Quis Custodiet? Are Regulations Slowing Phage Therapy?
Abstract
:1. Introduction
2. The Perceived Challenge—Current Regulatory Path for Bacteriophage Products
- 2015, CBER (Center for Biologics Evaluation and Research) and NIAID Bacteriophage Therapy, an alternative strategy to combat Drug Resistance [32]
- 2015, EMA Therapeutic Use of Bacteriophages (https://www.ema.europa.eu/en/events/workshop-therapeutic-use-bacteriophages; accessed 23 December 2024)
- 2017, CBER and NIAID Bacteriophage Therapy, Scientific and Regulatory Issues (http://wayback.archive-it.org/7993/20180125064624/https://www.fda.gov/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/ucm544294.htm; accessed 23 December 2024)
- 2021, CBER and NIAID Science and Regulation of Bacteriophage Therapy (https://www.fda.gov/news-events/fda-meetings-conferences-and-workshops/science-and-regulation-bacteriophage-therapy-workshop-08302021; accessed 23 December 2024)
3. The Major Challenge—Clinical Data
4. The Value of Phage Banks
5. Can Phage Banks Prepare Phages Following cGMP?
6. We Are Better Together
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gratia, A. Studies on the d’Herelle Phenomena. J. Exp. Med. 1921, 34, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Summers, W.C. The strange history of phage therapy. Bacteriophage 2012, 2, 130–133. [Google Scholar] [CrossRef]
- Jones, E.H.; Letarov, A.V.; Clokie, M. Neat Science in a Messy World: The Global Impact of Human Behavior on Phage Therapy, Past and Present. Phage Ther. Appl. Res. 2020, 1, 16–22. [Google Scholar] [CrossRef]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage treatment of human infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef] [PubMed]
- Żaczek, M.; Weber-Dąbrowska, B.; Międzybrodzki, R.; Łusiak-Szelachowska, M.; Górski, A. Phage Therapy in Poland—A Centennial Journey to the First Ethically Approved Treatment Facility in Europe. Front. Microbiol. 2020, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- Żaczek, M.; Górski, A.; Weber-Dąbrowska, B.; Letkiewicz, S.; Fortuna, W.; Rogóż, P.; Pasternak, E.; Międzybrodzki, R. A Thorough Synthesis of Phage Therapy Unit Activity in Poland—Its History, Milestones and International Recognition. Viruses 2022, 14, 1170. [Google Scholar] [CrossRef] [PubMed]
- Huemer, M.; Shambat, S.M.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 23 December 2024).
- Centers for Disease Control and Prevention. About Antimicrobial Resistance. 2022. Available online: https://www.cdc.gov/antimicrobial-resistance/about/?CDC_AAref_Val=https://www.cdc.gov/drugresistance/about.html (accessed on 23 December 2024).
- Stacey, H.J.; De Soir, S.; Jones, J.D. The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials. Antibiotics 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef]
- Merril, C.R.; Biswas, B.; Carlton, R.; Jensen, N.C.; Creed, G.J.; Zullo, S.; Adhya, S. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA 1996, 93, 3188–3192. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, R.; Parlato, M.; Borriello, G.; Salvatore, P.; Iannelli, D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother. 2007, 51, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, R.; Ventimiglia, I.; Roperto, S.; Fenizia, D.; Iannelli, D. Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect. 2006, 12, 248–253. [Google Scholar] [CrossRef]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017, 61, e00954-17. [Google Scholar] [CrossRef] [PubMed]
- Merabishvili, M.; Pirnay, J.P.; De Vos, D. Guidelines to Compose an Ideal Bacteriophage Cocktail. In Bacteriophage Therapy: From Lab to Clinical Practice; Joana, A., Sillankorva, S., Eds.; Springer: New York, NY, USA, 2024; pp. 49–66. [Google Scholar] [CrossRef]
- Eliava BioPreparations LLC. Intesti Bacteriophage Composition. Available online: https://phage.ge/en/products/phago-intesti (accessed on 23 December 2024).
