Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation
Abstract
:1. Introduction
2. Concerns for VRISE
3. VRISE Theory
3.1. Sensory Conflict Theory
3.2. Poison Theory
3.3. Postural Instability Theory
3.4. Multisensory Re-Weighting Hypothesis
3.5. Rest Frame Hypothesis
4. Causes and Contributing Factors to VRISE
4.1. Vergence Accommodation Conflict
4.2. User Characteristics
4.3. Head Mounted Display and Associated Hardware Contributions to VRISE
4.4. Types of Content in VRISE
4.5. Temporal Affects and Adaptability in Virtual Reality
4.6. Persistence of VRISE
4.7. Cognitive Performance in Virtual Reality
5. Methods to Monitor VRISE
5.1. Subjective Measures
5.2. Physiological Measures
5.3. Biomechanical Measures
6. Methods to Reduce VRISE
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Huppert, D.; Benson, J.; Brandt, T. A Historical View of Motion Sickness—A Plague at Sea and on Land, Also with Military Impact. Front. Neurol. 2017, 8, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golding, J.F. Motion Sickness Susceptibility Questionnaire Revised and Its Relationship to Other Forms of Sickness. Brain Res. Bull. 1998, 47, 507–516. [Google Scholar] [CrossRef]
- Cobb, S.V.G.; Nichols, S.; Ramsey, A.; Wilson, J.R. Virtual Reality-Induced Symptoms and Effects (VRISE). Presence 1999, 8, 169–186. [Google Scholar] [CrossRef]
- Regan, E.C.; Price, K.R. The Frequency of Occurrence and Severity of Side-Effects of Immersion Virtual Reality. Aviat. Space Environ. Med. 1994, 65, 527–530. [Google Scholar] [PubMed]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci 2020, 14, 96. [Google Scholar] [CrossRef] [Green Version]
- Nalivaiko, E.; Davis, S.L.; Blackmore, K.L.; Vakulin, A.; Nesbitt, K.V. Cybersickness Provoked by Head-Mounted Display Affects Cutaneous Vascular Tone, Heart Rate and Reaction Time. Physiol. Behav. 2015, 151, 583–590. [Google Scholar] [CrossRef]
- Wilson, J.R. Virtual Environments Applications and Applied Ergonomics. Appl. Ergon. 1999, 30, 3–9. [Google Scholar] [CrossRef]
- Blade, R.A.; Padgett, M.L. Virtual Environments Standards and Terminology. In Handbook of Virtual Environments; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-429-16393-7. [Google Scholar]
- Lang, D.J. For Virtual Reality Creators, Motion Sickness a Real Issue. Available online: https://phys.org/news/2016-03-virtual-reality-creators-motion-sickness.html (accessed on 27 August 2022).
- Stanney, K.M.; Kennedy, R.S.; Drexler, J.M. Cybersickness Is Not Simulator Sickness. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 1997, 41, 1138–1142. [Google Scholar] [CrossRef]
- LaViola, J.J. A Discussion of Cybersickness in Virtual Environments. Sigchi Bull. 2000, 32, 47–56. [Google Scholar] [CrossRef]
- Iskander, J.; Hossny, M.; Nahavandi, S. A Review on Ocular Biomechanic Models for Assessing Visual Fatigue in Virtual Reality. IEEE Access 2018, 6, 19345–19361. [Google Scholar] [CrossRef]
- Caserman, P.; Martinussen, M.; Göbel, S. Effects of End-to-End Latency on User Experience and Performance in Immersive Virtual Reality Applications. In Proceedings of the Entertainment Computing and Serious Games; van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud Hauge, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 57–69. [Google Scholar]
- Kim, J.; Kane, D.; Banks, M.S. The Rate of Change of Vergence–Accommodation Conflict Affects Visual Discomfort. Vis. Res. 2014, 105, 159–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittelstaedt, J.M.; Wacker, J.; Stelling, D. VR Aftereffect and the Relation of Cybersickness and Cognitive Performance. Virtual Real. 2019, 23, 143–154. [Google Scholar] [CrossRef]
