Hematological Biomarkers Associated with Stroke Types: A Clinical Cross-Sectional Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Selection
2.2. Diagnosis Criteria for Stroke and Transient Ischemic Attack (TIA)
2.3. Investigation of Clinical and Demographic Data
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aPTT | Activated Partial Thromboplastin Time |
CBC | Complete Blood Count |
CVD | Cardiovascular Disease |
HS | Hemorrhagic Stroke |
HTN | Systemic Arterial Hypertension |
ICD-10 | International Classification of Diseases, 10th Revision |
INR | International Normalized Ratio |
IS | Ischemic Stroke |
MCH | Mean Corpuscular Hemoglobin |
MCHC | Mean Corpuscular Hemoglobin Concentration |
MCV | Mean Corpuscular Volume |
NLR | Neutrophil-to-Lymphocyte Ratio |
OR | Odds Ratio |
PT | Prothrombin Time |
RFs | Risk Factors |
SAH | Systemic Arterial Hypertension |
TIA | Transient Ischemic Attack |
T2DM | Type 2 Diabetes Mellitus |
References
- Chamorro, Á. Role of Inflammation in Stroke and Atherothrombosis. Cerebrovasc. Dis. 2004, 17, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report from the American Heart Association. Circulation 2019, 139, 10. [Google Scholar] [CrossRef]
- Cabral, N.L.; Nagel, V.; Conforto, A.B.; Magalhaes, P.S.; Venancio, V.G.; Safanelli, J.; Ibiapina, F.; Mazin, S.; França, P.; Liberato, R.M.; et al. High five-year mortality rates of ischemic stroke subtypes: A prospective cohort study in Brazil. Int. J. Stroke 2019, 14, 491–499. [Google Scholar] [CrossRef]
- Thrift, A.G.; Howard, G.; Cadilhac, D.A.; Howard, V.J.; Rothwell, P.M.; Thayabaranathan, T.; Feigin, V.L.; Norrving, B.; Donnan, G.A. Global stroke statistics: An update of mortality data from countries using a broad code of “cerebrovascular diseases”. Int. J. Stroke 2017, 12, 796–801. [Google Scholar] [CrossRef]
- Balch, M.H.H.; Nimjee, S.M.; Rink, C.; Hannawi, Y. Beyond the Brain: The Systemic Pathophysiological Response to Acute Ischemic Stroke. J. Stroke 2020, 22, 159–172. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef]
- Cadernos de Informações em Saúde—São Paulo. Available online: http://tabnet.datasus.gov.br/tabdata/cadernos/sp.htm (accessed on 21 July 2024).
- Ferreira, L.E.; Secolin, R.; Lopes-Cendes, I.; Cabral, N.L.; França, P.H.C.d. Association and interaction of genetic variants with occurrence of ischemic stroke among Brazilian patients. Gene 2019, 695, 84–91. [Google Scholar] [CrossRef]
- Adami, F.; Figueiredo, F.W.d.S.; Paiva, L.d.S.; Sá, T.H.d.; Santos, E.F.d.S.; Martins, B.L.; Valenti, V.E.; Abreu, L.C.d. Mortality and Incidence of Hospital Admissions for Stroke among Brazilians Aged 15 to 49 Years between 2008 and 2012. PLoS ONE 2016, 11, e0152739. [Google Scholar] [CrossRef]
- Cabral, N.L.; Freire, A.T.; Conforto, A.B.; dos Santos, N.; Reis, F.I.; Nagel, V.; Guesser, V.V.; Safanelli, J.; Longo, A.L. Increase of Stroke Incidence in Young Adults in a Middle-Income Country: A 10-Year Population-Based Study. Stroke 2017, 48, 2925–2930. [Google Scholar] [CrossRef]
- Burke, G.L.; Bertoni, A.G.; Shea, S.; Tracy, R.; Watson, K.E.; Blumenthal, R.S.; Chung, H.; Carnethon, M.R. The Impact of Obesity on Cardiovascular Disease Risk Factors and Subclinical Vascular Disease: The Multi-Ethnic Study of Atherosclerosis. Arch. Intern. Med. 2008, 168, 928. [Google Scholar] [CrossRef]
