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Abstract: Early detection of type 2 diabetes mellitus (T2DM) complications is essential to prevent
disability and death. Risk prediction models are tools to estimate the probability that an individual
with specific risk factors will develop a future condition within a certain time period. A predictive
model that incorporates time to quantify the risk of T2DM complications such as cardiovascular
diseases (CVD) event is still lacking. Well-established and validated predictive models of T2DM
complications are vital to stratify patients based on their risks; thus, individualization therapy could
be optimized. New approaches (e.g., the parametric approach) are needed in developing predictive
models of T2DM complications by incorporating new and time-varying predictors that may improve
the existing models’ predictive ability. This review aimed (1) to summarize the reported predictors for
the five main complications of T2DM, which include cardiovascular diseases, ischemic stroke, diabetic
nephropathy, diabetic neuropathy, and diabetic retinopathy, and (2) to highlight the persistent need
for future risk score models as screening tools for the early prevention of T2DM complications.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resis-
tance [1] and is considered to be the fourth-leading cause of death in high-income countries,
with a 2-fold additional risk of mortality and 2- to 4-fold rise in the risk of cardiovascu-
lar disease [2]. According to the 2020 American Diabetes Association (ADA) guidelines,
patients with T2DM are defined by the presence of a fasting plasma glucose (FPG) level
equal to 126 mg/dL (7.0 mmol/L) or higher, or a 2 h plasma glucose level equal 200 mg/dL
(11.1 mmol/L) or higher after a 75 g oral glucose tolerance test, and/or a random plasma
glucose equal to 200 mg/dL (11.1 mmol/L) or higher in patients with classic hyperglycemia
or hyperglycemic crisis symptoms, and/or a hemoglobin A1c (HbA1c) level equal 6.5%
(48 mmol/mol) or higher [3].

Macrovascular complications of T2DM include coronary artery disease, peripheral
arterial disease, and stroke, whereas T2DM microvascular complications include diabetic
retinopathy and nephropathy [4], and these complications may be present at diagnosis
in people with T2DM [4]. Therefore, early detection is essential to prevent disability and
death [5]. Risk-prediction models are tools to estimate the probability that an individual
with specific risk factors will develop a future condition, such as stroke, within a certain
period of time. This review aimed to summarize the reported predictors for the five
main complications of T2DM, which include cardiovascular diseases, ischemic stroke,
diabetic nephropathy, diabetic neuropathy, and diabetic retinopathy (Table 1) [6–14], and to
highlight the persistent need for future risk score or predictive models as screening tools
for early prevention of T2DM complications.
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Table 1. Reported predictors of T2DM complications.

Cardiovascular
Disease Predictors

[6,7,9,10,15,16]

Ischemic Stroke
Predictors
[7,9,11,16]

Diabetic Kidney
Disease Predictors

[12,13]

Diabetic Neuropathy
Predictors

Diabetic Retinopathy
Predictors [14]

Nonmodifiable predictors

Age
Age at diagnosis of
diabetes
Ethnicity
Gender

Age
Age at diagnosis of
diabetes
Gender
Previous stroke

Age
Age at diagnosis of
diabetes
Gender

No prediction models Family history of
diabetes

Modifiable predictors

HbA1c
Antidiabetic
Duration of diabetes
Fasting blood glucose
variation
UACR
Smoking status
Presence of atrial
fibrillation
Presence of
microalbuminuria
SBP
White blood cell count
TC
LDL
HDL

HbA1c
UACR
Antidiabetic
History of arterial
embolism history
History of atrial
fibrillation
Fasting blood glucose
variation
Cardiovascular
medication
Duration of diabetes
History of coronary
heart disease
TC-to-HDL ratio
Smoking status at
diagnosis of diabetes.
SBP
Thrombosis history
White blood cell count

HbA1c
LDL
SBP
UACR
TC
Albuminuria
Antidiabetic
Antihyperlipidemic
Antihypertensive
Serum creatinine
Retinopathy
eGFR

Waist-to-hip ratio
HbA1c
Duration of diabetes

HbA1c: glycated hemoglobin, eGFR: estimated glomerular filtration rate, LDL: low-density lipoprotein, HDL:
high-density lipoprotein cholesterol, TC: total cholesterol, SBP: systolic blood pressure, UACR: urine albumin-to-
creatinine ratio.

