Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review
Abstract
:1. Introduction
2. Cardiovascular Diseases
2.1. Nonmodifiable and Modifiable Predictors of CVD Events in T2DM
2.2. Diabetic Cardiomyopathy
3. Ischemic Stroke
Nonmodifiable and Modifiable Predictors of Stroke in T2DM
4. Diabetic Kidney Disease
Modifiable and Nonmodifiable Predictors of Diabetic Kidney Disease
5. Diabetic Neuropathy
6. Eye Disease (Diabetic Retinopathy)
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Martin-Gronert, M.; Ozanne, S. Metabolic programming of insulin action and secretion. Diabetes Obes. Metab. 2012, 14, 29–39. [Google Scholar] [CrossRef] [PubMed]
- McKinlay, J.; Marceau, L. US public health and the 21st century: Diabetes mellitus. Lancet 2000, 356, 757–761. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. 1), S14. [Google Scholar] [CrossRef] [Green Version]
- Hemmingsen, B.; Lund, S.S.; Gluud, C.; Vaag, A.; Almdal, T.P.; Wetterslev, J. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Edition, I.; International Diabetes Federation. IDF Diabetes Atlas, 8th ed.; International Diabetes Federation: Brussels, Belgium, 2017. [Google Scholar]
- Stevens, R.J.; Kothari, V.; Adler, A.I.; Stratton, I.M.; Holman, R.R.; United Kingdom Prospective Diabetes Study (UKPDS) Group. The UKPDS risk engine: A model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin. Sci. 2001, 101, 671–679. [Google Scholar] [CrossRef]
- Kothari, V.; Stevens, R.J.; Adler, A.I.; Stratton, I.M.; Manley, S.E.; Neil, H.A.; Holman, R.R. UKPDS 60: Risk of stroke in type 2 diabetes estimated by the UK Prospective Diabetes Study risk engine. Stroke 2002, 33, 1776–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.; Bilous, R.; Lamb, E.; Coresh, J. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Yang, X.; So, W.-Y.; Kong, A.P.; Ho, C.-S.; Lam, C.W.; Stevens, R.J.; Lyu, R.R.; Yin, D.D.; Cockram, C.S.; Tong, P.C. Development and validation of stroke risk equation for Hong Kong Chinese patients with type 2 diabetes: The Hong Kong Diabetes Registry. Diabetes Care 2007, 30, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Yang, C.-P.; Li, C.-I.; Liu, C.-S.; Chen, C.-C.; Lin, W.-Y.; Hwang, K.-L.; Yang, S.-Y.; Li, T.-C. Visit-to-visit variability of fasting plasma glucose as predictor of ischemic stroke: Competing risk analysis in a national cohort of Taiwan Diabetes Study. BMC Med. 2014, 12, 165. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-C.; Wang, H.-C.; Li, C.-I.; Liu, C.-S.; Lin, W.-Y.; Lin, C.-H.; Yang, S.-Y.; Lin, C.-C. Establishment and validation of a prediction model for ischemic stroke risks in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2018, 138, 220–228. [Google Scholar] [CrossRef]
- Lin, C.-C.; Li, C.-I.; Liu, C.-S.; Lin, W.-Y.; Lin, C.-H.; Yang, S.-Y.; Li, T.-C. Development and validation of a risk prediction model for end-stage renal disease in patients with type 2 diabetes. Sci. Rep. 2017, 7, 10177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, S.; Lim, S.C.; Zhang, X.; Zhou, S.; Yeoh, L.Y.; Liu, Y.L.; Tavintharan, S.; Sum, C.F. Development and validation of a predictive model for Chronic Kidney Disease progression in Type 2 Diabetes Mellitus based on a 13-year study in Singapore. Diabetes Res. Clin. Pract. 2017, 123, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhong, Y.; Wu, J.; Zhang, G.; Chen, L.; Guan, P.; Huang, D.; Liu, L. Multivariable Logistic Regression And Back Propagation Artificial Neural Network To Predict Diabetic Retinopathy. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osei, K.; Gaillard, T. Disparities in cardiovascular disease and type 2 diabetes risk factors in blacks and whites: Dissecting racial paradox of metabolic syndrome. Front. Endocrinol. 