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, J.; Larsen, M.V.; Kilstrup, M.; Nielsen, M. Metagenomic analysis of therapeutic PYO phage cocktails from 1997 to 2014. Viruses 2017, 9, 328. [Google Scholar] [CrossRef]
- McCallin, S.; Sarker, S.A.; Sultana, S.; Oechslin, F.; Brüssow, H. Metagenome analysis of Russian and Georgian Pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environ. Microbiol. 2018, 20, 3278–3293. [Google Scholar] [CrossRef]
- Nikolich, M.P.; Filippov, A.A. Bacteriophage Therapy: Developments and Directions. Antibiotics 2020, 9, 135. [Google Scholar] [CrossRef]
- Pirnay, J.-P.; Verbeken, G. Magistral Phage Preparations: Is This the Model for Everyone? Clin. Infect. Dis. 2023, 77, S360–S369. [Google Scholar] [CrossRef]
- Kutter, E.M.; Kuhl, S.J.; Abedon, S.T. Re-establishing a place for phage therapy in western medicine. Future Microbiol. 2015, 10, 685–688. [Google Scholar] [CrossRef]
- LeMieux, J.; Hatfull, G. Set Phages to Kill: An Interview with Graham Hatfull, PhD. Phage 2020, 1, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Phage Australia. Our Approach. 2023. Available online: https://www.phageaustralia.org/approach (accessed on 23 December 2024).
- Government Publishing Office. Federal Food, Drug, And Cosmetic Act; Government Publishing Office: Washington, DC, USA, 2023. [Google Scholar]
- EMA Directive 2001/83/EC. European Union: DIRECTIVE 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community Code Relating To Medicinal Products For Human Use; 2004. Available online: https://www.legislation.gov.uk/eudr/2001/83/contents?view=plain# (accessed on 23 December 2024).
- Office of Parliamentary Counsel. Therapeutic Goods Act 1989; Office of Parliamentary Counsel: Forrest, Australia, 1990. [Google Scholar]
- Pirnay, J.-P.; Verbeken, G.; Ceyssens, P.-J.; Huys, I.; De Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Verbeken, G.; Pirnay, J.P. European regulatory aspects of phage therapy: Magistral phage preparations. Curr. Opin. Virol. 2022, 52, 24–29. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Allergy and Infectious Disease. June 2024 DMID Council-Approved Concepts. 2024. Available online: https://www.niaid.nih.gov/grants-contracts/june-2024-dmid-council-approved-concepts#05 (accessed on 23 December 2024).
- Young, R.; Gill, J.J. Phage therapy redux—What is to be done? Science 2015, 350, 1163–1164. [Google Scholar] [CrossRef] [PubMed]
- US FDA. CGMP for Phase 1 Investigational Drugs. United States. 2008. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/current-good-manufacturing-practice-phase-1-investigational-drugs (accessed on 23 December 2024).
- European Commission. EU Guidelines to Good Manufacturing Practice Medicinal Products for Human and Veterinary Use, Annex 13. European Union. 2010. Available online: https://www.gmp-compliance.org/files/guidemgr/2009_06_annex13.pdf (accessed on 23 December 2024).
- Hitchcock, N.M.; Devequi Gomes Nunes, D.; Shiach, J.; Valeria Saraiva Hodel, K.; Dantas Viana Barbosa, J.; Alencar Pereira Rodrigues, L.; Coler, B.S.; Soares, M.B.P.; Badaró, R. Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses 2023, 15, 1020. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.A.; Brüssow, H. From bench to bed and back again: Phage therapy of childhood Escherichia coli diarrhea. Ann. N. Y. Acad. Sci. 2016, 1372, 42–52. [Google Scholar] [CrossRef]
- Leitner, L.; Ujmajuridze, A.; Chanishvili, N.; Goderdzishvili, M.; Chkonia, I.; Rigvava, S.; Chkhotua, A.; Changashvili, G.; McCallin, S.; Schneider, M.P.; et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 2021, 21, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Karn, S.L.; Bhartiya, S.K.; Pratap, A.; Saroj, S.K.; Kumar, R.; Sahu, M.; Gangwar, M.; Nath, G. A Randomized, Placebo-controlled, Double-blind Clinical Trial of Bacteriophage Cocktails in Chronic Wound Infections. Int. J. Low. Extrem. Wounds 2024, 0(0), 15347346231226342. [Google Scholar] [CrossRef]
- Zhukov-Verezhnikov, N.N.; Peremitina, L.D.; Berillo, E.A. A study of the therapeutic effect of the bacteriophage agents in a complex treatment of suppurative surgical diseases. Sovetskaya Meditsina 1978, 41, PMID: 734488. [Google Scholar] [PubMed]
- US Food and Drug Administration. FDA Approves First Fecal Microbiota Product. 30 November 2022. Available online: https://web.archive.org/web/20221130214055/https://www.fda.gov/news-events/press-announcements/fda-approves-first-fecal-microbiota-product (accessed on 23 December 2024).