2. Cardiovascular Diseases

The most common and classic types of CVD associated with diabetes are coronary
heart disease, cerebrovascular disease, peripheral artery disease, and congestive heart fail-
ure. Cardiovascular complications in T2DM are commonly associated with arteriosclerosis
incidence, which is greater in people with diabetes than those without diabetes. Patients
with diabetes have an increased risk of atherothrombotic events, attributed in part to
platelet dysfunction [17]. The increased incidence of CVD events in patients with T2DM is
associated with a high blood glucose level, insulin resistance, low-grade inflammation, and
activation of the coagulation cascade [18,19], which is collectively considered the largest
cause of both morbidity and mortality for people with diabetes [20]. CVD complications in
T2DM are commonly manifested as specific events such as hospitalizations, procedures,
and deaths from acute coronary syndromes, myocardial infarction, and ischemic and
hemorrhagic stroke, as well as sudden death [21].

2.1. Nonmodifiable and Modifiable Predictors of CVD Events in T2DM

Systematic reviews indicated that the relative risk of CVD events among diabetics is
between 1.6 and 2.6, while the relative risk is surprisingly higher among diabetic women
and those at a younger age [22,23]. Risks of cardiovascular diseases in patients with T2DM
vary considerably among different ethnic groups [15,24] (Table 1).

Each standard deviation (SD) in fasting blood glucose, HbA1c, or 2-h glucose test
results is associated with 6–20% increased risk of CVD events [25]. Many studies have
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illustrated that the risk of cardiovascular events increases in patients with an increased
HbA1C [26–29]. However, most of the previous studies used a cross-sectional value or
baseline blood glucose value to determine the risk of CVD complication. Blood glucose
is time-varying, and the progression rate over time could be affected by many covariates,
including changes in weight, the dose of antidiabetic drugs, and the patient’s compliance
with lifestyle and diet [30]. The impact of the progression rate of blood glucose over time
on the risk of CVD events may need to be investigated [31]. Moreover, patient care directed
at controlling the covariates affecting the blood glucose progression rate and its role in
reducing CVD events’ risk over time should be investigated.

Longer duration of diabetes increases the risk of CVD complication in T2DM. This
may suggest early prevention of diabetes itself may play an important role in reducing the
risk [32]. According to the International Diabetes Federation (IDF), CVD risk in diabetics is
also strongly affected by smoking and low physical activity levels [5]. These risk estimates
were calculated based on the duration of diabetes, age at diagnosis of diabetes, current age,
gender, ethnicity, smoking status, presence or absence of atrial fibrillation, and microalbu-
minuria or its severity. Moreover, factors such as HbA1c, systolic blood pressure (SBP),
variations in fasting blood glucose, the use of anti-diabetic medication, urine albumin-to-
creatinine ratio (UACR), white blood cell count, total cholesterol, low-density lipoprotein,
and high-density lipoprotein cholesterol collectively were found to be associated with risk
of CVD in T2DM [6,7,9,10,16]. An elevated concentration of natriuretic peptides [33–38]
and high-sensitivity cardiac troponin [39] in patients with T2DM have been associated with
increased cardiovascular risk, particularly heart failure. However, none of the previous
predictive models incorporated these new biomarkers during the model building.

Metabolomics is a growing field in personalized medicine. Although notable metabolic
differences were revealed between high blood pressure and coronary heart disease in T2DM
patients [40], prediction models for CVD complications in T2DM that include metabolomics-
based markers are still lacking (Figure 1). This area opens new opportunities for prediction
of T2DM that may go beyond the classical biochemistry assays [41].
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2.2. Diabetic Cardiomyopathy

Cardiomyopathy is one of the reported CVD complications of diabetes. In particular,
the metabolic abnormalities of mitochondrial bioenergetics in diabetic hearts contribute
to the development of impaired contractility observed in diabetic-associated cardiomy-
opathies [42–44]. A healthy heart obtains energy from the generation of adenosine triphos-
phate (ATP) in mitochondria and the oxidation process of substrates such as free fatty
acids (FFA), glucose lactate, ketone bodies, and some other amino acids [45]. In fact, the
myocardium has the capability to be highly flexible in selecting substrates that are suitable
and available in order to ensure efficient pumping function [46]. Nevertheless, in T2DM, the
reduction in insulin sensitivity leads to lipolysis, which increases the circulating FFA. The
decrease in myocardium insulin-dependent glucose uptake results in ATP production that
only relies on mitochondrial FFA oxidation [47]. This may impair the metabolic flexibility
of the myocardium, which has been strongly linked to cardiac damage and dysfunction [48].
Previous animal studies showed the impaired ability of the myocardium to utilize glucose
caused diminished glucose uptake and glucose oxidative capability, which eventually led to
energetic efficiency [48,49]. Restoration of glucose uptake may lead to an excessive level of
non-catabolized glucose levels within cardiomyocytes [48], and may result in glucotoxicity.
The excessive cardiomyocyte non-catabolized glucose or glucotoxicity have been suggested
to explain the cardiac dysfunction or cardiomyopathy in diabetes.

