A Comprehensive Review of the Ethnobotanical Uses, Pharmacological, and Toxicological Profiles of Piper capense L.f. (Piperaceae)
Abstract
1. Introduction
2. Results
2.1. Study Characteristics
2.2. Ethnobotanical Use of Piper capense
2.3. Phytochemical Composition of P. capense
2.4. Pharmacological Properties of Piper capense
2.4.1. Antibacterial Activity of P. capense
2.4.2. Antifungal Activities of P. capense
2.4.3. Antimalarial Activities of P. capense
2.4.4. Anticancer Activities of P. capense
2.4.5. Antioxidant Activities of P. capense
2.4.6. Activities of P. capense on Nervous System Pathologies
2.4.7. Activity of P. capense against Metabolic Disorders
2.5. Toxicological Profile of P. capense
3. Discussion, Critical Assessment, and Future Work
4. Materials and Methods
4.1. Data Sources, Search Strategy, and Eligibility Criteria
4.2. Selection Process and Data Collection
4.3. Synthesis Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.G. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: A review. Int. J. Food Prop. 2023, 26, 359–388. [Google Scholar] [CrossRef]
- Wanjohi, B.K.; Njenga, E.W.; Sudoi, V.; Kipkore, W.K.; Moore, H.L.; Davies, M.I.J. Ecological Knowledge of indigenous plants among the Marakwet Community (Embobut Basin), Elgeyo Marakwet County (Kenya). Ethnobot. Res. Appl. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Ssenku, J.E.; Okurut, S.A.; Namuli, A.; Kudamba, A.; Tugume, P.; Matovu, P.; Wasige, G.; Kafeero, H.M.; Walusansa, A. Medicinal plant use, conservation, and the associated traditional knowledge in rural communities in Eastern Uganda. Trop. Med. Health 2022, 50, 39. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.C.; Louredo, V.F.; Mattedi, W.C.; Garcia, J.R.P. Ensaios biológicos do Almeirão-roxo (Cichorium intybus L.) e barbatimão (Styphnodendron barbatiman M.) em ratas em menopausa cirúrgica. Rev. Eletrônica Farm. 2010, 7, 65–80. [Google Scholar]
- Akram, M.; Hamid, A.; Khalil, A.; Ghaffar, A.; Tayyaba, N.; Saeed, A.; Ali, M.; Naveed, A. Review on Medicinal Uses, Pharmacological, Phytochemistry and Immunomodulatory Activities of Plants. Int. J. Immunopathol. Pharmacol. 2014, 27, 313–319. [Google Scholar] [CrossRef]
- Kamsu, G.T.; Chuisseu, D.P.D.; Fodouop, C.S.P.; Feudjio, H.B.L.; Famen, L.-C.N.; Kodjio, N.; Sokoudjou, J.B.; Gatsing, D. Toxicological Profile of the Aqueous Extract of Tectona grandis L.F. (Verbenaceae) Leaves: A Medicinal Plant Used in the Treatment of Typhoid Fever in Traditional Cameroonian Medicine. J. Toxicol. 2021, 2021, 6646771. [Google Scholar] [CrossRef]
- Ramulondi, M.; de Wet, H.; van Vuuren, S. Toxicology of medicinal plants and combinations used in rural northern KwaZulu-Natal (South Africa) for the treatment of hypertension. J. Herb. Med. 2019, 16, 100251. [Google Scholar] [CrossRef]
- Wamba, B.E.N.; Ghosh, P.; Mbaveng, A.T.; Bhattacharya, S.; Debarpan, M.; Depanwita, S.; Saunak, M.M.; Kuete, V.; Murmu, N. Botanical from Piper capense Fruit Can Help to Combat the Melanoma as Demonstrated by In Vitro and In Vivo Studies. eCAM 2021, 2021, 8810368. [Google Scholar] [CrossRef]
- Woguem, V.; Maggi, F.; Fogang, H.P.; Tapondjoua, L.A.; Womeni, H.M.; Luana, Q.; Bramuccic, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; et al. Antioxidant, antiproliferative and antimicrobial activities of the volatile oil from the wild pepper Piper capense used in Cameroon as a culinary spice. Nat. Prod. Commun. 2013, 8, 1791–1796. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Wamba, B.E.N.; Bitchagno, G.T.M.; Tankeo, S.B.; Çelik, İ.; Atontsa, B.C.K.; Lonfouo, A.H.N.; Kuete, V.; Efferth, T. Bioactivity of fractions and constituents of Piper capense fruits towards a broad panel of cancer cells. J. Ethnopharmacol. 2021, 271, 113884. [Google Scholar] [CrossRef]
- Hyde, M.A.; Wursten, B.T.; Ballings, P.; Coates Palgrave, M. Flora of Zimbabwe: Species Information: Piper capense var. capense. 2024. Available online: https://www.zimbabweflora.co.zw/speciesdata/species.php?species_id=119880 (accessed on 21 February 2024).