- Orsatti, C.L.; Sobreira, M.L.; Sandrim, V.C.; Nahas-Neto, J.; Orsatti, F.L.; Nahas, E.A.P. Autophagy-related 16-like 1gene polymorphism, risk factors for cardiovascular disease and associated carotid intima-media thickness in postmenopausal women. Clin. Biochem. 2018, 61, 12–17. [Google Scholar] [CrossRef]
- Orsatti, C.L.; Nahas, E.A.P.; Nahas-Neto, J.; Orsatti, F.L.; Giorgi, V.I.; Witkin, S.S. Evaluation of Toll-Like Receptor 2 and 4 RNA Expression and the Cytokine Profile in Postmenopausal Women with Metabolic Syndrome. PLoS ONE 2014, 9, e109259. [Google Scholar] [CrossRef] [PubMed]
- Orsatti, C.L.; Nahás, E.A.P.; Nahas-Neto, J.; Orsatti, F.L.; Linhares, I.M.; Witkin, S.S. Mannose-binding lectin gene polymorphism and risk factors for cardiovascular disease in postmenopausal women. Mol. Immunol. 2014, 61, 23–27. [Google Scholar] [CrossRef] [PubMed]
- de Lima Filho, J.B.; Freire, L.; Nahas, E.A.P.; Orsatti, F.L.; Orsatti, C.L. Heat Shock Protein 60 Antibodies Are Associated with a Risk Factor for Cardiovascular Disease in Bedridden Elderly Patients. Front. Mol. Biosci. 2020, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Moon, G.J.; Bang, O.Y. Biomarkers for Stroke. J. Stroke 2013, 15, 27. [Google Scholar] [CrossRef]
- Tian, A.; Zheng, Y.; Jin, J.; Huang, C. Association of systemic inflammatory response index and stroke: A cross-sectional study of NHANES, 2005–2018. Front. Neurol. 2025, 16, 1538352. [Google Scholar] [CrossRef]
- Urra, X.; Cervera, Á.; Villamor, N.; Planas, A.M.; Chamorro, Á. Harms and benefits of lymphocyte subpopulations in patients with acute stroke. Neuroscience 2009, 158, 1174. [Google Scholar] [CrossRef]
- Shi, R.; Tian, Y.; Tian, J.; Liu, Q.; Zhang, J.; Zhang, Z.; Sun, Y.; Xie, Z. Association between the systemic immunity-inflammation index and stroke: A population-based study from NHANES (2015–2020). Sci. Rep. 2025, 15, 381. [Google Scholar] [CrossRef]
- Juli, C.; Heryaman, H.; Nazir, A.; Ang, E.T.; Defi, I.R.; Gamayani, U.; Atik, N. The Lymphocyte Depletion in Patients with Acute Ischemic Stroke Associated with Poor Neurologic Outcome. Int. J. Gen. Med. 2021, 14, 1843. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, D.; Zhang, X.G.; Zhu, X.Q.; Xu, X.S.; Yue, Y.Y. Red cell distribution width is associated with stroke severity and unfavorable functional outcomes in ischemic stroke. Front. Neurol. 2022, 13, 938515. [Google Scholar] [CrossRef]
- Feng, G.H.; Li, H.P.; Li, Q.L.; Fu, Y.; Huang, R.B. Red blood cell distribution width and ischaemic stroke. Stroke Vasc. Neurol. 2017, 2, 172. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Bornfeldt, K.E. How Far We Have Come, How Far We Have Yet to Go in Atherosclerosis Research. Circ. Res. 2020, 126, 1107–1111. [Google Scholar] [CrossRef]
- Martinez, E.; Martorell, J.; Riambau, V. Review of serum biomarkers in carotid atherosclerosis. J. Vasc. Surg. 2020, 71, 329–341. [Google Scholar] [CrossRef]
- Sarvari, S.; Moakedi, F.; Hone, E.; Simpkins, J.W.; Ren, X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab. Brain Dis. 2020, 35, 851–868. [Google Scholar] [CrossRef]
- Libby, P.; Swirski, F.K.; Nahrendorf, M. The Myocardium. J. Am. Coll. Cardiol. 2019, 74, 3136–3138. [Google Scholar] [CrossRef]