- Chen, S.; Weng, D. The Temporal Pattern of VR Sickness during 7.5-h Virtual Immersion. Virtual Real. 2022, 26, 817–822. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, H.J.; Kim, E.N.; Ko, H.D.; Kim, H.T. Characteristic Changes in the Physiological Components of Cybersickness. Psychophysiology 2005, 42, 616–625. [Google Scholar] [CrossRef]
- Dennison, M.S.; Wisti, A.Z.; D’Zmura, M. Use of Physiological Signals to Predict Cybersickness. Displays 2016, 44, 42–52. [Google Scholar] [CrossRef]
- Cho, G.H.; Hwangbo, G.; Shin, H.S. The Effects of Virtual Reality-Based Balance Training on Balance of the Elderly. J. Phys. Ther. Sci. 2014, 26, 615–617. [Google Scholar] [CrossRef]
- Stanney, K.; Lawson, B.D.; Rokers, B.; Dennison, M.; Fidopiastis, C.; Stoffregen, T.; Weech, S.; Fulvio, J.M. Identifying Causes of and Solutions for Cybersickness in Immersive Technology: Reformulation of a Research and Development Agenda. Int. J. Hum. Comput. Interact. 2020, 36, 1783–1803. [Google Scholar] [CrossRef]
- Benoit, M.; Guerchouche, R.; Petit, P.-D.; Chapoulie, E.; Manera, V.; Chaurasia, G.; Drettakis, G.; Robert, P. Is It Possible to Use Highly Realistic Virtual Reality in the Elderly? A Feasibility Study with Image-Based Rendering. Neuropsychiatr. Dis. Treat. 2015, 11, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Huygelier, H.; Schraepen, B.; van Ee, R.; Vanden Abeele, V.; Gillebert, C.R. Acceptance of Immersive Head-Mounted Virtual Reality in Older Adults. Sci. Rep. 2019, 9, 4519. [Google Scholar] [CrossRef] [Green Version]
- Bugnariu, N.; Fung, J. Aging and Selective Sensorimotor Strategies in the Regulation of Upright Balance. In Proceedings of the 2006 International Workshop on Virtual Rehabilitation, New York, NY, USA, 29–30 August 2006; pp. 187–192. [Google Scholar]
- Akizuki, H.; Uno, A.; Arai, K.; Morioka, S.; Ohyama, S.; Nishiike, S.; Tamura, K.; Takeda, N. Effects of Immersion in Virtual Reality on Postural Control. Neurosci. Lett. 2005, 379, 23–26. [Google Scholar] [CrossRef]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Validation of the Virtual Reality Neuroscience Questionnaire: Maximum Duration of Immersive Virtual Reality Sessions Without the Presence of Pertinent Adverse Symptomatology. Front. Hum. Neurosci. 2019, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, N.; Takagi, H. Virtual Reality Environment Design of Managing Both Presence and Virtual Reality Sickness. J. Physiol. Anthropol. Appl. Hum. Sci. 2004, 23, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, K.S.; Stanney, K.M. Handbook of Virtual Environments: Design, Implementation, and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-4665-1185-9. [Google Scholar]
- Ames, S.; Wolffsohn, J.; McBrien, N. The Development of a Symptom Questionnaire for Assessing Virtual Reality Viewing Using a Head-Mounted Display. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2005, 82, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshavarz, B.; Saryazdi, R.; Campos, J.L.; Golding, J.F. Introducing the VIMSSQ: Measuring Susceptibility to Visually Induced Motion Sickness. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 2267–2271. [Google Scholar] [CrossRef]
- Dużmańska, N.; Strojny, P.; Strojny, A. Can Simulator Sickness Be Avoided? A Review on Temporal Aspects of Simulator Sickness. Front. Psychol. 2018, 9, 2132. [Google Scholar] [CrossRef]