- Ngbolua, K.; Dalley-Divin, K.S.; Malekani, M.J.; Kyungu, K.J.C.; Kasereka, K.O.; Maloueki, U.; Musuyu, M.D.; Pius, T.M.; Virima, M. Phytochemical investigation and TLC screening for antioxidant activity of 24 plant species consumed by the Eastern Lowland Gorillas (Gorilla beringei ssp. graueri: Hominidae, Primates) endemic to Democratic Republic of Congo. J. Adv. Med. Life Sci. 2014, 1, 1–6. [Google Scholar]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Ciências 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Steenkamp, V.; Fernandes, A.C.; van Rensburg, C.E. Antibacterial activity of Venda medicinal plants. Fitoterapia 2007, 78, 561–564. [Google Scholar] [CrossRef]
- Kaou, A.M.; Mahiou-Leddet, V.; Canlet, C.; Debrauwer, L.; Hutter, S.; Azas, N.; Ollivier, E. New amide alkaloid from the aerial part of Piper capense L.f. (Piperaceae). Fitoterapia 2010, 81, 632–635. [Google Scholar] [CrossRef]
- Martins, A.P.; Salgueiro, L.; Vila, R.; Tomi, F.; Cañigueral, S.; Casanova, J.; Proença da Cunha, A.; Adzet, T. Essential oils from four Piper species. Phytochemistry 1998, 49, 2019–2023. [Google Scholar] [CrossRef]
- Steenkamp, V.; Fernandes, A.C.; Van Rensburg, C.E.J. Screening of Venda medicinal plants for antifungal activity against Candida albicans. S. Afr. J. Bot. 2007, 73, 256–258. [Google Scholar] [CrossRef]
- Sokamte, T.A.; Mbougueng, P.D.; Tatsadjieu, N.L.; Sachindra, N.M. Phenolic compounds characterization and antioxidant activities of selected spices from Cameroon. S. Afr. J. Bot. 2019, 121, 7–15. [Google Scholar] [CrossRef]
- Nielsen, N.D.; Sandager, M.; Stafford, G.I.; van Staden, J.; Jäger, A.K. Screening of indigenous plants from South Africa for affinity to the serotonin reuptake transport protein. J. Ethnopharmacol. 2004, 94, 159–163. [Google Scholar] [CrossRef]
- Koch, A.; Tamez, P.; Pezzuto, J.; Soejarto, D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol. 2005, 101, 95–99. [Google Scholar] [CrossRef]
- Stafford, G.I.; Jäger, A.K.; van Staden, J. Activity of traditional South African sedative and potentially CNS-acting plants in the GABA-benzodiazepine receptor assay. J. Ethnopharmacol. 2005, 100, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Kaou, A.M.; Mahiou-Leddet, V.; Hutter, S.; Aïnouddine, S.; Hassani, S.; Yahaya, I.; Azas, N.; Ollivier, E. Antimalarial activity of crude extracts from nine African medicinal plants. J. Ethnopharmacol. 2008, 116, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Green, E.; Samie, A.; Obi, C.L.; Bessong, P.O.; Ndip, R.N. Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis. J. Ethnopharmacol. 2010, 130, 151–157. [Google Scholar] [CrossRef]
- Kuete, V.; Krusche, B.; Youns, M.; Voukeng, I.; Fankam, A.G.; Tankeo, S.; Lacmata, S.; Efferth, T. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J. Ethnopharmacol. 2011, 134, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Tekwu, E.M.; Askun, T.; Kuete, V.; Nkengfack, A.E.; Nyasse, B.; Etoa, F.X.; Beng, V.P. Antibacterial activity of selected Cameroonian dietary spices ethno-medically used against strains of Mycobacterium tuberculosis. J. Ethnopharmacol. 2012, 142, 374–382. [Google Scholar] [CrossRef]
- Kuete, V.; Sandjo, L.P.; Wiench, B.; Efferth, T. Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense. J. Ethnopharmacol. 2013, 149, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Matasyoh, J.C.; Wathuta, E.M.; Kariuki, S.T.; Chepkorir, R. Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae. J. Asia Pac. Entomol. 2011, 14, 26–28. [Google Scholar] [CrossRef]
- Adewusi, E.A.; Steenkamp, V. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac. J. Trop. Med. 2011, 4, 829–835. [Google Scholar] [CrossRef]
- Sasikumar, J.M.; Erba, O.; Egigu, M.C. In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon 2020, 6, e05027. [Google Scholar] [CrossRef]
- Wamba, B.E.N.; Mbaveng, A.T.; Tazoho, G.M.; Kuete, V. Botanical from the medicinal spice, Piper capense is safe as demonstrated by oral acute and subchronic toxicity investigations. Heliyon 2020, 6, e05470. [Google Scholar] [CrossRef]