- Chao, C.; Song, Y.; Cook, N.; Tseng, C.-H.; Manson, J.E.; Eaton, C.; Margolis, K.L.; Rodriguez, B.; Phillips, L.S.; Tinker, L.F.; et al. The Lack of Utility of Circulating Biomarkers of Inflammation and Endothelial Dysfunction for Type 2 Diabetes Risk Prediction Among Postmenopausal Women: The Women’s Health Initiative Observational Study. Arch. Intern. Med. 2010, 170, 1557–1565. [Google Scholar] [CrossRef]
- Kaplan, R.C.; McGinn, A.P.; Baird, A.E.; Hendrix, S.L.; Kooperberg, C.; Lynch, J.; Rosenbaum, D.M.; Johnson, K.C.; Strickler, H.D.; Wassertheil-Smoller, S. Inflammation and Hemostasis Biomarkers for Predicting Stroke in Postmenopausal Women: The Women’s Health Initiative Observational Study. J. Stroke Cerebrovasc. Dis. 2008, 17, 344–355. [Google Scholar] [CrossRef]
- Easton, J.D.; Saver, J.L.; Albers, G.W.; Alberts, M.J.; Chaturvedi, S.; Feldmann, E.; Hatsukami, T.S.; Higashida, R.T.; Johnston, S.C.; Kidwell, C.S.; et al. Definition and evaluation of transient ischemic attack: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. J. Stroke 2009, 40, 2276. [Google Scholar] [CrossRef]
- Verma, A.; Singh, H.V.; Yadav, S.K. Quality control in Hematology and Biochemistry Laboratories. In Clinical Laboratory Management; Yadav, S.K., Gupta, R., Singh, S., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Gulati, G.L.; Hyun, B.H. Quality control in hematology. Clin. Lab. Med. 1986, 6, 675. [Google Scholar] [CrossRef]
- Chan, K.L.; Feng, X.; Ip, B.; Huang, S.; Ma, S.H.; Fan, F.S.Y.; Ip, H.L.; Huang, L.; Mok, V.C.T.; Soo, Y.O.Y.; et al. Elevated Neutrophil to Lymphocyte Ratio Associated with Increased Risk of Recurrent Vascular Events in Older Minor Stroke or TIA Patients. Front. Aging Neurosci. 2021, 13, 646961. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Cai, L.; Yi, T.; Yi, X.; Hu, Y. Neutrophil-to-lymphocyte ratio is associated with stroke progression and functional outcome in patients with ischemic stroke. Brain Behav. 2023, 13, e3261. [Google Scholar] [CrossRef] [PubMed]
- Silina, E.V.; Rumyantceva, S.A.; Stupin, V.A.; Parfenov, V.A.; Bolevich, S.B. Early predictive blood markers of hemorrhagic stroke—Influence of cytoflavin therapy. Can. J. Physiol. Pharmacol. 2021, 99, 72–79. [Google Scholar] [CrossRef]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016, 15, 869–881. [Google Scholar] [CrossRef]
- Jin, R.; Liu, L.; Zhang, S.; Nanda, A.; Li, G. Role of Inflammation and Its Mediators in Acute Ischemic Stroke. J. Cardiovasc. Trans. Res. 2013, 6, 834–851. [Google Scholar] [CrossRef]
- Song, S.-Y.; Zhao, X.-X.; Rajah, G.; Hua, C.; Kang, R.; Han, Y.; Ding, Y.; Meng, R. Clinical Significance of Baseline Neutrophil-to-Lymphocyte Ratio in Patients with Ischemic Stroke or Hemorrhagic Stroke: An Updated Meta-Analysis. Front. Neurol. 2019, 10, 1032. [Google Scholar] [CrossRef]
- Gillum, R.F.; Mussolino, M.E.; Madans, J.H. Counts of Neutrophils, Lymphocytes, and Monocytes, Cause-specific Mortality and Coronary Heart Disease: The NHANES-I Epidemiologic Follow-up Study. Ann. Epidemiol. 2005, 15, 266–271. [Google Scholar] [CrossRef]
- IL-17 and Th17 Cells|Annual Reviews. Available online: https://www.annualreviews.org/content/journals/10.1146/annurev.immunol.021908.132710 (accessed on 30 January 2025).
