever with rare presentation. MOJ Clin. Med. Case Rep. 2019, 9, 29–31. [Google Scholar] [CrossRef]
- Lim, R.M.; Arme, T.M.; Pedersen, A.B.; Webster, J.P.; Lamberton, P.H.L. Defining schistosomiasis hotspots based on literature and shareholder interviews. Trends Parasitol. 2023, 39, 1032–1049. [Google Scholar] [CrossRef]
- Jin, Y.; Lee, Y.H.; Cha, S.; Choi, I.U.; Ismail, H.; Elhag, M.S.; Hong, S.T. Transmission dynamics of Schistosoma haematobium among school-aged children: A cohort study on prevalence, reinfection and incidence after mass drug administration in the White Nile State of Sudan. Int. J. Environ. Res. Public Health 2021, 18, 11537. [Google Scholar] [CrossRef]
- Wang, J.G.; Kario, K.; Lau, T.; Wei, Y.Q.; Park, C.G.; Kim, C.H.; Huang, J.; Zhang, W.; Li, Y.; Yan, P.; et al. Use of dihydropyridine calcium channel blockers in the management of hypertension in Eastern Asians: A scientific statement from the Asian Pacific Heart Association. Hypertens. Res. 2011, 34, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.M. Calcium channel blockers for hypertension: Old, but still useful. Cardiovasc. Prev. Pharmacother. 2023, 5, 113–125. [Google Scholar] [CrossRef]
- Vanden Eynde, J.J.; Mayence, A. Synthesis and aromatization of Hantzsch 1,4-dihydropyridines under microwave irradiation. An overview. Molecules 2003, 8, 381–391. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Silva, J.B.A.; Silva, N.B.S.; Félix, P.C.A.; Oliveira, A.M.; Martins, C.H.G.; Magalhães, L.G.; Crotti, A.E.M. Antibacterial and antileishmanial activity of 1,4-dihydropyridine derivatives. Chem. Biodivers. 2025, 22, e202401300. [Google Scholar] [CrossRef]
- Palit, P.; Ali, N. Oral therapy with amlodipine and lacidipine, 1,4-dihydropyridine derivatives showing activity against experimental visceral leishmaniasis. Antimicrob. Agents Chemother. 2008, 52, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Pollo, L.A.E.; de Moraes, M.H.; Cisilotto, J.; Creczynski-Pasa, T.B.; Biavatti, M.W.; Steindel, M.; Sandjo, L.P. Synthesis and in vitro evaluation of Ca2+ channel blockers 1,4-dihydropyridines analogues against Trypanosoma cruzi and Leishmania amazonensis: SAR analysis. Parasitol. Int. 2017, 66, 789–797. [Google Scholar] [CrossRef]
- Reimao, J.Q.; Scotti, M.T.; Tempone, A.G. Anti-leishmanial and anti-trypanosomal activities of 1,4-dihydropyridines: In vitro evaluation and structure-activity relationship study. Bioorg. Med. Chem. 2010, 18, 8044–8053. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Silva, J.B.A.; Esperandim, T.R.; Acésio, N.O.; Tavares, D.C.; Crotti, A.E.M. Anticancer activity of 4-aryl-1,4-dihydropyridines. Fut. Pharmacol. 2024, 4, 564–573. [Google Scholar] [CrossRef]
- Talwan, P.; Chaudhary, S.; Kumar, K.; Rawal, R. Chemical and Medicinal Versatility of Substituted 1,4-Dihydropyridines. Curr. Bioact. Compd. 2017, 13, 109–120. [Google Scholar] [CrossRef]
- Ogawa, T.; Nakazato, A.; Tsuchida, K.; Hatayama, K. Synthesis and antihypertensive activities of new 1,4-dihydropyridine derivatives containing nitrooxyalkylester moieties at the 3- and 5-positions. Chem. Pharm. Bull. 1993, 41, 1049–1054. [Google Scholar] [CrossRef]
