Neuroimmune Mechanisms in Alcohol Use Disorder: Microglial Modulation and Therapeutic Horizons
Abstract
1. Introduction
2. Methods
2.1. Literature Search and Selection
2.2. Data Extraction and Bias Assessment
3. Results
3.1. Overview of Microglia and Neuroimmune Signaling
3.2. Ethanol-Induced Microglial Activation: Molecular Pathways
3.2.1. Toll-like Receptor 4 (TLR4)
3.2.2. NLRP3 Inflammasome
3.2.3. Purinergic Signaling Via P2RY12
Sex-Specific Differences in P2RY12 Expression and Microglial Responses to Ethanol
Influence on AUD Susceptibility
P2RY12 as a Neuroprotective Target
3.2.4. Microglial Activation: Cause or Consequence of AUD?
3.3. Neuroimmune Modulation of Synaptic Plasticity and Neural Circuits
3.4. Microglial Priming and Behavioral Consequences in Rodent Models
3.5. Evidence from Human Studies: Postmortem and Neuroimaging Findings
3.6. Sex Differences in Microglial Responses and AUD
Hormonal Modulation of Microglial Priming
3.7. Therapeutic Interventions Targeting Microglial Activation in AUD
3.7.1. Preclinical and Emerging Clinical Evidence
- Ibudilast: A phosphodiesterase inhibitor and glial modulator, suppresses microglial proinflammatory signaling and attenuates relapse-like drinking behavior in multiple animal models. Clinical trials report decreases in heavy drinking days and alcohol cravings in AUD patients receiving ibudilast treatment, though larger randomized controlled trials are warranted [25]. The results found that the medication reduced craving but did not reduce alcohol use on the primary drinking outcome. Follow-up analyses identified possible sex-dependent effects, whereby females with alcohol use disorder showed a more beneficial response to ibudilast versus placebo and compared to male participants. Additional analyses are underway to test biomarkers and sex effects.
- Glucagon-like peptide-1 (GLP-1) receptor agonists: Initially developed to treat metabolic disorders, they demonstrate therapeutic potential for reducing alcohol-seeking behavior through dual modulation of neuroimmune pathways and reward circuitry. By suppressing microglial activation and curbing proinflammatory cytokine release, these agents target mechanisms implicated in AUD. Growing clinical interest in their application stems from their established safety profile and unique capacity to address metabolic dysfunction and neuroimmune dysregulation—key factors often intertwined in AUD pathophysiology [17].
- P2X7 Receptor Antagonists: By blocking ATP-gated ion channel-mediated microglial activation, these agents prevent the activation of the NLRP3 inflammasome and subsequent cytokine release, thereby mitigating neuroinflammation-related behavioral pathology in AUD [17].
Agent | Mechanism | Preclinical Evidence | Clinical Evidence |
---|---|---|---|
Minocycline | Microglial activation inhibitor | Reduces ethanol intake withdrawal anxiety [76] | Limited trials; promising |
Ibudilast | Phosphodiesterase inhibitor and glial modulator | Decreases alcohol consumption and craving [25] | Early clinical trials showed reduced heavy drinking [29,77] |
GLP-1 Agonists | Modulates reward and inflammation | Reduces alcohol seeking | Clinical trials are ongoing; early positive |
P2X7 Antagonists | Blocks ATP-induced inflammasome activation | Attenuates IL-1β release | Preclinical; human studies pending |
3.7.2. Mechanistic Insights: GLP-1 Receptor Agonists
Mechanisms of GLP-1R Agonists in Modulating Microglial Activity
Relation to Alcohol-Seeking Behavior
Challenges in Clinical Translation
Blood–Brain Barrier (BBB) Penetration of P2X7 Antagonists
Off-Target Effects of Minocycline
Combination Therapies: GLP-1 Agonists and Naltrexone
Future Directions
3.8. Emerging Technologies in Neuroimmune Research of AUD
3.8.1. Multi-Omics
3.8.2. Molecular Imaging