2017, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Stevens, R.J.; Coleman, R.L.; Adler, A.I.; Stratton, I.M.; Matthews, D.R.; Holman, R.R. Risk factors for myocardial infarction case fatality and stroke case fatality in type 2 diabetes: UKPDS 66. Diabetes Care 2004, 27, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Angiolillo, D.J. Antiplatelet therapy in diabetes: Efficacy and limitations of current treatment strategies and future directions. Diabetes Care 2009, 32, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Luitse, M.J.; Biessels, G.J.; Rutten, G.E.; Kappelle, L.J. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 2012, 11, 261–271. [Google Scholar] [CrossRef]
- Haratz, S.; Tanne, D. Diabetes, hyperglycemia and the management of cerebrovascular disease. Curr. Opin. Neurol. 2011, 24, 81–88. [Google Scholar] [CrossRef]
- Gerstein, H.C. Dysglycaemia as a cause of cardiovascular outcomes. Nat. Rev. Endocrinol. 2015, 11, 508–510. [Google Scholar] [CrossRef]
- Paneni, F.; Beckman, J.A.; Creager, M.A.; Cosentino, F. Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur. Heart J. 2013, 34, 2436–2443. [Google Scholar] [CrossRef]
- Collaboration, E.R.F. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, E.R.F. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lim, S.; Yeoh, L.; Su, C.; Tai, B.; Low, S.; Fun, S.; Tavintharan, S.; Chia, K.; Tai, E. Ethnic disparities in risk of cardiovascular disease, end-stage renal disease and all-cause mortality: A prospective study among Asian people with Type 2 diabetes. Diabet. Med. 2016, 33, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvin, E.; Steffes, M.W.; Zhu, H.; Matsushita, K.; Wagenknecht, L.; Pankow, J.; Coresh, J.; Brancati, F.L. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 2010, 362, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Cavender, M.A.; Scirica, B.M.; Raz, I.; Steg, P.G.; McGuire, D.K.; Leiter, L.A.; Hirshberg, B.; Davidson, J.; Cahn, A.; Mosenzon, O. Cardiovascular outcomes of patients in SAVOR-TIMI 53 by baseline hemoglobin A1c. Am. J. Med. 2016, 129, 340.e341–340.e348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marfella, R.; Sasso, F.C.; Siniscalchi, M.; Paolisso, P.; Rizzo, M.R.; Ferraro, F.; Stabile, E.; Sorropago, G.; Calabrò, P.; Carbonara, O. Peri-procedural tight glycemic control during early percutaneous coronary intervention is associated with a lower rate of in-stent restenosis in patients with acute ST-elevation myocardial infarction. J. Clin. Endocrinol. Metab. 2012, 97, 2862–2871. [Google Scholar] [CrossRef] [Green Version]
- Sardu, C.; Barbieri, M.; Balestrieri, M.L.; Siniscalchi, M.; Paolisso, P.; Calabrò, P.; Minicucci, F.; Signoriello, G.; Portoghese, M.; Mone, P. Thrombus aspiration in hyperglycemic ST-elevation myocardial infarction (STEMI) patients: Clinical outcomes at 1-year follow-up. Cardiovasc. Diabetol. 2018, 17, 152. [Google Scholar] [CrossRef] [Green Version]
- Choy, S.; Kjellsson, M.; Karlsson, M.; de Winter, W. Weight-HbA1c-insulin-glucose model for describing disease progression of type 2 diabetes. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ghadzi, S.M.S. Pharmacometrics Modelling in Type 2 Diabetes Mellitus: Implications on Study Design and Diabetes Disease Progression; Acta Universitatis Upsaliensis: Uppsala, Swedish, 2017. [Google Scholar]
- Gupta, R.; Wood, D.A. Primary prevention of ischaemic heart disease: Populations, individuals, and health professionals. Lancet 2019, 394, 685–696. [Google Scholar] [CrossRef]