- Akbar, I.; Radhakrishnan, S.; Meenakshisundaram, K.; Manilal, A.; Hatamleh, A.A.; Alnafisi, B.K.; Ahamed, A.; Balasubramani, R. Design of 1,4-dihydropyridine hybrid benzamide derivatives: Synthesis and evaluation of analgesic activity and their molecular docking studies. Drug Des. Devel. Ther. 2022, 16, 4021–4039. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Robles, Y.R.; Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Daoud, I.; Rahali, S.; Amdouni, N.; Said, R.B.; Crotti, A.E.M. Antileishmanial and antitoxoplasmal activities of 1,4-dihydropyridines. ACS Omega 2025, 10, 31066–31076. [Google Scholar] [CrossRef] [PubMed]
- Pagotti, M.C.; Candido, A.; Marcal, M.G.; Vieira, T.M.; Groppo, M.; Silva, M.L.A.; Ferreira, D.S.; Esperandim, V.R.; Crotti, A.E.M.; Magalhaes, L.G. Trypanocidal activity of Dysphania ambrosioides, Lippia alba, and Tetradenia riparia essential oils against Trypanosoma cruzi. Chem. Biodivers. 2021, 18, e2100678. [Google Scholar] [CrossRef] [PubMed]
- Vieira, T.M.; Barco, J.G.; Paula, L.A.L.; Felix, P.C.A.; Bastos, J.K.; Magalhães, L.G.; Crotti, A.E.M. In vitro evaluation of the antileishmanial and antischistosomal activities of p-coumaric acid prenylated derivatives. Chem. Biodivers. 2024, 21, e202400491. [Google Scholar] [CrossRef]
- Pagotti, M.C.; Dias, H.J.; Candido, A.; Oliveira, T.A.S.; Borges, A.; Oliveira, N.D.; Lopes, C.D.; Orenha, R.P.; Parreira, R.L.T.; Crotti, A.E.M.; et al. Exploring synthetic dihydrobenzofuran and benzofuran neolignans as antiprotozoal agents against Trypanosoma cruzi. Pharmaceutics 2023, 15, 754. [Google Scholar] [CrossRef]
- Boschi, D.; Pippione, A.C.; Sainas, S.; Lolli, M.L. Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur. J. Med. Chem. 2019, 183, 111681. [Google Scholar] [CrossRef] [PubMed]
- Nonato, M.C.; de Padua, R.A.P.; David, J.S.; Reis, R.A.G.; Tomaleri, G.P.; D’Muniz Pereira, H.; Calil, F.A. Structural basis for the design of selective inhibitors for Schistosoma mansoni dihydroorotate dehydrogenase. Biochimie 2019, 158, 180–190. [Google Scholar] [CrossRef]
- Calil, F.A.; David, J.S.; Chiappetta, E.R.C.; Fumagalli, F.; Mello, R.B.; Leite, F.H.A.; Castilho, M.S.; Emery, F.S.; Nonato, M.C. Ligand-based design, synthesis and biochemical evaluation of potent and selective inhibitors of Schistosoma mansoni dihydroorotate dehydrogenase. Eur. J. Med. Chem. 2019, 167, 357–366. [Google Scholar] [CrossRef]
- de Mori, R.M.; Aleixo, M.A.A.; Zapata, L.C.C.; Calil, F.A.; Emery, F.S.; Nonato, M.C. Structural basis for the function and inhibition of dihydroorotate dehydrogenase from Schistosoma mansoni. FEBS J. 2021, 288, 930–944. [Google Scholar] [CrossRef]
- Ja’afaru, S.C.; Uzairu, A.; Hossain, S.; Ullah, M.H.; Sallau, M.S.; Ndukwe, G.I.; Ibrahim, M.T.; Bayil, I.; Moin, A.T. Computer-aided discovery of novel SmDHODH inhibitors for schistosomiasis therapy: Ligand-based drug design, molecular docking, molecular dynamic simulations, drug-likeness, and ADMET studies. PLoS Negl. Trop. Dis. 2024, 18, e0012453. [Google Scholar] [CrossRef]
- Ja’afaru, S.C.; Uzairu, A.; Mishra, V.K.; Sallau, M.S.; Ibrahim, M.T.; Dubey, A. Virtual screening and molecular dynamics studies of novel small molecules targeting Schistosoma mansoni DHODH: Identification of potential inhibitors. In Silico Pharmacol. 2024, 12, 113. [Google Scholar] [CrossRef]