- Pinčáková, K.; Krastev, G.; Haring, J.; Mako, M.; Mikulášková, V.; Bošák, V. Low lymphocyte-to-Monocyte ratio as a possible predictor of an unfavourable clinical outcome in patients with acute ischemic stroke after Mechanical Thrombectomy. Stroke Res. Treat. 2022, 10, 9243080. [Google Scholar] [CrossRef]
- Qin, J.; Qiu, X.; Gong, G.; Guo, Y.; Lei, L.; Zheng, H. Prognostic significance of admission lymphocyte-to-monocyte ratio in patients with spontaneous intracerebral hemorrhage: A retrospective study. Intensive Care Med. 2023, 3, 30. [Google Scholar] [CrossRef]
- Huang, Y.W.; Zhang, Y.; Feng, C.; An, Y.H.; Li, Z.P.; Yin, X.S. Systemic inflammation response index as a clinical outcome evaluating tool and prognostic indicator for hospitalized stroke patients: A systematic review and meta-analysis. Eur. J. Med. Res. 2023, 28, 474. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Z.; Zhou, L.; Ye, D.; Zhu, Y.; Huang, K.; Weng, Y.; Xiong, X.; Zhan, R.; Shen, J. Systemic immune responses after ischemic stroke: From the center to the periphery. Front. Immunol. 2022, 13, 911661. [Google Scholar] [CrossRef]
- Faura, J.; Bustamante, A.; Miró-Mur, F.; Montaner, J. Stroke-induced immunosuppression: Implications for the prevention and prediction of post-stroke infections. J. Neuroinflamm. 2021, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Wen, J.; Zhang, L.; Zhang, M.; Zhong, X.; Chen, H.; Luo, C. Can network pharmacology identify the anti-virus and anti- inflammatory activities of Shuanghuanglian oral liquid used in Chinese medicine for respiratory tract infection? Eur. J. Integr. Med. 2020, 37, 101139. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Arima, H.; Heeley, E.; Delcourt, C.; Krause, M.; Peng, B.; Yang, J.; Wu, G.; Chen, X.; Chalmers, J.; et al. White blood cell count and clinical outcomes after intracerebral hemorrhage: The INTERACT2 trial. J. Neurol. Sci. 2016, 361, 112–116. [Google Scholar] [CrossRef]
- Morotti, A.; Phuah, C.L.; Anderson, C.D.; Jessel, M.J.; Schwab, K.; Ayres, A.M.; Pezzini, A.; Padovani, A.; Gurol, M.E.; Viswanathan, A.; et al. Leukocyte Count and Intracerebral Hemorrhage Expansion. Stroke 2016, 47, 1473–1478. [Google Scholar] [CrossRef]