- Dudfield, H.J.; Hardiman, T.D.; Selcon, S.J. Human Factors Issues in the Design of Helmet-Mounted Displays. In Helmet- and Head-Mounted Displays and Symbology Design Requirements II; SPIE: Bellingham, WA, USA, 1995; Volume 2465, pp. 132–141. [Google Scholar]
- Nakashima, A.; Chueng, B. The Effects of Vibration Frequencies on Physical, Perceptual and Cognitive Performance; Defence R&D Canada: Toronto, ON, Canada, 2006; pp. 1–30. [Google Scholar]
- Seagull, F.; Wickens, C. Vibration in Command and Control Vehicles: Visual Performance, Manual Performance, and Motion Sickness: A Review of the Literature. Inst. Aviat. 2006, 1, 1–19. [Google Scholar]
- Griffin, M.J.; Lewis, C.H. A Review of the Effects of Vibration on Visual Acuity and Continuous Manual Control, Part I: Visual Acuity. J. Sound Vib. 1978, 56, 383–413. [Google Scholar] [CrossRef]
- Dichgans, J.; Brandt, T. Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control. In Perception; Anstis, S.M., Atkinson, J., Blakemore, C., Braddick, O., Brandt, T., Campbell, F.W., Coren, S., Dichgans, J., Dodwell, P.C., Eimas, P.D., et al., Eds.; Handbook of Sensory Physiology; Springer: Berlin/Heidelberg, Germany, 1978; pp. 755–804. ISBN 978-3-642-46354-9. [Google Scholar]
- So, R.H.; Lo, W.T.; Ho, A.T. Effects of Navigation Speed on Motion Sickness Caused by an Immersive Virtual Environment. Hum. Factors 2001, 43, 452–461. [Google Scholar] [CrossRef]
- McCauley, M.E.; Sharkey, T.J. Cybersickness: Perception of Self-Motion in Virtual Environments. Presence Teleoperators Virtual Environ. 1992, 1, 311–318. [Google Scholar] [CrossRef]
- Kitazaki, M. Effects of Retinal Position on the Visuo-Motor Adaptation of Visual Stability in a Virtual Environment. i-Perception 2013, 4, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.A. Visual Adaptation. Annu. Rev. Vis. Sci. 2015, 1, 547–567. [Google Scholar] [CrossRef] [PubMed]
- Riccio, G.E.; Stoffregen, T.A. An Ecological Theory of Motion Sickness and Postural Instability. Ecol. Psychol. 1991, 3, 195–240. [Google Scholar] [CrossRef]
- Stoffregen, T.A. Motion Sickness Considered as a Movement Disorder. Sci. Mot. 2011, 74, 19–30. [Google Scholar] [CrossRef]
- Weech, S.; Varghese, J.P.; Barnett-Cowan, M. Estimating the Sensorimotor Components of Cybersickness. J. Neurophysiol. 2018, 120, 2201–2217. [Google Scholar] [CrossRef] [Green Version]
- Koslucher, F.; Munafo, J.; Stoffregen, T.A. Postural Sway in Men and Women during Nauseogenic Motion of the Illuminated Environment. Exp. Brain Res. 2016, 234, 2709–2720. [Google Scholar] [CrossRef]
- Stoffregen, T.A.; Smart, L.J. Postural Instability Precedes Motion Sickness. Brain Res. Bull. 1998, 47, 437–448. [Google Scholar] [CrossRef]
- Weech, S.; Moon, J.; Troje, N.F. Influence of Bone-Conducted Vibration on Simulator Sickness in Virtual Reality. PLoS ONE 2018, 13, e0194137. [Google Scholar] [CrossRef] [Green Version]
- Rebenitsch, L.; Owen, C. Review on Cybersickness in Applications and Visual Displays. Virtual Real. 2016, 20, 101–125. [Google Scholar] [CrossRef]
- Weech, S.; Troje, N.F. Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation. Multisens. Res. 2017, 30, 65–90. [Google Scholar] [CrossRef] [Green Version]
- Prothero, J.D.; Parker, D.E. A Unified Approach to Presense and Motion Sickness. In Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 2003; pp. 47–66. [Google Scholar]
- Mohamed Elias, Z.; Batumalai, U.M.; Azmi, A.N.H. Virtual Reality Games on Accommodation and Convergence. Appl. Ergon. 2019, 81, 102879. [Google Scholar] [CrossRef]
- Szpak, A.; Michalski, S.C.; Saredakis, D.; Chen, C.S.; Loetscher, T. Beyond Feeling Sick: The Visual and Cognitive Aftereffects of Virtual Reality. IEEE Access 2019, 7, 130883–130892. [Google Scholar] [CrossRef]