3.9. Comorbidities Share Underlying Neuroimmune Mechanisms
3.10. Challenges, Knowledge Gaps, and Future Directions
- Multi-Omics and Biomarker Discovery
- Advanced Molecular Imaging
- Inclusive Clinical Trials and Sex-Dependent Treatment Approaches
- Integration with Established Pharmacotherapies
- Challenges and Future Directions in Therapeutic Development
- Integration with Existing Pharmacotherapies and Systems: A Biomedical Approach
4. Discussion
5. Limitations
6. Future Research Priorities
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ray, L.A.; Bujarski, S.; Shoptaw, S.; Roche, D.J.; Heinzerling, K.; Miotto, K. Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 2017, 42, 1776–1788. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Qian, Z.; Chen, H.; Xia, M.; Chang, J.; Li, X.; Ye, S.; Wu, S.; Jiang, S.; Bao, J.; Wang, B.; et al. Activation of glucagon-like peptide-1 receptor in microglia attenuates neuroinflammation-induced glial scarring via rescuing Arf and Rho GAP adapter protein 3 expressions after nerve injury. Int. J. Biol. Sci. 2022, 18, 1328–1346. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, H.; Yan, A.; Yin, F.; Qiao, X. DNA Methylation in Alcohol Use Disorder. Int. J. Mol. Sci. 2023, 24, 10130. [Google Scholar] [CrossRef]
- Fernández-Lizarbe, S.; Pascual, M.; Guerri, C. Critical Role of TLR4 Response in the Activation of Microglia Induced by Ethanol1. J. Immunol. 2009, 183, 4733–4744. [Google Scholar] [CrossRef] [PubMed]
- Holloway, K.; Douglas, J.; Rafferty, T.; Kane, C.; Drew, P. Ethanol Induces Neuroinflammation in a Chronic Plus Binge Mouse Model of Alcohol Use Disorder via TLR4 and MyD88-Dependent Signaling. Cells 2023, 12, 2109. [Google Scholar] [CrossRef]
- Walter, T.J.; Crews, F.T. Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal. J. Neuroinflamm. 2017, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Loeches, S.; Pascual-Lucas, M.; Blanco, A.M.; Sanchez-Vera, I.; Guerri, C. Pivotal Role of TLR4 Receptors in Alcohol-Induced Neuroinflammation and Brain Damage. J. Neurosci. 2010, 30, 8285–8295. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Crews, F. Release of Neuronal HMGB1 by Ethanol through Decreased HDAC Activity Activates Brain Neuroimmune Signaling. PLoS ONE 2014, 9, e87915. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, X.; Xu, M.; Frank, J.A.; Luo, J. Minocycline attenuates ethanol-induced cell death and microglial activation in the developing spinal cord. Alcohol 2019, 79, 25–35. [Google Scholar] [CrossRef]
- Alfonso-Loeches, S.; Ureña-Peralta, J.; Morillo-Bargues, M.; Gómez-Pinedo, U.; Guerri, C. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB. Neurochem. Res. 2016, 41, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Gustin, A.; Kirchmeyer, M.; Koncina, E.; Felten, P.; Losciuto, S.; Heurtaux, T.; Tardivel, A.; Heuschling, P.; Dostert, C. NLRP3 Inflammasome Is Expressed and Functional in Mouse Brain Microglia but Not in Astrocytes. PLoS ONE 2015, 10, e0130624. [Google Scholar] [CrossRef] [PubMed]
- Zipp, F.; Bittner, S.; Schafer, D. Cytokines as emerging regulators of central nervous system synapses. Immunity 2023, 56, 914–925. [Google Scholar] [CrossRef]
- Stück, E.; Christensen, R.; Huie, J.; Tovar, C.; Miller, B.; Nout, Y.; Bresnahan, J.; Beattie, M.; Ferguson, A. Tumor Necrosis Factor Alpha Mediates GABAA Receptor Trafficking to the Plasma Membrane of Spinal Cord Neurons In Vivo. Neural Plast. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Kearns, R. Gut–Brain Axis and Neuroinflammation: The Role of Gut Permeability and the Kynurenine Pathway in Neurological Disorders. Cell. Mol. Neurobiol. 2024, 44, 64. [Google Scholar] [CrossRef]
- Cui, C.; Shurtleff, D.; Harris, R.A. Neuroimmune mechanisms of alcohol and drug addiction. Int. Rev. Neurobiol. 2014, 118, 1–12. [Google Scholar] [CrossRef]