- Pavani, T.F.A.; Cirino, M.E.; Teixeira, T.R.; de Moraes, J.; Rando, D.G.G. Targeting the Schistosoma mansoni nutritional mechanisms to design new antischistosomal compounds. Sci. Rep. 2023, 13, 19735. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.S.A.; Silveira, G.O.; Amaral, M.S.; Almeida, S.M.V.; Oliveira, J.F.; Lima, M.C.A.; Verjovski-Almeida, S. In vitro activity of aryl-thiazole derivatives against Schistosoma mansoni schistosomula and adult worms. PLoS ONE 2019, 14, e0225425. [Google Scholar] [CrossRef]
- Rowland, M.; Peck, C.; Tucker, G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 45–73. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.G.A.; Jaiswal, S.; Chen, K.F.; Jones, H.M.; Templeton, I.E. Real-world application of physiologically based pharmacokinetic models in drug discovery. Drug Metab. Dispos. 2025, 53, 100015. [Google Scholar] [CrossRef]
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol. 2021, 12, 618411. [Google Scholar] [CrossRef]
- Subramanian, G.; Kitchen, D.B. Computational approaches for modeling human intestinal absorption and permeability. J. Mol. Model. 2006, 12, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Geldenhuys, W.J.; Mohammad, A.S.; Adkins, C.E.; Lockman, P.R. Molecular determinants of blood-brain barrier permeation. Ther. Deliv. 2015, 6, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, A.A.; Elattar, M.A.; Fawzi, S.A. Advancing ADMET prediction for major CYP450 isoforms: Graph-based models, limitations, and future directions. Biomed. Eng. Online 2025, 24, 93. [Google Scholar] [CrossRef]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Scali, E.; Scumaci, D.; Pellegrino, M.; Aquaro, S.; Saturnino, C.; Sinicropi, M.S. Impact of cytochrome P450 enzymes on the phase I metabolism of drugs. Appl. Sci. 2023, 13, 6045. [Google Scholar] [CrossRef]
- Doogue, M.P.; Polasek, T.M. The ABCD of clinical pharmacokinetics. Ther. Adv. Drug Saf. 2013, 4, 5–7. [Google Scholar] [CrossRef]
- Hann, E.; Malagu, K.; Stott, A.; Vater, H. The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate. Prog. Med. Chem. 2022, 61, 163–214. [Google Scholar] [CrossRef] [PubMed]
- Ur Rahman, M.; Hussain, H.R.; Akram, H.; Gulzar, F.; Nouman, M.; Farooq, H.; Ashfaq, A.; Kalsoom, Z. Nifedipine’s synergistic therapeutic potential: Overcoming challenges and embracing novel applications in pharmacotherapy. Prospect Pharm. Sci. 2025, 23, 101–115. [Google Scholar] [CrossRef]
- Korb, O.; Stutzle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model. 2009, 49, 84–96. [Google Scholar] [CrossRef]
- Tucker, M.S.; Karunaratne, L.B.; Lewis, F.A.; Freitas, T.C.; Liang, Y.S. Schistosomiasis. Curr. Protoc. Immunol. 2013, 103, 1911–19158. [Google Scholar] [CrossRef]
- Smithers, S.R.; Terry, R.J. The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 1965, 55, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Avogadro: An Open-Source Molecular Builder and Visualization Tool, version 1.2.0 (with ORCA Support); University of Pittsburgh: Pittsburgh, PA, USA, 2018. Available online: http://avogadro.cc/ (accessed on 21 October 2025).