- Hoffman, H.G.; Patterson, D.R.; Seibel, E.; Soltani, M.; Jewett-Leahy, L.; Sharar, S.R. Virtual Reality Pain Control during Burn Wound Debridement in the Hydrotank. Clin. J. Pain 2008, 24, 299–304. [Google Scholar] [CrossRef]
- Lawson, B.D.; Kass, S.; Lambert, C.; Smith, S. Survey and Review Concerning Evidence for Gender Differences in Motion Susceptibility. Aviat. Space Environ. Med. 2004, 75, 105. [Google Scholar]
- Cheung, B.; Hofer, K. Lack of Gender Difference in Motion Sickness Induced by Vestibular Coriolis Cross-Coupling. J. Vestib. Res. 2002, 12, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.S.; Lanham, D.S.; Massey, C.J.; Drexler, J.M.; Lilienthal, M.G. Gender Differences in Simulator Sickness Incidence: Implications for Military Reality Systems. Safe J. 1995, 25, 69–76. [Google Scholar]
- Golding, J.F.; Kadzere, P.; Gresty, M.A. Motion Sickness Susceptibility Fluctuates through the Menstrual Cycle. Aviat. Space Environ. Med. 2005, 76, 970–973. [Google Scholar]
- Keshavarz, B.; Hecht, H. Validating an Efficient Method to Quantify Motion Sickness. Hum. Factors 2011, 53, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Kourtesis, P.; Collina, S.; Doumas, L.A.A.; MacPherson, S.E. Technological Competence Is a Pre-Condition for Effective Implementation of Virtual Reality Head Mounted Displays in Human Neuroscience: A Technological Review and Meta-Analysis. Front. Hum. Neurosci. 2019, 13, 342. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.J.-W.; Duh, H.B.L.; Parker, D.E.; Abi-Rached, H.; Furness, T.A. Effects of Field of View on Presence, Enjoyment, Memory, and Simulator Sickness in a Virtual Environment. In Proceedings of the IEEE Virtual Reality 2002, Orlando, FL, USA, 24–28 March 2002; pp. 164–171. [Google Scholar]
- Fernandes, A.S.; Feiner, S.K. Combating VR Sickness through Subtle Dynamic Field-of-View Modification. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI), Greenville, SC, USA, 29–30 March 2016; pp. 201–210. [Google Scholar]
- White, P.J.; Byagowi, A.; Moussavi, Z. Effect of Viewing Mode on Pathfinding in Immersive Virtual Reality. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4619–4622. [Google Scholar]
- Brennesholtz, M.S. 3-1: Invited Paper: VR Standards and Guidelines. J. Soc. Inf. Disp. 2018, 49, 1–4. [Google Scholar] [CrossRef]
- Sharples, S.; Cobb, S.; Moody, A.; Wilson, J.R. Virtual Reality Induced Symptoms and Effects (VRISE): Comparison of Head Mounted Display (HMD), Desktop and Projection Display Systems. Displays 2008, 29, 58–69. [Google Scholar] [CrossRef]
- Kim, J.W.; Choe, W.J.; Hwang, K.H.; Kwag, J.O. 78-2: The Optimum Display for Virtual Reality. SID Symp. Dig. Tech. Pap. 2017, 48, 1146–1149. [Google Scholar] [CrossRef]
- Hsiang, E.-L.; Yang, Z.; Zhan, T.; Zou, J.; Akimoto, H.; Wu, S.-T. Optimizing the Display Performance for Virtual Reality Systems. OSA Continuum. OSAC 2021, 4, 3052–3067. [Google Scholar] [CrossRef]
- Goradia, I.; Doshi, J.; Kurup, L. A Review Paper on Oculus Rift & Project Morpheus. Int. Res. J. Eng. Technol. 2014, 4, 3196–3200. [Google Scholar]
- Anthes, C.; García-Hernández, R.J.; Wiedemann, M.; Kranzlmüller, D. State of the Art of Virtual Reality Technology. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–19. [Google Scholar]