The use of certain antidiabetic drugs that enhance the restoration of glucose in car-
diomyocytes has been hypothesized to lead to CVD complications in T2DM [45]. Neverthe-
less, the use of newer antidiabetics such as SGLT2 inhibitors have been shown to have a safe
effect on CV [50]. Incorporating pharmacokinetic and pharmacodynamic parameters of this
antidiabetic on the risk of diabetic cardiomyopathy development may suggest an optimal
dose response relationship and its optimal dosing to reduce the risk. The role of biomarkers
such as FFA or ketone bodies as a predictor of T2DM CVD complications may need to be
investigated further in the clinical setting to confirm the findings of the animal studies. The
future predictive model of T2DM complication development may also need to incorporate
medications such as calcium channel blockers and statins to confirm their possible roles in
bioenergetic modifications in predicting the risk of diabetic cardiomyopathy [45].

3. Ischemic Stroke

Stroke is considered as one of the cerebrovascular accidents and is the third-leading
cause of disability and accounted for over 6 million deaths worldwide in 2015 [51]. Diabetes
is associated with an increased risk of subsequent strokes [52,53], greater functional dis-
ability, longer hospital stays, and increased mortality [54–56]. A higher risk of developing
stroke-related dementia has also been reported in the diabetic population [57].

Nonmodifiable and Modifiable Predictors of Stroke in T2DM

T2DM patients possess about a four times higher risk for stroke, and this popu-
lation usually has additional risk factors for stroke such as obesity, hypertension, and
dyslipidemia, which multiply the vascular risk [58]. Four-stroke prediction models were
developed for patients with T2DM [7,9,11,16], and 18 variables were proved to be asso-
ciated with ischemic stroke in patients with T2DM. The UK Prospective Diabetes Study
Risk 60 (UKPDS60) [7] model concluded that there were seven ischemic stroke predictors
in diabetic patients: duration of diabetes, female gender, age at diagnosis of diabetes,
atrial fibrillation, SBP, total cholesterol (TC) to high-density lipoprotein (HDL) ratio, and
smoking status at diagnosis of diabetes. In the extended UKPDS60 model; the UK Prospec-
tive Diabetes Study Risk 66 (UKPDS66) [16] model included five risk factors of stroke
fatality that included gender, SBP, HbA1c, previous stroke, and white blood cell count.
Another stroke-predictive model was developed among the Hong Kong population with
diabetes [9], and reported four significant predictors of an initial stroke attack: age, history
of coronary heart disease (CHD), HbA1c, and albumin-to-creatinine ratio. A predictive
model of stroke in Taiwanese T2DM patients [11] reported 14 predictors similar to those
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aforementioned found in the previous stroke predictive models in T2DM patients, and
additional significant risk factors also were reported. These factors were: variations in
fasting blood glucose readings, arterial embolism and thrombosis, the use of antidiabetic
medication, and the use of cardiovascular medication.

Nevertheless, all of these predictive models were published in the 2000s, and the
database used to develop the models, especially for antidiabetic medications, was published
before 2003. Thus, antidiabetic medications such as sodium-glucose cotransporter-2 (SGLT2)
inhibitors, dipeptidyl peptidase-4 (DPP4) inhibitors, and glucagon-like peptide-1 (GLP1)
(including most recently approved drug, semaglutide), which were introduced to the
market later, may not be included into models as possible covariates to explain the risk of
stroke in the T2DM population (Figure 1).