- Namba, M.D.; Leyrer-Jackson, J.M.; Nagy, E.K.; Olive, M.F.; Neisewander, J.L. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front. Neurosci. 2021, 15, 650785. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, E.; Arnold, M.; McConnell, K.; Solomon, M.; Amico, K.; Schank, J. The effects of lipopolysaccharide exposure on social interaction, cytokine expression, and alcohol consumption in male and female mice. Physiol. Behav. 2023, 265, 114159. [Google Scholar] [CrossRef]
- Singh, A.K.; Jiang, Y.; Gupta, S.; Benlhabib, E. Effects of chronic ethanol drinking on the blood brain barrier and ensuing neuronal toxicity in alcohol-preferring rats subjected to intraperitoneal LPS injection. Alcohol Alcohol. 2007, 42, 385–399. [Google Scholar] [CrossRef]
- Pascual, M.; Montesinos, J.; Montagud-Romero, S.; Forteza, J.; Rodríguez-Arias, M.; Miñarro, J.; Guerri, C. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders. J. Neuroinflamm. 2017, 14, 145. [Google Scholar] [CrossRef]
- Lawrimore, C.J.; Crews, F.T. Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron-Like SH-SY5Y and Microglia-Like BV2. Alcohol Clin. Exp. Res. 2017, 41, 939–954. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Wang, C.; Liu, Y.; You, J.; Wang, P.; Xu, G.; Shen, H.; Yao, H.; Lan, X.; et al. Chronic ethanol exposure induces neuroinflammation in H4 cells through TLR3/NF-κB pathway and anxiety-like behavior in male C57BL/6 mice. Toxicology 2020, 446, 152625. [Google Scholar] [CrossRef]
- Rahimifard, M.; Maqbool, F.; Moeini-Nodeh, S.; Niaz, K.; Abdollahi, M.; Braidy, N.; Nabavi, S.; Nabavi, S. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 2017, 36, 11–19. [Google Scholar] [CrossRef]
- Meredith, L.R.; Grodin, E.N.; Montoya, A.K.; Miranda, R., Jr.; Squeglia, L.M.; Towns, B.; Evans, C.; Ray, L.A. The effect of neuroimmune modulation on subjective response to alcohol in the natural environment. Alcohol Clin. Exp. Res. 2022, 46, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Grodin, E.N.; Bujarski, S.; Towns, B.; Burnette, E.; Nieto, S.; Lim, A.; Lin, J.; Miotto, K.; Gillis, A.; Irwin, M.R.; et al. Ibudilast, a neuroimmune modulator, reduces heavy drinking and alcohol cue-elicited neural activation: A randomized trial. Transl. Psychiatry 2021, 11, 355. [Google Scholar] [CrossRef] [PubMed]
- Moura, H.F.; Hansen, F.; Galland, F.; Silvelo, D.; Rebelatto, F.P.; Ornell, F.; Massuda, R.; Scherer, J.N.; Schuch, F.; Kessler, F.H.; et al. Inflammatory cytokines and alcohol use disorder: Systematic review and meta-analysis. Braz. J. Psychiatry 2022, 44, 548–556. [Google Scholar] [CrossRef]
- Lou, N.; Takano, T.; Pei, Y.; Xavier, A.L.; Goldman, S.A.; Nedergaard, M. Purinergic receptor P2RY12-dependent microglial closure of the injured blood–brain barrier. Proc. Natl. Acad. Sci. USA 2016, 113, 1074–1079. [Google Scholar] [CrossRef]
- Uweru, O.J.; Okojie, A.K.; Trivedi, A.; Benderoth, J.; Thomas, L.S.; Davidson, G.; Cox, K.; Eyo, U.B. A P2RY12 deficiency results in sex-specific cellular perturbations and sexually dimorphic behavioral anomalies. J. Neuroinflamm. 2024, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Erickson, E.K.; Grantham, E.K.; Warden, A.S.; Harris, R.A. Neuroimmune signaling in alcohol use disorder. Pharmacol. Biochem. Behav. 2019, 177, 34–60. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Boreland, A.J.; Kapadia, S.; Zhang, S.; Stillitano, A.C.; Abbo, Y.; Clark, L.; Lai, D.; Liu, Y.; et al. Polygenic risk for alcohol use disorder affects cellular responses to ethanol exposure in a human microglial cell model. Sci. Adv. 2024, 10, eado5820. [Google Scholar] [CrossRef]
- Liu, W.; Vetreno, R.P.; Crews, F.T. Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol. Psychiatry 2021, 26, 2254–2262. [Google Scholar] [CrossRef]