- Parsons, T.D.; McMahan, T.; Kane, R. Practice Parameters Facilitating Adoption of Advanced Technologies for Enhancing Neuropsychological Assessment Paradigms. Clin. Neuropsychol. 2018, 32, 16–41. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.D.; Muth, E.R. Characteristics of Head-Mounted Displays and Their Effects on Simulator Sickness. Hum. Factors 2011, 53, 308–319. [Google Scholar] [CrossRef]
- Charman, W.N.; Tucker, J. Dependence of Accommodation Response on the Spatial Frequency Spectrum of the Observed Object. Vis. Res. 1977, 17, 129–139. [Google Scholar] [CrossRef]
- Leibowitz, H.W.; Owens, D.A. Night Myopia and the Intermediate Dark Focus of Accommodation. J. Opt. Soc. Am. 1975, 65, 1121–1128. [Google Scholar] [CrossRef]
- Hoshino, M.; Takahashi, M.; Oyamada, K.; Ohmi, M.; Yoshizawa, T. Body Sway Induced by 3D Images. In Stereoscopic Displays and Virtual Reality Systems IV; SPIE: Bellingham, WA, USA, 1997; Volume 3012, pp. 400–407. [Google Scholar]
- Nichols, S. Physical Ergonomics of Virtual Environment Use. Appl. Ergon. 1999, 30, 79–90. [Google Scholar] [CrossRef]
- Lo, W.T.; So, R.H.Y. Cybersickness in the Presence of Scene Rotational Movements along Different Axes. Appl. Ergon. 2001, 32, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-L. A Study of Detecting and Combating Cybersickness with Fuzzy Control for the Elderly within 3D Virtual Stores. Int. J. Hum. Comput. Stud. 2014, 72, 796–804. [Google Scholar] [CrossRef]
- Min, B.-C.; Chung, S.-C.; Min, Y.-K.; Sakamoto, K. Psychophysiological Evaluation of Simulator Sickness Evoked by a Graphic Simulator. Appl. Ergon. 2004, 35, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Scisco, J.; Muth, E. Simulator Sickness during Head Mounted Display (HMD) of Real World Video Captured Scenes. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2008, 52, 1631–1634. [Google Scholar] [CrossRef]
- Feenstra, P.J.; Bos, J.E.; van Gent, R.N.H.W. A Visual Display Enhancing Comfort by Counteracting Airsickness. Displays 2011, 32, 194–200. [Google Scholar] [CrossRef]
- Chung, C.A.; Alfred, M. Design, Development, and Evaluation of an Interactive Simulator for Engineering Ethics Education (SEEE). Sci. Eng. Ethics 2009, 15, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Park, A.H.; Hu, S. Gender Differences in Motion Sickness History and Susceptibility to Optokinetic Rotation-Induced Motion Sickness. Aviat. Space Environ. Med. 1999, 70, 1077–1080. [Google Scholar]
- Sinitski, E.H.; Thompson, A.A.; Godsell, P.; Honey, J.; Besemann, M. Postural Stability and Simulator Sickness after Walking on a Treadmill in a Virtual Environment with a Curved Display. Displays 2018, 52, 1–7. [Google Scholar] [CrossRef]
- Classen, S.; Owens, A.B. Simulator Sickness among Returning Combat Veterans with Mild Traumatic Brain Injury and/or Post-Traumatic Stress Disorder. Adv. Transp. Stud. 2010, special issue, 45–52. [Google Scholar] [CrossRef]
- Jarchow, T.; Young, L.R. Adaptation to Head Movements during Short Radius Centrifugation. Acta Astronaut. 2007, 61, 881–888. [Google Scholar] [CrossRef]
- Bos, J.; Mackinnon, S.; Patterson, A. Motion Sickness Symptoms in a Ship Motion Simulator: Effects of Inside, Outside and No View. Aviat. Space Environ. Med. 2006, 76, 1111–1118. [Google Scholar]
- Nesbitt, K.; Davis, S.; Blackmore, K.; Nalivaiko, E. Correlating Reaction Time and Nausea Measures with Traditional Measures of Cybersickness. Displays 2017, 48, 1–8. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Brooks, J.O.; Goodenough, R.R.; Crisler, M.C.; Klein, N.D.; Alley, R.L.; Koon, B.L.; Logan, W.C.; Ogle, J.H.; Tyrrell, R.A.; Wills, R.F. Simulator Sickness during Driving Simulation Studies. Accid. Anal. Prev. 2010, 42, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Carnegie, K.; Rhee, T. Reducing Visual Discomfort with HMDs Using Dynamic Depth of Field. IEEE Comput. Graph. Appl. 2015, 35, 34–41. [Google Scholar] [CrossRef]