4. Diabetic Kidney Disease

The development and progression of diabetic nephropathy occur through four stages:
microalbuminuria, macroalbuminuria, persistently elevated serum creatinine or renal
replacement therapy (RRT), and death. Adler et al. [59] concluded that the rate of mi-
croalbuminuria progression from the diagnosis of diabetes occurred at 2.0% per year. In
comparison, the progression rate from microalbuminuria to macroalbuminuria was re-
ported at 2.8% per year. The progression rate from macroalbuminuria to elevated serum
creatinine (≥175 micromole/L) or RRT was 2.3% per year. Furthermore, the prevalence
of microalbuminuria, macroalbuminuria, and elevated serum creatinine or RRT within
10 years after the T2DM diagnosis were 24.9%, 5.3%, and 0.8%, respectively.

Modifiable and Nonmodifiable Predictors of Diabetic Kidney Disease

The significant reported predictors of chronic kidney disease (CKD) in T2DM patients
include age, gender, age at diabetes onset, the use of antihypertensive medication, level
of serum creatinine, HbA1c, systolic blood pressure, diabetic retinopathy, eGFR, urinary
albumin-to-creatinine ratio (UACR), albuminuria, the use of antidiabetic medications, LDL,
total cholesterol level, and the use of antihyperlipidemic medication [12,13,60]. Accord-
ing to the IDF recommendations [5], maintaining blood glucose and blood pressure at
near-normal levels can greatly reduce the risk of CKD. Increased concentrations of uri-
nary albumin indicate the presence of CKD [8,61]. In people without CKD, UACR is
typically 10 mg/g. However, even smaller increases in urinary albumin between 10 mg/g
and 30 mg/g have been associated with the progression of renal disease and increased
mortality [62,63]. For CKD detection, the ADA recommends [64] screening at least once a
year by measuring urinary albumin, e.g., spot UACR and eGFR in all patients with T2DM,
and in all patients with comorbid hypertension.

Elevated serum lipids and smoking also play roles as risk factors for CKD in T2DM
patients. Treating dyslipidemia (LDL cholesterol < 100 mg/dL) is not only an effective
strategy in preventing the development of microalbuminuria, but also in delaying the
progression to more advanced stages of nephropathy in these patients [65].

It was found that 13 urinary metabolites were significantly reduced in chronic kidney
disease complications in T2DM patients [66]; nevertheless, as mentioned for CVD complica-
tions, prediction models for CKD complications in T2DM that include metabolomics-based
markers are still lacking. Moreover, elevated natriuretic peptides and high-sensitivity
troponin T (hsTnT) levels have been associated with an increase in the risk of T2DM
microvascular complication, particularly nephropathy [67]. Incorporating these biomark-
ers into a future predictive model of diabetic nephropathy is needed to improve T2DM
complication prediction (Figure 1).

5. Diabetic Neuropathy

The most common form of diabetes-related neuropathy is diabetic peripheral neu-
ropathy (DPN). DPN mostly affects the distal nerves of the feet. Lower-limb amputation in



J. Vasc. Dis. 2022, 1 18

people with diabetes is 10 to 20 times higher than those without diabetes [68], and more
common among people with T2DM than those with type 1 diabetes [69].

Intensive blood glucose management can lead to a 35% reduction of amputation
risk compared to less intensive glycemic management [70]. Diabetic neuropathy was
significantly associated with duration of diabetes, dyslipidemia, the occurrence of diabetic
retinopathy, and cardiovascular disease. Other risk factors include being unemployed, old
age, poor glycemic control, and hypertension [71,72].. Furthermore, a large-scale study that
examined the major determinants associated with the risk of DPN in adult patients with
T2DM demonstrated that the presence of moderate and severe elevation of albuminuria
and FPG-CV were important predictors of DPN [73]. In another study, DPN in T2DM
patients was highly associated with age, duration of diabetes, body weight, gender, history
of foot ulcers, and patient’s education [74].

Nevertheless, most of the developed DPN prediction models focused on predict-
ing DPN severity degree among T2DM patients who were already prediagnosed with
DPN [75–77]. Less than one-third of physicians can detect diabetes-related peripheral neu-
ropathy manifestations, even when they are symptomatic [78]. Therefore, establishment of
prediction models for DPN in these patients is highly recommended.

