Design of Marine Cyclodepsipeptide Analogues Targeting Candida albicans Efflux Pump CaCdr1p
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure-Based Virtual Screening
2.2. In Silico Pharmacokinetics Prediction
3. Materials and Methods
3.1. Computational
3.1.1. Preparation of Unnarmicins A (1) and C (2), Unnarmicin Analogues (3–35), and Known Controls (39–48)
3.1.2. Preparation of CaCdr1p Efflux Pump
3.1.3. Docking Studies
3.1.4. Pharmacokinetics Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rusic, D.; Vilovic, M.; Bukic, J.; Leskur, D.; Seselja Perisin, A.; Kumric, M.; Martinovic, D.; Petric, A.; Modun, D.; Bozic, J. Implications of COVID-19 Pandemic on the Emergence of Antimicrobial Resistance: Adjusting the Response to Future Outbreaks. Life 2021, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Lass-Flörl, C.; Garcia-Rubio, R.; Daneshnia, F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef] [PubMed]
- Branco, J.; Miranda, I.M.; Rodrigues, A.G. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J. Fungi 2023, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed]
- Costa-de-Oliveira, S.; Rodrigues, A.G. Candida albicans Antifungal Resistance and Tolerance in Bloodstream Infections: The Triad Yeast-Host-Antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Ksiezopolska, E.; Gabaldón, T. Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens. Genes 2018, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance amongCandidaspecies: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Nair, R.; Banerjee, A. Multidrug transporters of Candida species in clinical azole resistance. Fungal Genet. Biol. 2019, 132, 103252. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.; Pinto, E.; Kijjoa, A.; Pinto, M.; Sousa, E. Targeting antimicrobial drug resistance with marine natural products. Int. J. Antimicrob. Agents 2020, 56, 106005. [Google Scholar] [CrossRef]
- Prasad, R.; Banerjee, A.; Khandelwal, N.K.; Dhamgaye, S. The ABCs of Candida albicans Multidrug Transporter Cdr1. Eukaryot. Cell 2015, 14, 1154–1164. [Google Scholar] [CrossRef]
- Banerjee, A.; Pata, J.; Sharma, S.; Monk, B.C.; Falson, P.; Prasad, R. Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of Candida albicans. J. Fungi 2021, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 2020, 18, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Sanglard, D.; Odds, F.C. Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2002, 2, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Hokken, M.W.J.; Zwaan, B.J.; Melchers, W.J.G.; Verweij, P.E. Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet. Biol. 2019, 132, 103254. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.D.; Vitorino, I.; Reyes, F.; Vicente, F.; Lage, O.M. From Ocean to Medicine: Pharmaceutical Applications of Metabolites from Marine Bacteria. Antibiotics 2020, 9, 455. [Google Scholar] [CrossRef] [PubMed]
- Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. DARU J. Pharm. Sci. 2019, 27, 491–515. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, U.R.; Balasubramanian, S.; Oelschlaeger, T.A.; Grkovic, T.; Pham, N.B.; Quinn, R.J.; Hentschel, U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect. Dis. 2017, 17, e30–e41. [Google Scholar] [CrossRef]
- Fernandes, C.; Ribeiro, R.; Pinto, M.; Kijjoa, A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018–2022). Molecules 2023, 28, 615. [Google Scholar] [CrossRef]
- Mayer, A.; Rodríguez, A.; Taglialatela-Scafati, O.; Fusetani, N. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Mar. Drugs 2013, 11, 2510–2573. [Google Scholar] [CrossRef]