- Webb, C.M.; Bass, J.M.; Johnson, D.M.; Kelley, A.M.; Martin, C.R.; Wildzunas, R.M. Simulator Sickness in a Helicopter Flight Training School. Aviat. Space Environ. Med. 2009, 80, 541–545; discussion 546. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Park, J.; Choi, Y.; Choe, M. Virtual Reality Sickness Questionnaire (VRSQ): Motion Sickness Measurement Index in a Virtual Reality Environment. Appl. Ergon. 2018, 69, 66–73. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Hum. Comput. Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Reason, J.T.; Brand, J.J. Motion Sickness; Academic Press: Oxford, UK, 1975; p. vii. ISBN 978-0-12-584050-7. [Google Scholar]
- Chander, H.; Freeman, H.R.; Hill, C.M.; Hudson, C.R.; Kodithuwakku Arachchige, S.N.K.; Turner, A.J.; Jones, J.A.; Knight, A.C. The Walls Are Closing In: Postural Responses to a Virtual Reality Claustrophobic Simulation. Clin. Transl. Neurosci. 2022, 6, 15. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Dong, X.; Chen, F.-C.; Stoffregen, T.A. Control of a Virtual Avatar Influences Postural Activity and Motion Sickness. Ecol. Psychol. 2012, 24, 279–299. [Google Scholar] [CrossRef]
- Chander, H.; Kodithuwakku Arachchige, S.N.K.; Hill, C.M.; Turner, A.J.; Deb, S.; Shojaei, A.; Hudson, C.; Knight, A.C.; Carruth, D.W. Virtual-Reality-Induced Visual Perturbations Impact Postural Control System Behavior. Behav. Sci. 2019, 9, E113. [Google Scholar] [CrossRef] [Green Version]
- Chander, H.; Shojaei, A.; Deb, S.; Kodithuwakku Arachchige, S.N.K.; Hudson, C.; Knight, A.C.; Carruth, D.W. Impact of Virtual Reality–Generated Construction Environments at Different Heights on Postural Stability and Fall Risk. Workplace Health Saf. 2021, 69, 32–40. [Google Scholar] [CrossRef]
- Dennison, M.S.; D’Zmura, M. Cybersickness without the Wobble: Experimental Results Speak against Postural Instability Theory. Appl. Ergon. 2017, 58, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, A.; Chardonnet, J.-R.; Colombet, F. Getting Rid of Cybersickness: In Virtual Reality, Augmented Reality, and Simulators; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-59341-4. [Google Scholar]
- Viirre, E.; Bush, D. Direct Effects of Virtual Environments on Users. In Handbook of Virtual Environments; CRC Press: Boca Raton, FL, USA, 2002; ISBN 978-0-429-16393-7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conner, N.O.; Freeman, H.R.; Jones, J.A.; Luczak, T.; Carruth, D.; Knight, A.C.; Chander, H. Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation. Virtual Worlds 2022, 1, 130-146. https://doi.org/10.3390/virtualworlds1020008
Conner NO, Freeman HR, Jones JA, Luczak T, Carruth D, Knight AC, Chander H. Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation. Virtual Worlds. 2022; 1(2):130-146. https://doi.org/10.3390/virtualworlds1020008
Chicago/Turabian StyleConner, Nathan O., Hannah R. Freeman, J. Adam Jones, Tony Luczak, Daniel Carruth, Adam C. Knight, and Harish Chander. 2022. "Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation" Virtual Worlds 1, no. 2: 130-146. https://doi.org/10.3390/virtualworlds1020008
APA StyleConner, N. O., Freeman, H. R., Jones, J. A., Luczak, T., Carruth, D., Knight, A. C., & Chander, H. (2022). Virtual Reality Induced Symptoms and Effects: Concerns, Causes, Assessment & Mitigation. Virtual Worlds, 1(2), 130-146. https://doi.org/10.3390/virtualworlds1020008