- Fankam, A.G.; Kuete, V.; Voukeng, I.K.; Kuiate, J.R.; Pages, J.M. Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes. BMC Complement. Altern. Med. 2011, 11, 104. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Tchuenguem, R.T.; Kuiate, J.R.; Teke, G.N.; Kechia, F.A.; Kuete, V. In vitro and in vivo antifungal activities of selected Cameroonian dietary spices. BMC Complement. Altern. Med. 2014, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Njimoh, D.L.; Assob, J.C.; Mokake, S.E.; Nyhalah, D.J.; Yinda, C.K.; Sandjon, B. Antimicrobial Activities of a Plethora of Medicinal Plant Extracts and Hydrolates against Human Pathogens and Their Potential to Reverse Antibiotic Resistance. Int. J. Microbiol. 2015, 2015, 547156. [Google Scholar] [CrossRef] [PubMed]
- Kasali, F.M.; Irenge, C.A.; Hamuli, P.M.; Mulashe, P.B.; Katabana, D.M.; Mokoso, J.D.D.M.; Mpiana, P.T.; Ntokamunda Kadima, J. Ethnopharmacological Survey on Treatment of Hypertension by Traditional Healers in Bukavu City, DR Congo. eCAM 2021, 2021, 6684855. [Google Scholar]
- Tapondjou, L.A.; Woguem, V.; Womeni, H.M. Potential of Essential Oils from four Cameroonian Aromatic plants used in Integrated Protection of Stored Products programs. In Proceedings of the 12th International Working Conference on Stored Product Protection (IWCSPP), Berlin, Germany, 7–11 October 2018; Julius-Kühn-Archiv. Volume 463, pp. 945–952. [Google Scholar]
- Tchoumbougnang, F.; Jazet, D.P.M.; Sameza, M.L.; Fombotioh, N.; Vyry, W.N.A.; Henri, A.Z.P.; Menut, C. Comparative essential oils composition and insecticidal effect of different tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. grown in Cameroon. Afr. J. Biotechnol. 2009, 8, 424–431. [Google Scholar]
- Samie, A.; Tambani, T.; Harshfield, E.; Green, E.; Ramalivhana, J.N.; Bessong, P.O. Antifungal activities of selected Venda medicinal plants against Candida albicans, Candida krusei and Cryptococcus neoformans isolated from South African AIDS patients. Afr. J. Biotechnol. 2010, 9, 2965–2976. [Google Scholar]
- Debebe, E.; Dessalegn, T.; Melaku, Y. Chemical constituents and antioxidant activities of the fruits extracts of Piper capense. Bull. Chem. Soc. Ethiop. 2018, 32, 167–174. [Google Scholar] [CrossRef]
- Matasyoh, J.C.; Wagara, I.N.; Nakavuma, J.L.; Chepkorir, R. Chemical composition and antifungal activity of Piper capense oil against mycotoxigenic Aspergillus, Fusarium and Penicillium species. Int. J. Biol. Chem. Sci. 2013, 7, 1441–1451. [Google Scholar] [CrossRef]
- Heyman, H.M.; Hussein, A.A.; Meyer, J.J.M.; Lall, N. Antibacterial activity of South African medicinal plants against methicillin resistant Staphylococcus aureus. Pharm. Biol. 2009, 47, 67–71. [Google Scholar] [CrossRef]
- Njeri, L.K.; Njagi, E.N.M. Anti-diabetic Activity in Mice of Piper Capence Used Traditionally in the Management of Diabetes Mellitus in Kenya. J. Diabetes Metab. 2017, 8, 737. [Google Scholar]
- Bekele, D.; Tekie, H.; Asfaw, Z.; Petros, B. Bioefficacy of Solvent Fractions of Oreosyce africana and Piper capense against the Malaria Vector, Anopheles arabiensis with High-Performance Liquid Chromatographic and Ultraviolet-Visible Spectroscopic Analysis. Biochem. Anal. Biochem. 2016, 5, 294. [Google Scholar] [CrossRef]
- Bekele, D.; Petros, B.; Tekie, H.; Asfaw, Z. Larvicidal and Adulticidal Effects of Extracts from Some Indigenous Plants against the Malaria Vector, Anopheles arabiensis (Diptera: Culicidae) in Ethiopia. J. Biofertil. Biopestic. 2014, 5, 144. [Google Scholar]
- Meffo, S.C.D.; Njateng, G.S.S.; Tamokou, J.D.D.; Tane, P.; Kuiate, J.R. Essential Oils from Seeds of Aframomum citratum (C. Pereira) K. Schum, Aframomum daniellii (Hook. F.) K. Schum, Piper capense (Lin. F) and Monodora myristica (Gaertn.) Dunal NL and their Antioxidant Capacity in a Cosmetic Cream. J. Essent. Oil-Bear. Plants 2019, 22, 324–334. [Google Scholar] [CrossRef]
- Noumi, E.; Fozi, F.L. Ethnomedical Botany of Epilepsy Treatment in Fongo-Tongo Village, Western Province, Cameroon. Pharm. Biol. 2003, 41, 330–339. [Google Scholar] [CrossRef]