- Wibowo, J.T.; Bayu, A.; Aryati, W.D.; Fernandes, C.; Yanuar, A.; Kijjoa, A.; Putra, M.Y. Secondary Metabolites from Marine-Derived Bacteria with Antibiotic and Antibiofilm Activities against Drug-Resistant Pathogens. Mar. Drugs 2023, 21, 50. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.; Pinto, E.; Fernandes, C.; Sousa, E. Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar. Drugs 2022, 20, 397. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Kannappan, A.; Shi, C.; Lin, X. Marine Bacterial Secondary Metabolites: A Treasure House for Structurally Unique and Effective Antimicrobial Compounds. Mar. Drugs 2021, 19, 530. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Lamping, E.; Adachi, K.; Takano, Y.; Kawabata, K.; Shizuri, Y.; Niimi, M.; Uehara, Y. Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochem. Biophys. Res. Commun. 2007, 364, 990–995. [Google Scholar] [CrossRef] [PubMed]
- El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; El-Sayed Hamed, A.N.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem. 2017, 126, 631–651. [Google Scholar] [CrossRef] [PubMed]
- Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact. 2008, 171, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Seukep, A.J.; Guo, M. Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Mar. Drugs 2020, 18, 545. [Google Scholar] [CrossRef]
- Costa, L.; Sousa, E.; Fernandes, C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals 2023, 16, 996. [Google Scholar] [CrossRef]
- Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef]
- Prasad, R.; Sharma, M.; Rawal, M.K. Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans. J. Amino Acids 2011, 2011, 531412. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.D.; Lamping, E.; Holmes, A.R.; Niimi, K.; Baret, P.V.; Keniya, M.V.; Tanabe, K.; Niimi, M.; Goffeau, A.; Monk, B.C. Efflux-Mediated Antifungal Drug Resistance. Clin. Microbiol. Rev. 2009, 22, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Manoharlal, R.; Shukla, S.; Puri, N.; Prasad, T.; Ambudkar, S.V.; Prasad, R. Curcumin Modulates Efflux Mediated by Yeast ABC Multidrug Transporters and Is Synergistic with Antifungals. Antimicrob. Agents Chemother. 2009, 53, 3256–3265. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Vakser, I.A. Protein-Protein Docking: From Interaction to Interactome. Biophys. J. 2014, 107, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Maveyraud, L.; Mourey, L. Protein X-ray Crystallography and Drug Discovery. Molecules 2020, 25, 1030. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.; Wagner, M.; Du, D.; Raschka, S.; Nentwig, L.-M.; Gohlke, H.; Smits, S.H.J.; Luisi, B.F.; Schmitt, L. Structure and efflux mechanism of the yeast pleiotropic drug resistance transporter Pdr5. Nat. Commun. 2021, 12, 5254. [Google Scholar] [CrossRef] [PubMed]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef]
Compound | ΔG (kcal/mol) | Hydrogen Bonds between the Compound and Cdr1p | Hydrophobic Interactions | ||
---|---|---|---|---|---|
Functional Group of Compound | Amino Acid | Distance (Å) | |||
1 | −7.7 | CO (L-Leu) | Thr1351 | 2.4 | Leu562, Leu563, Met657, Ala660 |
CH (Alkyl chain) | Phe559 | 3.7 | |||
2 | −8.7 | CO (L-Phe) | Gln1244 | 3.2 | Ile565, Ala656, Met657, Ala660, Leu664, Ile1237 |
3 | −9.4 | CO (Alkyl chain) | Thr661 | 3.3 | Phe559, Leu562 |
CH (D-Phe) | Thr1351 | 3.4 | |||
4 | −8.8 | NH (L-Leu) | Phe559 | 2.9 | Phe556, Phe643, Ala660 |
CO (L-Leu) | Leu562 | 3.1 | |||
CO (L-Leu) | Thr1355 | 3.1 | |||
CO (D-Phe) | Thr1355 | 2.9 | |||
5 | −9.7 | CO (L-Leu) | Thr1351 | 2.6 | Phe556, Leu562, Leu563, Ala660 |
6 | −9.9 | CO (D-Phe) | Thr1351 | 2.6 | Leu562, Leu563, Ala660 |
7 | −10.1 | CO (L-Leu) | Thr1351 | 2.6 | Phe556, Leu562, Ala660 |
8 | −9.5 | CO (D-Phe) | Thr1351 | 2.6 | Phe556, Leu562, Leu563, Ala660 |
9 | −8.7 | CO (Alkyl chain) | Leu562 | 3.1 | Phe556, Leu563, Leu1352 |
CO (L-Ile) | Asn1240 | 3.0 | |||
CO (L-Ile) | Thr1355 | 3.2 | |||
NH (L-Ile) | Thr1355 | 1.7 | |||
10 | −8.8 | CO (L-Leu) | Leu562 | 3.1 | Phe556, Leu563, Ile565, Leu1352 |
CO (L-Ile) | Asn1240 | 3.1 | |||
CO(L-Ile) | Thr1355 | 3.1 | |||
NH (L-Ile) | Thr1355 | 1.8 | |||
11 | −8.6 | CH (L-Phe) | Asn1240 | 4.1 | Leu1352 |
CO (L-Ile) | Asn1240 | 3.2 | |||
CO (D-Phe) | Thr1355 | 3.0 | |||