- Omland, T.; Sabatine, M.S.; Jablonski, K.A.; Rice, M.M.; Hsia, J.; Wergeland, R.; Landaas, S.; Rouleau, J.L.; Domanski, M.J.; Hall, C. Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: The PEACE Trial. J. Am. Coll. Cardiol. 2007, 50, 205–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, G.; Landi, A.; Barutta, F.; Ghezzo, G.; Baldin, C.; Spadafora, L.; Schimmenti, A.; Prinzis, T.; Perin, P.C.; Gruden, G. N-terminal probrain natriuretic peptide is a stronger predictor of cardiovascular mortality than C-reactive protein and albumin excretion rate in elderly patients with type 2 diabetes: The Casale Monferrato population-based study. Diabetes Care 2013, 36, 2677–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarnow, L.; Gall, M.-A.; Hansen, B.; Hovind, P.; Parving, H.-H. Plasma N-terminal pro-B-type natriuretic peptide and mortality in type 2 diabetes. Diabetologia 2006, 49, 2256–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerstein, H.C.; Paré, G.; McQueen, M.J.; Haenel, H.; Lee, S.F.; Pogue, J.; Maggioni, A.P.; Yusuf, S.; Hess, S. Identifying novel biomarkers for cardiovascular events or death in people with dysglycemia. Circulation 2015, 132, 2297–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillis, G.S.; Welsh, P.; Chalmers, J.; Perkovic, V.; Chow, C.K.; Li, Q.; Jun, M.; Neal, B.; Zoungas, S.; Poulter, N. The relative and combined ability of high-sensitivity cardiac troponin T and N-terminal pro-B-type natriuretic peptide to predict cardiovascular events and death in patients with type 2 diabetes. Diabetes Care 2014, 37, 295–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Raz, I.; Cavender, M.A.; Im, K.; Mosenzon, O.; Udell, J.A.; Hirshberg, B.; Pollack, P.S. Prognostic implications of biomarker assessments in patients with type 2 diabetes at high cardiovascular risk: A secondary analysis of a randomized clinical trial. JAMA Cardiol. 2016, 1, 989–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scirica, B.M. Use of biomarkers in predicting the onset, monitoring the progression, and risk stratification for patients with type 2 diabetes mellitus. Clin. Chem. 2017, 63, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Xie, G.; Ni, Y.; Liu, T.; Yang, M.; Wei, H.; Jia, W.; Ji, G. Serum metabolite signatures of type 2 diabetes mellitus complications. J. Proteome Res. 2015, 14, 447–456. [Google Scholar] [CrossRef]
- Liu, J.; Semiz, S.; van der Lee, S.J.; van der Spek, A.; Verhoeven, A.; van Klinken, J.B.; Sijbrands, E.; Harms, A.C.; Hankemeier, T.; van Dijk, K.W. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics 2017, 13, 104. [Google Scholar] [CrossRef] [Green Version]
- Rosca, M.G.; Hoppel, C.L. Mitochondria in heart failure. Cardiovasc. Res. 2010, 88, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Montaigne, D.; Marechal, X.; Coisne, A.; Debry, N.; Modine, T.; Fayad, G.; Potelle, C.; El Arid, J.-M.; Mouton, S.; Sebti, Y. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 2014, 130, 554–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marciniak, C.; Marechal, X.; Montaigne, D.; Neviere, R.; Lancel, S. Cardiac contractile function and mitochondrial respiration in diabetes-related mouse models. Cardiovasc. Diabetol. 2014, 13, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, C.-R.; Clarke, K.; Levelt, E. Metabolic remodelling in diabetic cardiomyopathy. Cardiovasc. Res. 2017, 113, 422–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, D.H.; Wang, Z.V. Glucose metabolism in cardiac hypertrophy and heart failure. J. Am. Heart Assoc. 2019, 8, e012673. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef]
- Gambardella, J.; Lombardi, A.; Santulli, G. Metabolic Flexibility of Mitochondria Plays a Key Role in Balancing Glucose and Fatty Acid Metabolism in the Diabetic Heart. Diabetes 2020, 69, 2054–2057. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, Z.; Zheng, C.; Wintergerst, K.A.; Keller, B.B.; Cai, L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nat. Rev. Cardiol. 2020, 17, 585–607. [Google Scholar] [CrossRef]