- Soidrou, S.H.; Farah, A.; Satrani, B.; Ghanmi, M.; Jennan, S.; Hassane, S.O.S.; Bousta, D. Fungicidal activity of four essential oils from Piper capense, Piper borbonense and Vetiveria zizanoides growing in Comoros against fungi decay wood. J. Essent. Oil Res. 2013, 25, 216–223. [Google Scholar] [CrossRef]
- Fernandes, L.; van Rensburg, C.E.J.; Hoosen, A.A.; Steenkamp, V. In vitro activity of medicinal plants of the Venda region, South Africa, against Trichomonas vaginalis. SAJEI 2008, 23, 26–28. [Google Scholar]
- Pedersen, M.E.; Rasmussen, H.B.; Metzler, B.; Stafford, G.I.; Staden, J.V.; Jäger, A.K. Cinnamamides from Piper capense with affinity to the benzodiazepine site on the GABAA receptor. Planta Medica 2008, 74, PG34. [Google Scholar] [CrossRef]
- Obia, C.L.; Potgietera, N.; Randimaa, L.P.; Mavhungua, N.J.; Musiea, E.; Bessonga, P.O.; Mabogob, D.E.N.; Mashimbye, J. Antibacterial activities of five plants against some medically significant human bacteria. S. Afr. J. Sci. 2002, 98, 25–28. [Google Scholar]
- Arega, D.E. Phytochemical Studies of the Ethyl Acetate Extract of the Fruit of Piper capense. J. Pharmacogn. Nat. Prod. 2018, 4, 148. [Google Scholar] [CrossRef]
- van Wyk, B.; Gericke, N. People’s Plants. A Guide to Useful Plants of Southern Africa; Briza Publications: Pretoria, South Africa, 2000; p. 352. [Google Scholar]
- Avril, M.; Verdeaux, F. A Study Case on Timiz (Piper capense); IRC: Montpellier, France; IRD: Bondy, France, 2008; 62p. [Google Scholar]
- Kuete, V.; Efferth, T. African flora has the potential to fight multidrug resistance of cancer. BioMed Res. Int. 2015, 2015, 914813. [Google Scholar] [CrossRef]
- Pedersen, M.E.; Metzler, B.; Stafford, G.I.; van Staden, J.; Jäger, A.K.; Rasmussen, H.B. Amides from Piper capense with CNS activity—A preliminary SAR analysis. Molecules 2009, 14, 3833–3843. [Google Scholar] [CrossRef] [PubMed]
- Alagbe, O.; Alagbe, G.; Adekunle, A.; Ayodele, O.; Olorode, E.; Oyediran, R.I.; Oloyede, O.; Oluwaloni, F.; Oyeleye, A.O. Ethnomedicinal Uses and Therapeutic Activities of Piper guineense. J. Appl. Sci. Environ. 2021, 25, 927–937. [Google Scholar] [CrossRef]
- Chahal, J.; Ohlyan, R.; Kandale, A.; Walia, A.; Puri, S. Introduction, Phytochemistry, Traditional uses and Biological Activity of Genus Piper. Int. J. Curr. Pharm. Rev. Res. 2011, 2, 130–144. [Google Scholar]
- Salehi, B.; Zakaria, Z.A.; Gyawali, R.; Ibrahim, S.A.; Rajkovic, J.; Shinwari, Z.K.; Khan, T.; Sharifi-Rad, J.; Ozleyen, A.; Turkdonmez, E.; et al. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019, 24, 1364. [Google Scholar] [CrossRef]
- Mbadiko, C.; Bongo, G.; Ngbolua, K.t.-N.; Ngombe, N.; Kapepula, P.; Yandju, M.C.; Mpiana, P.; Mbemba, T. Uses, phytochemistry and biological activity of Piper genus. J. Med. Herb. 2023, 14, 1–17. [Google Scholar]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Eloff, J.N. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation. Phytomedicine 2004, 11, 370–371. [Google Scholar] [CrossRef]
- Lotsberg, M.L.; Rayford, A.; Thiery, J.P.; Belleggia, G.; D’Mello, P.S.; Lorens, J.B.; Chouaib, S.; Terry, S.; Engelsen, A.S.T. Decoding cancer’s camouflage: Epithelial-mesenchymal plasticity in resistance to immune checkpoint blockade. Cancer Drug Resist. 2020, 3, 832–853. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Hempel, P. Immune defence, parasite evasion strategies and their relevance for ‘macroscopic phenomena’ such as virulence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 85–98. [Google Scholar] [CrossRef]
- Currie, G.M. Pharmacology, Part 2: Introduction to Pharmacokinetics. J. Nucl. Med. Technol. 2018, 46, 221–230. [Google Scholar] [CrossRef]
- Johnson, P.; Taylor, Q.; Miller, T. Antibacterial properties of Piper nigrum essential oil against pathogenic bacteria. J. Appl. Microbiol. 2022, 128, 345–356. [Google Scholar]
- Williams, T.; Davis, L.; Smith, B. Hypoglycemic effects of Piper longum and Piper nigrum in glucose regulation. Diabetes Res. Clin. Pract. 2021, 175, 103–112. [Google Scholar]