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, version 2.0.3.; Schrödinger, LLC.: New York, NY, USA, 2017.
- BIOVIA, Dassault Systèmes. Discovery Studios Visualizer, v.25.1.0.24284; Dassault Systèmes: San Diego, CA, USA, 2025.




| Compound | S. mansoni Adult Worms | Vero Cells | SI b | ||
|---|---|---|---|---|---|
| 24 h | 48 h | 72 h | |||
| 2 | 61.3 | 45.0 | 29.4 | 52.9 ± 9.8 | 0.86 |
| (38.5–85.7) | (33.5–73.8) | (22.4–39.4) | |||
| 3 | 63.3 | 38.2 | 36.3 | 49.8 ± 8.9 | 0.79 |
| (49.2–99.5) | (34.6–42.3) | (32.7–40.4) | |||
| 4 | 79.3 | 35.7 | 33.1 | 17.5 ± 3.0 | 0.22 |
| (61.1–97.5) | (33.8–37.8) | (29.59–37.42) | |||
| 6 | 85.5 | 91.8 | 32.8 | 17.4 ± 2.9 | 0.20 |
| (58.1–115.2) | (58.5–125.1) | (26.0–43.9) | |||
| 9 | 129.1 | 105.1 | 42.0 | 4.5 ± 0.7 | 0.03 |
| (60.1–179.7) | (59.0–154.4) | (32.2–63.4) | |||
| 10 | 79.3 | 44.2 | 44.2 | 10.7 ± 2.1 | 0.13 |
| (54.9–185.4) | (35.8–60.4) | (35.8–60.4) | |||
| 12 | 40.0 | 27.8 | 22.2 | 14.9 ± 2.6 | 0.37 |
| (35.4–45.9) | (22.3–34.8) | (18.8–26.2) | |||
| 20 | 15.2 | 16.7 | 14.01 | 35.0 ± 5.9 | 2.31 |
| (11.9–18.7) | (12.9–21.4) | (10.6–18.4) | |||
| 21 | 13.1 | 10.1 | 7.75 | >59.9 | >4.59 |
| (6.9–22.7) | (0.8–30.6) | (3.4–13.5) | |||
| PZQ | 1.6 | ||||
| Entry | TPSA (Å2) | n-ROTB | MW | M LogP | W LogP | n-ON Acceptors | n-OHNH Donors | Lipinski’s Violations | Veber’s Violations | Egan’s Violations |
|---|---|---|---|---|---|---|---|---|---|---|
| <140 | <10 | <500 | ≤4.15 | ≤5.88 | <10 | <5 | ≤1 | ≤1 | ≤1 | |
| 2 | 55.40 | 4 | 353.45 | 2.91 | 3.78 | 3 | 1 | Accepted | Accepted | Accepted |
| 3 | 64.63 | 5 | 369.45 | 2.35 | 3.48 | 4 | 1 | Accepted | Accepted | Accepted |
| 4 | 64.63 | 7 | 445.55 | 3.36 | 4.90 | 4 | 1 | Accepted | Accepted | Accepted |
| 6 | 55.40 | 4 | 418.32 | 3.29 | 4.24 | 3 | 1 | Accepted | Accepted | Accepted |
| 9 | 101.22 | 5 | 384.43 | 1.73 | 3.38 | 5 | 1 | Accepted | Accepted | Accepted |
| 10 | 101.22 | 5 | 384.43 | 1.73 | 3.38 | 5 | 1 | Accepted | Accepted | Accepted |
| 12 | 73.86 | 4 | 383.44 | 2.21 | 3.20 | 5 | 1 | Accepted | Accepted | Accepted |
| 20 | 64.63 | 7 | 408.29 | 2.83 | 3.43 | 4 | 1 | Accepted | Accepted | Accepted |
| 21 | 64.63 | 7 | 347.38 | 2.61 | 3.23 | 5 | 1 | Accepted | Accepted | Accepted |