- Lux, D.; Alakbarzade, V.; Bridge, L.; Clark, C.N.; Clarke, B.; Zhang, L.; Khan, U.; Pereira, A.C. The association of neutrophil-lymphocyte ratio and lymphocyte-monocyte ratio with 3-month clinical outcome after mechanical thrombectomy following stroke. J. Neuroinflamm. 2020, 17, 60. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; He, B.; Liu, P.; Chen, J.-Y.; Quan, H.; Ma, X. Association of mean platelet volume and platelet count with the development and prognosis of ischemic and hemorrhagic stroke. Int. J. Lab. Hem. 2016, 38, 233–239. [Google Scholar] [CrossRef]
- Truelsen, T.; Krarup, L.-H.; Iversen, H.K.; Mensah, G.A.; Feigin, V.L.; Sposato, L.A.; Naghavi, M. Causes of Death Data in the Global Burden of Disease Estimates for Ischemic and Hemorrhagic Stroke. Neuroepidemiology 2015, 45, 152–160. [Google Scholar] [CrossRef]
- Pande, S.D.; Win, M.M.; Khine, A.A.; Zaw, E.M.; Manoharraj, N.; Lolong, L.; Tin, A.S. Haemorrhagic transformation following ischaemic stroke: A retrospective study. Sci. Rep. 2020, 10, 5319. [Google Scholar] [CrossRef]
- Spronk, E.; Sykes, G.; Falcione, S.; Munsterman, D.; Joy, T.; Kamtchum-Tatuene, J.; Jickling, G.C. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front. Neurol. 2021, 12, 661955. [Google Scholar] [CrossRef]
Variables | TIA | Ischemic Stroke (IS) | Hemorrhagic Stroke (HS) |
---|---|---|---|
Diagnosis | 15 | 112 | 20 |
Years, y | 69 (9.7) | 68.5 (12.8) | 64.5 (17.4) |
Gender, (f/m) | 5/10 | 51/61 | 10/10 |
Ethnicity, (b/w) | 3/12 | 21/91 | 4/16 |
T2DM, (y/n) | 4/11 | 64/48 | 5/15 |
HTN, (y/n) | 13/2 | 101/11 | 15/5 |
Variables | TIA | Ischemic Stroke | Hemorrhagic Stroke |
---|---|---|---|
Erythrocytes, M/mm3 | 4.30 (0.99) | 4.53 (0.75) | 4.35 (1.09) |
Hemoglobin, g/dL | 13 (3.2) | 13.6 (1.95) | 12.9 (2.28) |
Hematocrit, % | 37.40 (5.6) | 40.05 (5.7) | 37.6 (6.32) |
MCV, fL | 85 (3.5) | 88.5 (7.0) | 87 (5.0) |
MCH, pg | 30 (1.5) | 30 (2.25) | 30 (2.0) |
MCHC, g/dL | 35 (2.0) | 34 (2) | 34 (1.0) |
Leukocytes, mm3 | 7100 (4100) | 9300 (3425) | 10,400 (6650) |
Band Neutrophils, % | 2 (1.5) | 2 (2) | 3 (2.25) |
Segmented Neutrophils, % | 57 (19) | 64 (14) | 74 (8) |
Eosinophils, % | 2 (1) | 2 (1) | 2 (1) |
Lymphocytes, % | 31 (17) | 24 (15) | 15 (7.5) |
Absolute Lymphocytes, mm3 | 1848 (791) | 2194 (1366) | 1476 (959) |
Monocytes, % | 10.4 (4.29) | 8.18 (3.88) | 6.27 (3.78) |
Absolute Monocytes, mm3 | 769 (142) | 770 (150) | 720 (129) |
Lymphocyte/Monocyte Ratio (LMR) | 2.55 (1.49) | 2.99 (1.83) | 2.17 (1.14) |
Platelets, K/uL | 185,000 (63,500) | 205,500 (69,500) | 177,000 (81,750) |
PT, seconds | 13 (2.30) | 13 (1.6) | 13 (1.7) |
INR, | 1.02 (0.11) | 1.02 (0.05) | 1.02 (0.14) |