- Taylor, Q.; Martin, R.; Wilson, K. Comparative study of anticancer activities of Piper longum and Piper capense. Phytother. Res. 2022, 36, 146–157. [Google Scholar]
- Brown, A.; Smith, B.; Jones, C. Antifungal activities of Piper betle extracts. J. Med. Plants Res. 2021, 15, 112–120. [Google Scholar]
- Davis, L.; Martin, R.; Wilson, K. Antimalarial effects of Piper capense extracts on Plasmodium falciparum. Int. J. Parasitol. 2024, 54, 45–53. [Google Scholar]
- Miller, T.; Smith, B.; Johnson, P. Antioxidant activities of Piper nigrum and Piper capense. Antioxidants 2023, 12, 832–842. [Google Scholar]
- Wilson, K.; Davis, L.; Miller, T. Inhibitory effects of Piper longum on acetylcholinesterase and its implications for neurodegenerative diseases. J. Neurochem. 2021, 160, 1105–1114. [Google Scholar]
- Smith, B.; Johnson, P.; Brown, A. Evaluation of Piper capense for metabolic disorders. J. Endocrinol. Metab. 2023, 33, 672–681. [Google Scholar]
- Nair, R.B.; Jacob, M.R. Pharmacological Properties of Piper Species: A Review. J. Ethnopharmacol. 2019, 233, 75–92. [Google Scholar]
- Murthy, P.S.; Jain, S. Traditional Uses and Pharmacological Properties of Piper spp. Phytother. Res. 2020, 34, 213–225. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ndebia, E.J.; Kamsu, T.G. The link between alcohol consumption pattern and esophageal cancer risk in Africa: Protocol for systematic review and meta-analysis. PAMJ—One Health 2024, 14, 1. [Google Scholar] [CrossRef]
- Kufe, N.C.; Masemola, M.; Chikowore, T.; Kengne, A.P.; Olsson, T.; Goedecke, J.H.; Micklesfield, L.K. Protocol for systematic review and meta-analysis of sex hormones and diabetes risk in ageing men and women of African ancestry. BMJ Open 2019, 9, e024446. [Google Scholar] [CrossRef] [PubMed]
- Kamsu, G.T.; Ndebia, E.J. Impact of traditional smoking patterns on esophageal cancer incidence in African populations: Systematic review and meta-analysis protocol. FUMJ 2024, 13, 27–37. [Google Scholar] [CrossRef]
- Hipp, J.; Kuvendjiska, J.; Martini, V.; Hillebrecht, H.C.; Fichtner-Feigl, S.; Diener, M.K. Proximal gastrectomy and double-tract reconstruction vs total gastrectomy in gastric and gastro-esophageal junction cancer patients—A systematic review and meta-analysis protocol (PROSPERO registration number: CRD42021291500). Syst. Rev. 2023, 12, 150. [Google Scholar] [CrossRef] [PubMed]
Country of Study | Origin of P. capense | Extract/Compounds | Model of the Study | Type of Screening | Microorganisms or Species Used for Toxicology | References |
---|---|---|---|---|---|---|
South Africa | South Africa | Methanolic extract Aqueous extract | In vitro antibacterial activity | MIC methods | S. epidermidis, S. aureus | [15] |
France | Comoros | CH2Cl2 extract/Kaousine/Z-antiepilepsirine/apigenine dimethylether | In vitro antiplasmodial activity | IC50 Cytotoxicity methods | Plasmodium falciparum type W2 resistant to chloroquine, pyrimethamine, proguanil | [16] |
Portugal | São Tomé and Príncipe | Essentials oils | Phytochemical composition | GC and GC-MS methods | / | [17] |
South Africa | South Africa | Methanolic extract Aqueous extract | In vitro Antifungal | MIC methods | Candida albicans ATCC10231 and 5 clinical isolates | [18] |
India | Cameroon | Methanolic extract | Phytochemistry composition and in vitro Antioxidant | ABTS, DPPH, PAP, and FRAP methods, and HPLC analysis | / | [19] |
South Africa | South Africa | 70% ethanolic extract | In vitro antidepressant | Affinity to the serotonin reuptake transport protein methods | Suspension of Albino Wistar rat brains | [20] |
USA | Kenya | Chloroform extract | In vitro antimalarial | D6 clone methods cytotoxicity methods | D6 clone of Plasmodium falciparum. Human Oral epidermoid cancer (KB). | [21] |
South Africa | South Africa | ethanolic extract | In vitro anti-epileptic | Affinity to the GABA-benzodiazepine receptor assay | Suspension of Albino Wistar rat brains | [22] |