6. Eye Disease (Diabetic Retinopathy)

Diabetic retinopathy is a highly specific vascular complication of diabetes with a
prevalence strongly associated with the level of glycemic control and the duration of
diabetes [79]. Factors that increase the risk of retinopathy include a long duration of
diabetes [80], high HbA1C level, fasting blood glucose [81,82], nephropathy [83], high
blood pressure level [80,84], and dyslipidemia [80,85]. However, only one study established
a model for retinopathy prediction based on four related parameters (duration of diabetes,
waist-to-hip ratio, HbA1c, and family history of diabetes) [14]. Future perspectives on
T2DM complication predictive models are needed.

Several predictive models or risk-assessment tools have been developed for predicting
the risk of T2DM complications that serve as a means of their early detection. A predictive
model is a tool made up of many predictors or risk factors that are likely to influence
future outcomes. Thus, several risk factors have been detected as significant predictors of
experiencing T2DM complications in most of the developed predictive models, as discussed
in the section above. Nevertheless, the published models’ outcomes varied due to the
different definitions of T2DM complications and patients included. Predictive models can
be developed by using several methods. Most of the predictive models were developed
using analysis methods such as logistic regression and Cox regression survival analysis.
The use of poorly developed methods could jeopardize model development, including
univariate prescreening of variables, categorization of continuous risk predictors, and
poor handling of missing data. Besides, the use of poorly developed methods affects the
prediction model’s reliability and ultimately compromises the accuracy of the probability
estimates of experiencing T2DM complications.

A predictive model that incorporates factor of time to quantify the risk of T2DM
complications such as CVD events may need to be used, and to our knowledge, such a
model is still lacking. For instance, variations in fasting blood glucose throughout the time
until a follow-up visit have been reported to be significantly associated with an increased
risk of CVD events [86], Achieving normal and consistent glycemic levels is vital to improve
clinical outcomes [86]. Determining the impact of variability in fasting blood glucose over
time may capture the pathological process, which may lead to the complication process [86].
Therefore, approaches to minimize the variability need to be determined. Variability in
blood glucose progression over time could be influenced by various factors, including the
severity of diabetes status, antidiabetic drugs, the patient’s compliance with medication,
and management of diet and exercise [30]. These factors may explain the variability in
blood glucose within the individual patient.
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Moreover, not all diabetic patients may have a similar magnitude of blood glucose
variability, which requires quantification of factors to determine the variability in blood
glucose between patients to reduce the bias in predicting the risk of CVD events. In
addition to the two variabilities mentioned, a confounded residual, such as in the blood
glucose measurement method, may also contribute to the variability in blood glucose
progression [86].

Quantifying the effect of all factors affecting the blood glucose progression or co-
variates may improve precision in predicting the CVD events as complications of T2DM.
Nevertheless, blood glucose progression is time-varying, and thus the impact of the pro-
gression rate on the risk of CVD events may provide better knowledge in minimizing
the risk. Covariates that may slow, accelerate, modify, or retard the progression rate
could be the focus of precision medicine in optimizing T2DM therapy and minimizing
T2DM complications.

A new approach to developing the model must be applied. A population approach
using a nonlinear mixed effect model is one of the analysis methods that may overcome
poorly developed methods in the previous developed predictive model, including uni-
variate prescreening of variables, categorization of continuous risk predictors, and poor
handling of missing data. The parametric approach allows missing data or dropout data
to be quantified, and this may reduce the biases of the model prediction. Moreover, time-
varying and time-invariant risk factors can be included in the model without categorizing
the continuous data. As an element of time can be included, the predictive model developed
using this parametric approach permits the prediction of experiencing T2DM complications
beyond the studied time through a simulation method.

To prove the prediction models’ usefulness, they must demonstrate how their uses
generate better patient outcomes. Although extensive efforts have been put into building
these predictive models, there is a remarkable scarcity of impact studies [87]. Very few
developed predictive models were externally validated, and knowledge of their clinical
impact is lacking. The tool should also be able to provide a computer-generated visual
presentation [88]. Thus, a predictive model that able to stratify the risk of having T2DM
complications and provide appropriate interventions to delay the progression needs to
be developed.

7. Conclusions

Increasingly promising predictive models of T2DM complications can and will be
developed in the future. Development of well-established and validated predictive models
of T2DM complications is vital to stratify patients with T2DM based on their risks. Thus, in-
dividualization therapy could be optimized. However, the use of new approaches (e.g., the
parametric approach) is needed to develop predictive models of T2DM complications and
incorporate new and time-varying predictors that may improve the existing models’ pre-
dictive ability and generalizability via further external validation in a diverse population.
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