- US Food and Drug Administration. FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides difficile Infection|FDA. 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-orally-administered-fecal-microbiota-product-prevention-recurrence-clostridioides (accessed on 27 December 2023).
- Jain, N.; Umar, T.P.; Fahner, A.F.; Gibietis, V. Advancing therapeutics for recurrent clostridioides difficile infections: An overview of vowst’s FDA approval and implications. Gut Microbes 2023, 15, 2232137. [Google Scholar] [CrossRef]
- Gómez-Ochoa, S.A.; Pitton, M.; Valente, L.G.; Sosa Vesga, C.D.; Largo, J.; Quiroga-Centeno, A.C.; Vargas, J.A.H.; Trujillo-Cáceres, S.J.; Muka, T.; Cameron, D.R.; et al. Efficacy of phage therapy in preclinical models of bacterial infection: A systematic review and meta-analysis. Lancet Microbe 2022, 3, e956–e968. [Google Scholar] [CrossRef]
- Nagel, T.; Musila, L.; Muthoni, M.; Nikolich, M.; Nakavuma, J.L.; Clokie, M.R. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Curr. Opin. Virol. 2022, 53, 101208. [Google Scholar] [CrossRef]
- Innovate UK KTN. Innovate UK KTN Launches Phage Innovation Network. 2022. Available online: https://iuk.ktn-uk.org/news/innovate-uk-ktn-launches-phage-innovation-network/ (accessed on 23 December 2024).
- Djebara, S.; Maussen, C.; De Vos, D.; Merabishvili, M.; Damanet, B.; Pang, K.W.; De Leenheer, P.; Strachinaru, I.; Soentjens, P.; Pirnay, J.-P. Processing phage therapy requests in a Brussels military hospital: Lessons identified. Viruses 2019, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Genetic Engineering News. Phage Therapy May Combine Efficacy and Convenience. 2020. Available online: https://www.genengnews.com/insights/phage-therapy-may-combine-efficacy-and-convenience/ (accessed on 23 December 2024).
- Yerushalmy, O.; Khalifa, L.; Gold, N.; Rakov, C.; Alkalay-Oren, S.; Adler, K.; Ben-Porat, S.; Kraitman, R.; Gronovich, N.; Ginat, K.S.; et al. The israeli phage bank (IPB). Antibiotics 2020, 9, 269. [Google Scholar] [CrossRef]
- Hyman, P. Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef]
- Sillankorva, S.; Hyman, P. Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods Mol. Biol. 2024, 2734, 3–12. [Google Scholar] [CrossRef]
- Van Twest, R.; Kropinski, A.M. Bacteriophage enrichment from water and soil. Methods Mol. Biol. 2009, 501, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Łobocka, M.; Hejnowicz, M.S.; Gągała, U.; Weber-Dąbrowska, B.; Węgrzyn, G.; Dadlez, M. The First Step to Bacteriophage Therapy: How to Choose the Correct Phage. In Phage Therapy: Current Research and Applications; Borysowski, J., Miedzybrodzki, R., Gorski, A., Eds.; Caister Academic Press: Norfolk, UK, 2014; pp. 23–67. [Google Scholar]
- Cooper, C.J.; Denyer, S.P.; Maillard, J.-Y. Rapid and quantitative automated measurement of bacteriophage activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol. 2011, 110, 631–640. [Google Scholar] [CrossRef]
- Estrella, L.A.; Quinones, J.; Henry, M.; Hannah, R.M.; Pope, R.K.; Hamilton, T.; Teneza-Mora, N.; Hall, E.; Biswajit, B. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system. Bacteriophage 2016, 6, e1219440. [Google Scholar] [CrossRef]
- Bonilla, N.; Rojas, M.I.; Netto Flores Cruz, G.; Hung, S.-H.; Rohwer, F.; Barr, J.J. Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 2016, 4, e2261. [Google Scholar] [CrossRef]
- Hietala, V.; Horsma-Heikkinen, J.; Carron, A.; Skurnik, M.; Kiljunen, S. The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Front. Microbiol. 2019, 10, 1674. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, K.G.; Cook, B.W.M.; Lightly, T.J.; Court, D.A.; Theriault, S.S. Investigation into scalable and efficient enterotoxigenic Escherichia coli bacteriophage production. Sci. Rep. 2024, 14, 3618. [Google Scholar] [CrossRef] [PubMed]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Bretaudeau, L.; Tremblais, K.; Aubrit, F.; Meichenin, M.; Arnaud, I. Good Manufacturing Practice (GMP) Compliance for Phage Therapy Medicinal Products. Front. Microbiol. 2020, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