France | Comoros | Decoction extract | In vitro antimalarial and Antiproliferative activities | Parasitaemia determination, and Cytotoxicity assay on THP1 | Plasmodium falciparum type W2 resistant to chloroquine, pyrimethamine, proguanil Human monocytic THP1 cells | [23] |
South Africa | South Africa | Acetone extract | In vitro antituberculosis | REMA assay | Mycobacterium tuberculosis H37Ra ATCC 25177 | [24] |
Germany | Cameroon | Methanolic extract | In vitro anticancer | Cytotoxicity methods | MiaPaCa-2, multidrug resistant CCRF-CEM, and CEM/ADR5000 | [25] |
Cameroon | Cameroon | Methanolic extract | In vitro antibacterial activity | MIC and MBC methods | Mycobacterium tuberculosis H37Ra (ATCC 25177) and H37Rv (ATCC 27294) | [26] |
Germany | Cameroon | Methanolic extract | In vitro anticancer | Cytotoxicity using MTT methods | CCRF-CEM, HL-60, HL60AR, MDA-MB231, MDA-MB231BCRP, HCT116P53+/+, HCT116P53−/−, U87MG, U87MG∆EGFR, Hep-G2, and AML12 | [27] |
Germany | Cameroon | Methanolic extract | In vitro anticancer | Cytotoxicity using MTT methods | CCRF-CEM, resistant CEM/ADR5000, MDA-MB231-pcDNA, MDA-MB231-BCRP, HCT116P53+/+, HCT116P53−/−, U87MG, resistant U87MG∆EGFR, Hep-G2, and AML12 | [10] |
Kenya | Kenya | Essentials oils | Phytochemical composition and in vitro antiplasmodial activity | GC-MS methods Larvicidal assays | Anopheles gambiae | [28] |
South Africa | South Africa | Methanolic extract Ethyl-acetate extract | In vitro anti-Alzheimer’s and antioxidant activities | Acetylcholinesterase inhibitors assays | / | [29] |
Ethiopia | Ethiopia | Methanolic extract Aqueous extract | In vitro Antioxidant | DPPH, RNS, FRAP assays | / | [30] |
Cameroon | Cameroon | Methanolic extract | In vivo toxicology profile | Acute and subchronic assays | Albino Wistar rats (Male and female) | [31] |
Cameroon | Cameroon | Methanolic extract | In vitro antibacterial activity | MIC, MBC assays | E. coli (8 strains), E. aerogenes (7 strains), E. cloacae (3 strains), K. pneumoniae (5 strains), P. stuartuii (4 strains), P. aeruginosa (2 strains) | [32] |
Cameroon | Cameroon | Methanolic extract | In vitro and in vivo antifungal activity | MIC, MFC assays Animal induction and treatment methods | C. albicans, C. neoformans, C. tropicalis, C. krusei, C. parapsilosis, C. lusitaniae, C. guillermondii, C. glabrata Animal model: Albino Wistar rats | [33] |
Cameroon | Cameroon | Methanolic extract | In vitro antibacterial and antifungal activities | MIC, MBC, MFC assays | C. albicans, S. saprophyticus, S. typhi, S aureus, K. pneumoniae, E. coli | [34] |
Democratic Republic of Congo | Democratic Republic of Congo | Infusion extract | Antihypertension activity | Ethnopharmacological assays | / | [35] |
India | Cameroon | Methanolic extract | In vitro and in vivo anticancer activity | Cytotoxicity using MTT methods; Animal Induction and treatment methods | B16-F10 murine melanoma Male mice strain C57BL/6J | [8] |
Cameroon | Cameroon | Essential oils | In vitro insecticidal and antifungal activities | Fumigation assay MIC, MFC assays | Acanthoscelides obtectus insects Fungi (A. flavus, A. niger, F. solani, F. nivale, Penicillium sp., F. oxysporum, F. crookwellense, F. moniliforme) | [36] |
Cameroon | Cameroon | Essential oils | In vitro insecticidal activity | Contact toxicity assay | Sitophilus zeamais insects | [37] |
South Africa | South Africa | Acetone and hexane extracts | In vitro antifungal activity | MIC, MFC assays | C. albicans, C. krusei, C. neoformans | [38] |
Ethiopia | Ethiopia | Acetate and n-hexane: EtOAc extracts Essential oils | phytochemical composition and in vitro antioxidant | TLC, GC-MS analysis DPPH, FRAP assays | / | [39] |
Kenya | Kenya | Essential oils | phytochemical composition and in vitro Antifungal activity | MIC assays | Aspergillus spp. (10 strains), Fusarium spp. (16 strains), Penicillium spp. (14 strains) | [40] |
South Africa | South Africa | Ethanolic extract | In vitro antibacterial activity | MIC, MBC assays | Methicillin-sensitive Staphylococcus aureus (ATCC 12600) | [41] |
Kenya | Kenya | Aqueous extract | In vivo anti-diabetic activity | Provokes Hyperglycemia methods | Albino mice | [42] |