NH (L-Ile) | Thr1355 | 2.8 | |||
12 | −9.0 | CO (alkyl chain) | Leu562 | 3.8 | Leu563, Phe556, Phe643, Ala660, Leu1352 |
CO (L-Ile) | Asn1240 | 3.0 | |||
NH (L-Leu) | Thr1355 | 3.0 | |||
CO (L-Ile) | Thr1355 | 3.2 | |||
13 | −11.2 | --- | --- | --- | Leu555, Leu563, Leu664, Leu1352 |
14 | −10.7 | CH (L-Pro) | Thr1355 | 3.1 | Met525, Phe556, Ala660, Leu664 |
15 | −11.1 | CO (Alkyl chain) | Gln1244 | 3.2 | Leu555, Leu562, Leu563, Leu564, Val668 |
CH (Alkyl chain) | Asn1348 | 3.5 | |||
16 | −10.3 | CH (L-Pro) | Thr1355 | 3.1 | Met525, Phe556, Leu562, Phe643, Ala660, Leu664 |
17 | −10.3 | CO (L-Trp) | Thr1355 | 3.0 | Leu563, Leu664, Leu1352 |
NH (L-Trp) | Thr1355 | 2.3 | |||
CH (L-Trp) | Thr1355 | 3.3 | |||
18 | −10.2 | NH (L-Trp) | Thr1355 | 2.3 | Leu563, Leu664, Leu1352 |
CO (L-Trp) | Thr1355 | 3.0 | |||
CH (L-Trp) | Thr1355 | 3.3 | |||
19 | −11.1 | CH (L-Trp) | Asn1240 | 4.1 | Phe556, Leu562, Ala660 |
CO (L-Trp) | Thr1351 | 2.7 | |||
20 | −10.4 | CO (L-Trp) | Thr1355 | 3.1 | Leu563, Phe643, Ala660, Leu664, Val668, Leu1352 |
NH (L-Trp) | Thr1355 | 2.3 | |||
CO (D-Phe) | Thr1355 | 3.0 | |||
CH (L-Trp) | Thr1355 | 3.3 | |||
21 | −10.4 | --- | --- | --- | Leu555, Phe556, Leu563, Met566, Val668 |
22 | −10.1 | --- | --- | --- | Leu555, Leu563, Val668 |
23 | −10.5 | CH (Alkyl chain) | Thr1355 | 3.6 | Phe517, Ala660, Phe1354 |
24 | −10.3 | --- | --- | --- | Leu555, Leu563, Met566, Leu664, Val668 |
25 | −10.3 | CO (L-Phe) | Asn1240 | 3.3 | Met525, Leu555, Phe559, Leu562, Ala660, Leu664 |
CO (L-Leu) | Thr1355 | 2.9 | |||
26 | −9.8 | O (Ester) | Asn1240 | 3.3 | Leu664 |
NH (L-Phe) | Thr1355 | 2.5 | |||
27 | −10.6 | CO (L-Phe) | Gln1244 | 3.3 | Leu555, Leu562, Ala660, Val668 |
CO (L-Leu) | Thr1355 | 3.2 | |||
CH (L-Pro) | Thr1355 | 3.6 | |||
28 | −9.8 | O (Ester) | Asn1240 | 3.3 | Leu564, Ile1237 |
NH (L-Phe) | Thr1355 | 2.6 | |||
29 | −9.8 | CO (Alkyl chain) | Phe556 | 3.5 | Phe559, Leu664, Val668, Ile1237, Leu1358 |
CH (L-Phe) | Thr1355 | 3.5 | |||
30 | −10.2 | CO (L-Phe) | Asn1240 | 3.3 | Phe517, Leu555, Leu562, Ala660, Val668, Leu1352, Phe1354 |
31 | −10.3 | NH (L-Ile) | Phe559 | 2.3 | Met525, Leu555, Val668, Leu1358, Phe1354 |
32 | −9.3 | --- | --- | --- | Met525, Phe556, Ile1237, Leu1352 |
33 | −11.3 | CO (L-Leu) | Asn1240 | 3.3 | Leu555, Leu563, Phe1233, Ile1237, Leu1352, Leu1358 |
CH (L-Trp) | Gln522 | 3.5 | |||
34 | −7.8 | --- | --- | --- | Ile646, Val649, Ala666, Ile690 |
35 | −10.0 | CO (L-Leu) | Thr1355 | 3.1 | Met525, Leu562, Leu563, Leu664, Val668, Leu1352 |
Compound | ΔGb (kcal/mol) |
---|---|
FK506 (39) | −7.1 |
FK520 (40) | −6.5 |
Enniatin_B (41) | −6.9 |
Dissulfiram (42) | −4.8 |
Ibuprofen (43) | −6.8 |
Milbemycin α11 (44) | −11.5 |
Milbemycin α20 (45) | −11.6 |
Milbemycin β11 (46) | −11.7 |
FLC (47) | −7.2 |
Rhodamine 6G (48) | −8.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, R.; Fortes, S.; Costa, L.; Palmeira, A.; Pinto, E.; Sousa, E.; Fernandes, C. Design of Marine Cyclodepsipeptide Analogues Targeting Candida albicans Efflux Pump CaCdr1p. Drugs Drug Candidates 2024, 3, 537-549. https://doi.org/10.3390/ddc3030031
Ribeiro R, Fortes S, Costa L, Palmeira A, Pinto E, Sousa E, Fernandes C. Design of Marine Cyclodepsipeptide Analogues Targeting Candida albicans Efflux Pump CaCdr1p. Drugs and Drug Candidates. 2024; 3(3):537-549. https://doi.org/10.3390/ddc3030031
Chicago/Turabian StyleRibeiro, Ricardo, Sara Fortes, Lia Costa, Andreia Palmeira, Eugénia Pinto, Emília Sousa, and Carla Fernandes. 2024. "Design of Marine Cyclodepsipeptide Analogues Targeting Candida albicans Efflux Pump CaCdr1p" Drugs and Drug Candidates 3, no. 3: 537-549. https://doi.org/10.3390/ddc3030031
APA StyleRibeiro, R., Fortes, S., Costa, L., Palmeira, A., Pinto, E., Sousa, E., & Fernandes, C. (2024). Design of Marine Cyclodepsipeptide Analogues Targeting Candida albicans Efflux Pump CaCdr1p. Drugs and Drug Candidates, 3(3), 537-549. https://doi.org/10.3390/ddc3030031