- Zinman, B.; Lachin, J.M.; Inzucchi, S.E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2016, 374, 1094. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.Z.I.; Yeasmin, F.; Rabi, D.M.; Ronksley, P.E.; Turin, T.C. Predicting the risk of stroke among patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. BMJ Open 2019, 9, e025579. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.; Sheikh Ghadzi, S.M.; Abidin, N.E.; Tangiisuran, B.; Zainal, H.; Looi, I.; Ibrahim, K.A.; Sidek, N.N.; Wei, L.K.; Keng Yee, L. Gender Differences and Risk Factors of Recurrent Stroke in Type 2 Diabetic Malaysian Population with History of Stroke: The Observation from Malaysian National Neurology Registry. J. Diabetes Res. 2019, 2019, 1794267. [Google Scholar] [CrossRef] [Green Version]
- Albitar, O.; Harun, S.N.; Abidin, N.E.; Tangiisuran, B.; Zainal, H.; Looi, I.; Ibrahim, K.A.; Sidek, N.N.; Loo, K.W.; Lee, K.Y. Predictors of Recurrent Ischemic Stroke in Obese Patients with Type 2 Diabetes Mellitus: A Population-based Study. J. Stroke Cerebrovasc. Dis. 2020, 29, 105173. [Google Scholar] [CrossRef] [PubMed]
- Shou, J.; Zhou, L.; Zhu, S.; Zhang, X. Diabetes is an independent risk factor for stroke recurrence in stroke patients: A meta-analysis. J. Stroke Cerebrovasc. Dis. 2015, 24, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Capes, S.E.; Hunt, D.; Malmberg, K.; Pathak, P.; Gerstein, H.C. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: A systematic overview. Stroke 2001, 32, 2426–2432. [Google Scholar] [CrossRef] [Green Version]
- Elhefnawy, M.E.; Sheikh Ghadzi, S.M.; Tangiisuran, B.; Zainal, H.; Looi, I.; Ibrahim, K.A.; Sidek, N.N.; Loo, K.W.; Yee Lee, K.; Abdul Aziz, Z.; et al. Population-based study comparing predictors of ischemic stroke recurrence after index ischemic stroke in non-elderly adults with or without diabetes. Int. J. Gen. Med. 2021, 14, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Bangen, K.J.; Gu, Y.; Gross, A.L.; Schneider, B.C.; Skinner, J.C.; Benitez, A.; Sachs, B.C.; Shih, R.; Sisco, S.; Schupf, N. Relationship between type 2 diabetes mellitus and cognitive change in a multiethnic elderly cohort. J. Am. Geriatr. Soc. 2015, 63, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Dutton, G.R.; Lewis, C.E. The Look AHEAD Trial: Implications for lifestyle intervention in type 2 diabetes mellitus. Prog. Cardiovasc. Dis. 2015, 58, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Adler, A.I.; Stevens, R.J.; Manley, S.E.; Bilous, R.W.; Cull, C.A.; Holman, R.R.; Group, U. Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003, 63, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Elnaem, M.H.; Mansour, N.O.; Nahas, A.F.; Baraka, M.A.; Elkalmi, R.; Cheema, E. Renal Outcomes Associated with the Use of Non-Insulin Antidiabetic Pharmacotherapy: A Review of Current Evidence and Recommendations. Int. J. Gen. Med. 2020, 13, 1395. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. Jama 2015, 313, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Matsushita, K.; Woodward, M.; Bilo, H.J.; Chalmers, J.; Heerspink, H.J.L.; Lee, B.J.; Perkins, R.M.; Rossing, P.; Sairenchi, T. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: A meta-analysis. Lancet 2012, 380, 1662–1673. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Muntner, P.; Lloyd, A.; Manns, B.J.; Klarenbach, S.; Pannu, N.; James, M.T.; Hemmelgarn, B.R.; Network, A.K.D. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: A population-level cohort study. Lancet 2012, 380, 807–814. [Google Scholar] [CrossRef]