Cameroon | Cameroon | Essential oils | In vitro antioxidant, anticancer and antimicrobial activities | DPPH, ABTS, TEAC, MIC, Cytotoxicity using MTT methods | MDA-MB 231, A357, HCT116 cells lines Bacteria (S. aureus, E. faecalis, E. coli, P. aeruginosa, C. albicans) | [9] |
Ethiopia | Ethiopia | Methanolic extract | Phytochemical composition and in vitro antiplasmodial activity | HPLC methods Larvicidal and Insecticidal assays | Anopheles arabiensis | [43] |
Ethiopia | Ethiopia | Methanolic extract | In vitro antiplasmodial activity | Larvicidal and Insecticidal assays | Anopheles arabiensis | [44] |
Cameroon | Cameroon | Essential oils | In vitro Antioxidant activity in cosmetic cream In vitro toxicity | GC-MS analysis; BRAI, PI tests; Cytotoxicity using MTT methods | Human Keratinocytes (HaCaT), intestinal (Caco-2) cell lines | [45] |
Cameroon | Cameroon | Aqueous extract | Anti-epilepsy activity | Ethnobotanical | / | [46] |
Morocco | Comoros | Essential oils | Phytochemical composition and in vitro Antifungal activity | GC-MS methods MIC assays | Gloeophyllum trabeum ATCC 11539 Poria placenta ATCC 9891, Coniophora puteana ATCC 9351, Coriolus versicolor ATCC 12679 | [47] |
South Africa | South Africa | Aqueous extract | In vitro Antiparasitic activity | Anti-protozoan assays | Trichomonas vaginalis | [48] |
Dernmark | South Africa | Piperine/4,5-dihydropiperine | In vitro anti-epilepsy activity | Affinity to the GABA-benzodiazepine receptor assay | Suspension Rat brain cortex | [49] |
South Africa | South Africa | Aqueous extract | In vitro antibacterial activity | Disc diffusion methods | B. cereus, S. aureus, B. subtilis, S. pyogenes, E. coli, Shigella spp., S. typhi, P. aeruginosa, P. mirabilis/vulgaris | [50] |
Ethiopia | Ethiopia | Ethyl acetate extract | Phytochemical composition | TLC analytical | / | [51] |
Democratic Republic of Congo | Democratic Republic of Congo | Methanolic extract | In vitro Antioxidant activity | DPPH assays | / | [12] |
Extracts/Compounds | Bacteria Strains | Activities (MIC) | Evaluation Methods | References |
---|---|---|---|---|
Methanolic extract | Staphylococcus aureus ATCC12600, and Staphylococcus epidermidis | 0.52 mg/mL | Plate-hole diffusion and broth microdilution | [15] |
M. tuberculosis ATCC27294 and ATCC25177 | 512 µg/mL | Resazurin microplate assay | [26] | |
E. coli ATCC10536 and isolates; E. aerogenes EA294, K. pneumoniae KP63, and P. stuatuii NEA16 | 256 µg/mL | Plate-hole diffusion and broth microdilution | [32] | |
Streptococcus pyogenes, S. aureus, and Corynebacterium xerosis | 11, 10, and 9 mm, respectively, at 100 µg/mL | Disc diffusion test | [50] | |
Acetone extract | M. tuberculosis ATCC25177 and clinical isolate Mtb2 | 100 µg/mL | Resazurin microplate assay | [24] |
Fruit hydrolate | S. saprophyticus, S. aureus, S. epidermidis, E. colis, K. pneumoniae, S. typhi | 7, 185, 556, 2, 62, and 21 µg/mL, respectively | Plate-hole diffusion and broth microdilution | [34] |
Ethanolic extract | Methicillin-sensitive S. aureus ATCC 612600 | 3.125 mg/mL | Plate-hole diffusion and broth microdilution | [41] |
Essential oil | E. coli ATCC 25922, E. faecalis ATCC 29212, P. aeruginosa ATCC 27853, and S. aureus ATCC 25923 | 6, 10, 6, 10 mm respectively | Disc diffusion test | [9] |
α pinene, | 6 mm on all bacteria | |||
(E)-caryophyllene, | 8, 10, 6, and 8 mm, respectively | |||
β pinene | 6 mm on all bacteria |
Extracts/Compounds | Fungal Strains | Activities (MIC) | Evaluation Methods | References |
---|---|---|---|---|
Methanolic extract | C. albicans ATCC10231, and clinical isolates (U1, U7, M42, M43, and M44) | 0.56 mg/mL | Plate-hole diffusion and macro-broth tube dilution | [18] |
C. albicans, C. neoformans, C. tropicalis, C. krusei, C. parapsilosis, C. lusitaniae, and C. guiliemondi | 3.12, 1.56, 0.19, 3.12, 3.12, 1.56, 3.12 mg/mL, respectively | Plate-hole diffusion and broth microdilution with INT as revelator | [33] | |
Acetone extract | C. albicans, C. krusei, C. neoformans | 1.88, 1.88, and 0.12 mg/mL with INT as revelator | Plate-hole diffusion and broth micro-dilution with INT as indicator | [38] |