Phage Cocktail | Single Phage |
---|---|
Phages may recombine during repeated cocktail growth cycles, creating hybrid phages, which may improve cocktail efficacy | Evolution limited to mutation, potentially keeping phage more consistent over time |
Broader host range, less need for susceptibility testing * | Narrow, but specific, range of activity to target strain |
Less development of phage resistance by bacteria | Higher risk of development of phage resistance by bacteria |
Harder to monitor PK/PD and characterize host immune responses | Easier to monitor PK/PD and characterize host immune responses |
More complicated production process and analytical testing | Less complicated production process and analytical testing |
Company/Agency (Clinicaltrials.gov ID) | Product Name | Product Target(s) and Clinical Trial Information |
---|---|---|
Armata Pharmaceuticals (NCT05616221, NCT04596319, NCT05184764) | AP-SA02, AP-PA02, AP-PA03 | AP-PA02 completed a phase 1b/2a trial in CF patients with chronic P. aeruginosa pulmonary infections and a phase 2, multi-center, double-blind, randomized, placebo-controlled study to evaluate the safety, phage kinetics, and efficacy of inhaled AP-PA02 administered in subjects with non-cystic fibrosis bronchiectasis and chronic pulmonary Pseudomonas aeruginosa infection Currently enrolling a Phase 1b/2a, randomized, double-blind, placebo-controlled, multiple-ascending, dose escalation study of the Safety, Tolerability, and Efficacy of Intravenous AP-SA02 as an adjunct to best available antibiotic therapy compared to best available antibiotic therapy alone for the treatment of adults with bacteremia due to S. aureus |
Locus Biosciences (NCT05488340) | LBP-EC01, LBP-PA01, LBP-SA01, LBP-KP01 | LBP-EC01 targets E. coli in UTIs. Currently enrolling its ELIMINATE trial, registration-enabling Phase 2/3 trial |
BiomX (NCT05010577) | BX004, BX005 | BX004 completed part 2 of a Phase 1b/2a trial in CF patients with chronic P. aeruginosa pulmonary infections |
Intralytix (EcoActive—NCT03808103, VRELysin—NCT05715619, Shigactive—NCT05182749) | EcoActive VRELysin Shigactive | Currently enrolling a phase 1/2a trial to assess safety and efficacy of EcoActive on AIEC in patients with Inactive CD Currently enrolling a phase 1/2a trial to assess safety and efficacy of VRELysin in healthy and VRE-colonized subjects Currently enrolling a phase 1/2a trial to assess safety and efficacy of Shigactive in healthy adults with experimental Shigella challenge |
MB Pharma (NCT06319235) | Duofag | Recruiting patients for Phase I/IIa clinical trial to demonstrate the safety and efficacy of DUOFAG® in bacterial infection treatment in patients with surgical wounds |
NIAID (NCT05453578) | WRAIR-PAM-CF1 | WRAIR-PAM-CF1 is enrolling a phase 1b/2 trial to assess safety of a single IV dose in clinically stable CF subjects with P. aeruginosa in sputum. |
Pherecydes Pharma (now Phaxiam) (S. areus—NCT05369104) | PneumoPhage Anti-S. aureus | PneumoPhage targets ventilation-associated Pneumonia and cystic fibrosis pneumonia caused by P. aeruginosa. Yet to enter clinical trials. Anti-S. aureus phage (PP1493 and/or PP1815) currently enrolling a pilot study in patients with hip or knee PJI due to S. aureus treated with DAIR |
Technophage (TP-102—NCT04803708, NCT05948592) | TP-102, TP-122, TP-164 | TP-102 is enrolling a phase 2b trial to assess safety, tolerability, clinical enhancements and influence on wound healing process in patients with diabetic foot ulcers infected with P. aeruginosa, S. aureus and A. baumannii |