| Entry | HIA (%) | BBB Permeant (log BB) | CYP1A2 Inhibitor | CYP3A4 Substrate | Total Clearance (log mL/min/kg) | AMES Toxicity | Hepatotoxicity |
|---|---|---|---|---|---|---|---|
| 2 | 95.912 | 0.141 | No | Yes | 1.119 | No | Yes |
| 3 | 97.015 | −0.113 | Yes | Yes | 1.095 | No | Yes |
| 4 | 95.270 | −0.081 | No | Yes | 0.514 | No | Yes |
| 6 | 94.386 | 0.127 | No | Yes | −0.088 | No | Yes |
| 9 | 92.018 | −0.265 | No | Yes | 1.112 | No | Yes |
| 10 | 91.819 | −0.264 | No | Yes | 1.087 | No | Yes |
| 12 | 96.878 | −0.246 | No | Yes | 0.756 | No | Yes |
| 20 | 93.057 | −0.183 | No | Yes | 0.2 | No | Yes |
| 21 | 94.576 | −0.421 | Yes | Yes | 0.744 | No | Yes |
| Entry | Score for ORO Active Site | Number of Strong Interactions a | Number of Weak Interactions b | Score for QLA Active Site | Number of Strong Interactions a | Number of Weak Interactions b |
|---|---|---|---|---|---|---|
| ORO | 52.21 | 8 c | 2 | — | — | — |
| QLA | — | — | — | 74.62 | 3 | 14 c |
| 2 | 58.77 | 2 | 22 c | 57.87 | 1 | 20 |
| 3 | 63.40 | 3 d | 22 c | 55.21 | 0 | 23 |
| 4 | 77.62 | 7 c | 15 | 72.06 | 3 d | 20 |
| 6 | 59.19 | 4 c | 20 | 56.10 | 0 | 21 |
| 9 | 58.93 | 4 c | 16 | 58.60 | 2 | 20 |
| 10 | 62.05 | 3 d | 19 c | 65.57 | 3 d | 17 |
| 12 | 62.52 | 3 | 19 c | 52.30 | 1 d | 20 |
| 20 | 60.73 | 4 c,d | 19 | 57.08 | 1 | 20 |
| 21 | 62.90 | 6 c,d | 17 | 60.42 | 0 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Oliveira, T.A.S.; Zago, M.H.M.; Maciel, L.G.; Robles, Y.R.; Magalhães, L.G.; Crotti, A.E.M. Antischistosomal Activity of 1,4-Dihydropyridines. Drugs Drug Candidates 2026, 5, 8. https://doi.org/10.3390/ddc5010008
Oliveira TAS, Zago MHM, Maciel LG, Robles YR, Magalhães LG, Crotti AEM. Antischistosomal Activity of 1,4-Dihydropyridines. Drugs and Drug Candidates. 2026; 5(1):8. https://doi.org/10.3390/ddc5010008
Chicago/Turabian StyleOliveira, Thaís A. S., Matheus H. M. Zago, Larissa G. Maciel, Yan R. Robles, Lizandra G. Magalhães, and Antônio E. M. Crotti. 2026. "Antischistosomal Activity of 1,4-Dihydropyridines" Drugs and Drug Candidates 5, no. 1: 8. https://doi.org/10.3390/ddc5010008
APA StyleOliveira, T. A. S., Zago, M. H. M., Maciel, L. G., Robles, Y. R., Magalhães, L. G., & Crotti, A. E. M. (2026). Antischistosomal Activity of 1,4-Dihydropyridines. Drugs and Drug Candidates, 5(1), 8. https://doi.org/10.3390/ddc5010008