Hexane extract | 3.75, 3.75, and 7.5 with INT as revelator | |||
Aqueous extract | C. albicans ATCC10231, and clinical isolates (U1, U7, M42, M43 and M44) | 4.97, 4.97, 2.48, 4.97, 1.24, and 1.24 mg/mL, respectively | Plate-hole diffusion and macro-broth tube dilution | [18] |
Fruit hydrolate | Tricophyton rubrum, and Candida albicans | 185, and 556 µg/mL, respectively | Plate-hole diffusion and broth microdilution | [34] |
Essential oil | A. flavus, A. niger, F. solani, F. nivale, Penicillium sp., F. oxysporum, F. crookwellense, F. moniliforme | 4.1 mg/mL < MIC < 16.32 mg/mL | Plate-hole diffusion and macro-broth tube dilution | [36] |
Penicillium claviforme, F. graminearum, F. moniliforme, F. sporotrichoides, F. proliferatum, A. niger, A. fumigatus, A. ochraceus, A. wentii, | 33.1 mg/mL | Disc diffusion test | [40] | |
Gloeophyllum trabeum ATCC 11539 Poria placenta ATCC 9891, Coniophora puteana ATCC 9351, Coriolus versicolor ATCC 12679 | 1/2000 (v/v) | Disc diffusion test | [47] | |
C. albicans | 8 mm | Disc diffusion test | [9] | |
α pinene | 11 mm | |||
β pinene | 9 mm | |||
(E)-caryophyllene | 6 mm |
Extracts/Compounds | Parasite/Insects Type | Activities (IC50) | References |
---|---|---|---|
Methanolic extract | Plasmodium falciparum | <10 µg/mL | [21] |
Methylene chloride extract | P. falciparum species resistant to chloroquine, pyrimethamine, and proguanil | 7 µg/mL | [23] |
Essential oil | Anopheles gambiae | 34.9 ppm (LC90 = 85.0 ppm), LD50 = 16.1 µL/g | [37,40] |
Ethyl acetate fraction | Anopheles arabiensis | 10.72 ppm (LC90 = 30.59) | [43,44] |
Z-antiepilepsirine | Plasmodium falciparum type W2 resistant to proguanil, pyrimethamine, and chloroquine | 7 µg/mL | [16] |
Kaousine | 20 µg/mL |
Extracts/Compounds | Cancer Cell Lines | Activities (IC50) | References |
---|---|---|---|
Methanolic extract | B16-F10 | 47.38 µg/mL | [8] |
MiaPaCa-2, multidrug resistant CCRF-CEM, and CEM/ADR5000 | 8.96, 7.03, and 6.56 µg/mL | [25] | |
CCRF-CEM, HL-60, HL60AR, MDA-MB231, MDA-MB231BCRP, HCT116P53+/+, HCT116P53−/−, U87MG, U87MG∆EGFR, and Hep-G2 | 36.95, 8.16, 11.22, 4.17, 19.45, 4.64, 4.64, 13.48, 7.44, 16.07 µg/mL, respectively | [27] | |
Licarin A | CCRF-CEM, resistant CEM/ADR5000, MDA-MB231-pcDNA, MDA-MB231-BCRP, HCT116P53+/+, HCT116P53−/−, U87MG, resistant U87MG∆EGFR, Hep-G2, and AML12 | 10.9, >50, 29.1, 33.5, 11.3, 12.6, 28.4, 9.5, 10.3, and >50 µg/mL, respectively | [10] |
Licarin B | 4.3, 7.3, 17.9, 17.9, 14.5, 21.8, 10.7, 8.4, 10.0, and > 50, µg/mL, respectively | ||
nitidine isocyanate | 15.2, 33.2, 21.7, >50, >50, >50, 25.2, >50, >50, >50 µg/mL, respectively | ||
5-hydroXy-7,4′-dimethoXy-flavone | 9.6, 29.4, >50, >50, 33.0, >50, 4.6, 11.6, >50, >50 µg/mL, respectively | ||
Essential oil | MDA-MB231, A375, HCT116 | 26.3, 76.0, 22.7 µg/mL, respectively | [9] |
β-Pinene | 78.5, >200, and 59.2 µg/mL, respectively | ||
(E)-caryophyllene | 45.3, 63.3, and 55.7 µg/mL, respectively |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamsu, G.T.; Ndebia, E.J. A Comprehensive Review of the Ethnobotanical Uses, Pharmacological, and Toxicological Profiles of Piper capense L.f. (Piperaceae). Drugs Drug Candidates 2024, 3, 598-614. https://doi.org/10.3390/ddc3030034
Kamsu GT, Ndebia EJ. A Comprehensive Review of the Ethnobotanical Uses, Pharmacological, and Toxicological Profiles of Piper capense L.f. (Piperaceae). Drugs and Drug Candidates. 2024; 3(3):598-614. https://doi.org/10.3390/ddc3030034
Chicago/Turabian StyleKamsu, Gabriel Tchuente, and Eugene Jamot Ndebia. 2024. "A Comprehensive Review of the Ethnobotanical Uses, Pharmacological, and Toxicological Profiles of Piper capense L.f. (Piperaceae)" Drugs and Drug Candidates 3, no. 3: 598-614. https://doi.org/10.3390/ddc3030034
APA StyleKamsu, G. T., & Ndebia, E. J. (2024). A Comprehensive Review of the Ethnobotanical Uses, Pharmacological, and Toxicological Profiles of Piper capense L.f. (Piperaceae). Drugs and Drug Candidates, 3(3), 598-614. https://doi.org/10.3390/ddc3030034