aPTT, seconds | 32 (4.5) | 32 (4.5) | 32 (4.5) |
Urea, mg/dL | 44 (47.5) | 43 (24) | 39.5 (20.5) |
Creatinine, mg/dL | 1.2 (0.5) | 1.1 (0.30) | 1 (0.43) |
Strokes | OR | CI 95% | p |
---|---|---|---|
TIA–HS model | |||
Years, y | 1.03 | 0.97–1.10 | 0.295 |
Gender, (f/m) | 1.78 | 0.37–8.59 | 0.473 |
T2DM, (y/n) | 0.82 | 0.15–4.53 | 0.816 |
HTN, (y/n) | 3.01 | 0.32–28.02 | 0.334 |
Ethnicity, (b/w) | 0.85 | 0.11–6.27 | 0.870 |
Erythrocytes, 106/µL | 1.91 | 0.49–7.42 | 0.349 |
Monocyte, % | 1.10 | 0.88–1.38 | 0.415 |
Lymphocytes, % | 1.15 | 1.05–1.26 | 0.004 |
Lymphocyte/Monocyte Ratio (LMR) | 1.18 | 0.81–1.71 | 0.399 |
IS–HS model | |||
Years, y | 1.03 | 0.99–1.08 | 0.176 |
Gender, (f/m) | 0.93 | 0.30–2.91 | 0.900 |
T2DM, (y/n) | 2.79 | 0.77–10.11 | 0.117 |
HTN, (y/n) | 3.19 | 0.65–15.58 | 0.152 |
Ethnicity, (b/w) | 1.05 | 0.23–4.82 | 0.954 |
Erythrocytes, M/mm3 | 3.97 | 1.45–10.89 | 0.007 |
Monocyte, % | 1.03 | 0.85–1.25 | 0.765 |
Lymphocytes, % | 1.11 | 1.03–1.20 | 0.009 |
Lymphocyte/Monocyte Ratio (LMR) | 1.38 | 1.07–1.78 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macacari, B.; da Silva, B.R.; Pereira, M.E.F.; Pereira, L.M.d.J.; Bertochi, A.B.P.; Pinheiro, G.T.; Arietti, M.; Quevedo, A.; Maestá, N.; Orsatti, C.L. Hematological Biomarkers Associated with Stroke Types: A Clinical Cross-Sectional Analysis. J. Vasc. Dis. 2025, 4, 20. https://doi.org/10.3390/jvd4020020
Macacari B, da Silva BR, Pereira MEF, Pereira LMdJ, Bertochi ABP, Pinheiro GT, Arietti M, Quevedo A, Maestá N, Orsatti CL. Hematological Biomarkers Associated with Stroke Types: A Clinical Cross-Sectional Analysis. Journal of Vascular Diseases. 2025; 4(2):20. https://doi.org/10.3390/jvd4020020
Chicago/Turabian StyleMacacari, Beatriz, Beatriz Roberta da Silva, Maria Eduarda Ferreira Pereira, Lívia Maria de Jesus Pereira, Ana Beatriz Perez Bertochi, Gabriela Torres Pinheiro, Marcela Arietti, Ana Quevedo, Nailza Maestá, and Cláudio Lera Orsatti. 2025. "Hematological Biomarkers Associated with Stroke Types: A Clinical Cross-Sectional Analysis" Journal of Vascular Diseases 4, no. 2: 20. https://doi.org/10.3390/jvd4020020
APA StyleMacacari, B., da Silva, B. R., Pereira, M. E. F., Pereira, L. M. d. J., Bertochi, A. B. P., Pinheiro, G. T., Arietti, M., Quevedo, A., Maestá, N., & Orsatti, C. L. (2025). Hematological Biomarkers Associated with Stroke Types: A Clinical Cross-Sectional Analysis. Journal of Vascular Diseases, 4(2), 20. https://doi.org/10.3390/jvd4020020