- American Diabetes Association. 11. Microvascular complications and foot care: Standards of medical care in diabetes—2019. Diabetes Care 2019, 42 (Suppl. 1), S124–S138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.L.; De Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. Diabetic nephropathy: Diagnosis, prevention, and treatment. Diabetes Care 2005, 28, 164–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, M.S.; Shearer, J. Metabolomics and type 2 diabetes: Translating basic research into clinical application. J. Diabetes Res. 2016, 2016, 3898502. [Google Scholar] [CrossRef] [Green Version]
- Welsh, P.; Woodward, M.; Hillis, G.S.; Li, Q.; Marre, M.; Williams, B.; Poulter, N.; Ryan, L.; Harrap, S.; Patel, A. Do cardiac biomarkers NT-proBNP and hsTnT predict microvascular events in patients with type 2 diabetes? Results from the ADVANCE trial. Diabetes Care 2014, 37, 2202–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moxey, P.; Gogalniceanu, P.; Hinchliffe, R.; Loftus, I.; Jones, K.; Thompson, M.; Holt, P. Lower extremity amputations—A review of global variability in incidence. Diabet. Med. 2011, 28, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lu, J.; Jing, Y.; Tang, S.; Zhu, D.; Bi, Y. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis. Ann. Med. 2017, 49, 106–116. [Google Scholar] [CrossRef]
- Hasan, R.; Firwana, B.; Elraiyah, T.; Domecq, J.P.; Prutsky, G.; Nabhan, M.; Prokop, L.J.; Henke, P.; Tsapas, A.; Montori, V.M. A systematic review and meta-analysis of glycemic control for the prevention of diabetic foot syndrome. J. Vasc. Surg. 2016, 63, 22S–28S.e22. [Google Scholar] [CrossRef] [Green Version]
- Khawaja, N.; Abu-Shennar, J.; Saleh, M.; Dahbour, S.S.; Khader, Y.S.; Ajlouni, K.M. The prevalence and risk factors of peripheral neuropathy among patients with type 2 diabetes mellitus; the case of Jordan. Diabetol. Metab. Syndr. 2018, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Paisey, R.; Darby, T.; George, A.; Waterson, M.; Hewson, P.; Paisey, C.; Thomson, M. Prediction of protective sensory loss, neuropathy and foot ulceration in type 2 diabetes. BMJ Open Diabetes Res. Care 2016, 4, e000163. [Google Scholar] [CrossRef] [Green Version]
- Pai, Y.-W.; Lin, C.-H.; Lin, S.-Y.; Lee, I.-T.; Chang, M.-H. Reconfirmation of newly discovered risk factors of diabetic peripheral neuropathy in patients with type 2 diabetes: A case-control study. PLoS ONE 2019, 14, e0220175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiani, J.; Moghimbeigi, A.; Azizkhani, H.; Kosarifard, S. The prevalence and associated risk factors of peripheral diabetic neuropathy in Hamedan, Iran. Arch. Iran. Med. 2013, 16, 17–19. [Google Scholar] [PubMed]
- Fitri, A.; Sjahrir, H.; Bachtiar, A.; Ichwan, M.; Fitri, F.I.; Rambe, A.S. Predictive model of diabetic polyneuropathy severity based on vitamin D level. Open Access Maced. J. Med. Sci. 2019, 7, 2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, M.; Moghimbeigi, A.; Kiani, J.; Mahjub, H.; Faradmal, J. Diabetic peripheral neuropathy class prediction by multicategory support vector machine model: A cross-sectional study. Epidemiol. Health 2016, 38, e2016011. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.Y.; Lee, B.; Yoo, W.S.; Park, J.W.; Hyun, J.K. Prediction of Diabetic Sensorimotor Polyneuropathy Using Machine Learning Techniques. J. Clin. Med. 2021, 10, 4576. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Polonsky, K.S.; Larsen, P.R.; Kronenberg, H.M. Williams Textbook of Endocrinology E-Book; Elsevier Health Sciences: Philadelphia, PA, USA, 2015. [Google Scholar]
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic retinopathy: A position statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Group, U.P.D.S. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998, 317, 703–713. [Google Scholar]