Yale University | YPT-01 | A single-site, randomized, double-blind, placebo-controlled study of bacteriophage therapy YPT-01 for Pseudomonas aeruginosa infections in adults with cystic fibrosis |
Name | Location | Approximate Phage Collection Size | Involved in Phage Therapy Currently? | Reference or Web Site |
---|---|---|---|---|
Phage banks organized to support phage therapy | ||||
George Eliava Institute of Bacteriophages, Microbiology and Virology | Tbilisi, Georgia | >1000 phages | Yes | http://eliava-institute.org/?lang=en |
Hirszfeld Institute of Immunology and Experimental Therapy | Wroclaw, Poland | >850 | Yes | https://hirszfeld.pl/en/ and [5] |
Queen Astrid Military Hospital | Brussels, Belgium | Unknown | Yes | [47] |
BiomX (acquired Adaptive Phage Therapeutics in 2024) | Gaithersburg, MD, USA | >1000 | Yes | https://www.biomx.com/ and [48] |
Israeli Phage Bank | Jerusalem, Israel | >300 phages | Yes | [49] |
Fagenbank | Delft, The Netherlands | ~120 phages | Yes | https://www.fagenbank.nl/english/ |
Tailored Antibacterials and Innovative Laboratories for Phage Research (TAILΦR) | Houston, TX, USA | Unknown | Yes | https://www.bcm.edu/research/research-centers/tailor |
Australian Phage Biobanking Network | Multi-site consortium in Australia | 342 | Yes | https://www.phageaustralia.org/ |
Kenya Medical Research Institute (KEMRI) | Nairobi, Kenya | 245 | Unknown | https://www.kemri.go.ke/ |
International Livestock Research Institute—Kenya | Nairobi, Kenya | 60 | Unknown | https://www.ilri.org/ |
Phage banks organized as phage repositories | ||||
Felix d’Herelle Reference Center for Bacterial Viruses | Quebec, Quebec, Canada | >400 | No | https://www.phage.ulaval.ca/en/home/ |
Bacteriophage Bank of Korea | Seongnam, Gyung-Gi Do, Korea | >1900 | No | http://www.phagebank.or.kr/intro/eng_intro.jsp |
Biological repositories that include bacteriophages | ||||
American Type Culture Collection (ATCC) | Gaithersburg, MD, USA | >340 | No | https://www.atcc.org/ |
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH | Braunschweig, Germany | >600 | No | https://www.dsmz.de/ |
National Collection of Type Cultures (NCTC) | Salisbury, UK | >100 | No | https://www.culturecollections.org.uk/ |
Company | Location | Year Founded | Year License for GMP Production |
---|---|---|---|
MB Pharma * (https://www.mbph.cz/?lang=en) and FAGOFARMA * (https://www.fagofarma.cz/?lang=en) | Prague, Czech Republic | 1998 (MBP), 2013 (F) | Approved to produce under GMP in 2015 at MB Pharma facility, 2023 at FAGOFARMA facility |
Clean Cells (https://clean-cells.com/) | Montaigu—Vendée France | 2000 | Approved to produce under GMP in 2023 |
Creative Biolabs (https://phagenbio.creative-biolabs.com/) | Shirley, NY, USA | 2005 | Produces phage using GMP protocols |
Phagelab (https://phage-lab.com/) | Santiago, Chile | 2010 | Phage production with cGMP quality procedures |
JAFRAL (https://jafral.com/) | Ljubljana, Slovenia | 2011 | Develops production protocols and produces phage using cGMP protocols |
Vector B2B (https://vectorb2b.com/) | Lisbon, Portugal | 2019 | Association of academic and industrial groups, including ones able to manufacture phages with GMP protocols |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, S.; Hyman, P. Quis Custodiet? Are Regulations Slowing Phage Therapy? Drugs Drug Candidates 2025, 4, 1. https://doi.org/10.3390/ddc4010001
Morales S, Hyman P. Quis Custodiet? Are Regulations Slowing Phage Therapy? Drugs and Drug Candidates. 2025; 4(1):1. https://doi.org/10.3390/ddc4010001
Chicago/Turabian StyleMorales, Sandra, and Paul Hyman. 2025. "Quis Custodiet? Are Regulations Slowing Phage Therapy?" Drugs and Drug Candidates 4, no. 1: 1. https://doi.org/10.3390/ddc4010001
APA StyleMorales, S., & Hyman, P. (2025). Quis Custodiet? Are Regulations Slowing Phage Therapy? Drugs and Drug Candidates, 4(1), 1. https://doi.org/10.3390/ddc4010001