- Klein, R. Hyperglycemie and microvascular and macrovascular disease in diabetes. Diabetes Care 1995, 18, 258–268. [Google Scholar] [CrossRef]
- Estacio, R.O.; McFarling, E.; Biggerstaff, S.; Jeffers, B.W.; Johnson, D.; Schrier, R.W. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM. Am. J. Kidney Dis. 1998, 31, 947–953. [Google Scholar] [CrossRef]
- Leske, M.C.; Wu, S.-Y.; Hennis, A.; Hyman, L.; Nemesure, B.; Yang, L.; Schachat, A.P.; Group, B.E.S. Hyperglycemia, blood pressure, and the 9-year incidence of diabetic retinopathy: The Barbados Eye Studies. Ophthalmology 2005, 112, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Davis, M.D.; Danis, R.P.; Lovato, J.F.; Perdue, L.H.; Greven, C.; Genuth, S.; Goff, D.C.; Leiter, L.A.; Ismail-Beigi, F. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: The Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study. Ophthalmology 2014, 121, 2443–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Echouffo-Tcheugui, J.B.; Zhao, S.; Brock, G.; Matsouaka, R.A.; Kline, D.; Joseph, J.J. Visit-to-visit glycemic variability and risks of cardiovascular events and all-cause mortality: The ALLHAT study. Diabetes Care 2019, 42, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cichosz, S.L.; Johansen, M.D.; Hejlesen, O. Toward big data analytics: Review of predictive models in management of diabetes and its complications. J. Diabetes Sci. Technol. 2016, 10, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Müller-Riemenschneider, F.; Holmberg, C.; Rieckmann, N.; Kliems, H.; Rufer, V.; Müller-Nordhorn, J.; Willich, S.N. Barriers to routine risk-score use for healthy primary care patients: Survey and qualitative study. Arch. Intern. Med. 2010, 170, 719–724. [Google Scholar] [CrossRef]
Cardiovascular Disease Predictors [6,7,9,10,15,16] | Ischemic Stroke Predictors [7,9,11,16] | Diabetic Kidney Disease Predictors [12,13] | Diabetic Neuropathy Predictors | Diabetic Retinopathy Predictors [14] |
---|---|---|---|---|
Nonmodifiable predictors | ||||
Age Age at diagnosis of diabetes Ethnicity Gender | Age Age at diagnosis of diabetes Gender Previous stroke | Age Age at diagnosis of diabetes Gender | No prediction models | Family history of diabetes |
Modifiable predictors | ||||
HbA1c Antidiabetic Duration of diabetes Fasting blood glucose variation UACR Smoking status Presence of atrial fibrillation Presence of microalbuminuria SBP White blood cell count TC LDL HDL | HbA1c UACR Antidiabetic History of arterial embolism history History of atrial fibrillation Fasting blood glucose variation Cardiovascular medication Duration of diabetes History of coronary heart disease TC-to-HDL ratio Smoking status at diagnosis of diabetes. SBP Thrombosis history White blood cell count | HbA1c LDL SBP UACR TC Albuminuria Antidiabetic Antihyperlipidemic Antihypertensive Serum creatinine Retinopathy eGFR | Waist-to-hip ratio HbA1c Duration of diabetes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhefnawy, M.E.; Ghadzi, S.M.S.; Noor Harun, S. Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review. J. Vasc. Dis. 2022, 1, 13-23. https://doi.org/10.3390/jvd1010003
Elhefnawy ME, Ghadzi SMS, Noor Harun S. Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review. Journal of Vascular Diseases. 2022; 1(1):13-23. https://doi.org/10.3390/jvd1010003
Chicago/Turabian StyleElhefnawy, Marwa Elsaeed, Siti Maisharah Sheikh Ghadzi, and Sabariah Noor Harun. 2022. "Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review" Journal of Vascular Diseases 1, no. 1: 13-23. https://doi.org/10.3390/jvd1010003
APA StyleElhefnawy, M. E., Ghadzi, S. M. S., & Noor Harun, S. (2022). Predictors Associated with Type 2 Diabetes Mellitus Complications over Time: A Literature Review. Journal of Vascular Diseases, 1(1), 13-23. https://doi.org/10.3390/jvd1010003