- Iring, A.; Tóth, A.; Baranyi, M.; Otrokocsi, L.; Módis, L.V.; Gölöncsér, F.; Varga, B.; Hortobágyi, T.; Bereczki, D.; Dénes, Á.; et al. The dualistic role of the purinergic P2Y12-receptor in an in vivo model of Parkinson’s disease: Signalling pathway and novel therapeutic targets. Pharmacol. Res. 2022, 176, 106045. [Google Scholar] [CrossRef]
- Crews, F.T.; Fisher, R.P.; Qin, L.; Vetreno, R.P. HMGB1 neuroimmune signaling and REST-G9a gene repression contribute to ethanol-induced reversible suppression of the cholinergic neuron phenotype. Mol. Psychiatry 2023, 28, 5159–5172. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.P.; Matheny, L.; Ankeny, S.; Qin, L.; Coleman, L.G.; Vetreno, R.P. Adolescent binge alcohol exposure accelerates Alzheimer’s disease-associated basal forebrain neuropathology through proinflammatory HMGB1 signaling. Front. Aging Neurosci. 2025, 17, 1531628. [Google Scholar] [CrossRef] [PubMed]
- Vetreno, R.P.; Crews, F.T. Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and Toll-like receptors in the adult prefrontal cortex. Neuroscience 2012, 226, 475–488. [Google Scholar] [CrossRef]
- Nwachukwu, K.N.; Mohammed, H.E.; Mebane, D.R.; Barber, A.W.; Swartzwelder, H.S.; Marshall, S.A. Acute and Chronic Ethanol Effects during Adolescence on Neuroimmune Responses: Consequences and Potential Pharmacologic Interventions. Cells 2023, 12, 1423. [Google Scholar] [CrossRef]
- Fidan, E.; Lewis, J.; Kline, A.E.; Garman, R.H.; Alexander, H.; Cheng, J.P.; Bondi, C.O.; Clark, R.S.; Dezfulian, C.; Kochanek, P.M.; et al. Repetitive Mild Traumatic Brain Injury in the Developing Brain: Effects on Long-Term Functional Outcome and Neuropathology. J. Neurotrauma 2016, 33, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Kaukas, L.; Krieg, J.; Collins-Praino, L.; Corrigan, F. Effects of Remote Immune Activation on Performance in the 5-Choice Serial Reaction Time Task Following Mild Traumatic Brain Injury in Adolescence. Front. Behav. Neurosci. 2021, 15, 659679. [Google Scholar] [CrossRef]
- Hiskens, M.I.; Schneiders, A.G.; Vella, R.K.; Fenning, A.S. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS ONE 2021, 16, e0251315. [Google Scholar] [CrossRef]
- Green, J.; Sundman, M.; Chou, Y. Opioid-induced microglia reactivity modulates opioid reward, analgesia, and behavior. Neurosci. Biobehav. Rev. 2022, 135, 104544. [Google Scholar] [CrossRef]
- Da Silva, M.C.M.; Iglesias, L.P.; Candelario-Jalil, E.; Khoshbouei, H.; Moreira, F.; De Oliveira, A.C.P. Role of Microglia in Psychostimulant Addiction. Curr. Neuropharmacol. 2022, 21, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.C.M.; Gomes, G.; De Barros Fernandes, H.; Da Silva, A.M.; Teixeira, A.; Moreira, F.; De Miranda, A.; De Oliveira, A. Inhibition of CSF1R, a receptor involved in microglia viability, alters behavioral and molecular changes induced by cocaine. Sci. Rep. 2021, 11, 15989. [Google Scholar] [CrossRef] [PubMed]
- Warden, A.S.; Triplett, T.A.; Lyu, A.; Grantham, E.K.; Azzam, M.M.; DaCosta, A.; Mason, S.; Blednov, Y.A.; Ehrlich, L.I.R.; Mayfield, R.D.; et al. Microglia depletion and alcohol: Transcriptome and behavioral profiles. Addict. Biol. 2021, 26, e12889. [Google Scholar] [CrossRef]
- Soares, A.; Picciotto, M. Nicotinic regulation of microglia: Potential contributions to addiction. J. Neural Transm. 2023, 131, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Frost, J.; Schafer, D. Microglia: Architects of the Developing Nervous System. Trends Cell Biol. 2016, 26, 587–597. [Google Scholar] [CrossRef]
- Galic, M.; Riazi, K.; Pittman, Q. Cytokines and brain excitability. Front. Neuroendocrinol. 2012, 33, 116–125. [Google Scholar] [CrossRef]
- Root, D.; Zhang, S.; Barker, D.; Miranda-Barrientos, J.; Liu, B.; Wang, H.; Morales, M. Selective Brain Distribution and Distinctive Synaptic Architecture of Dual Glutamatergic-GABAergic Neurons. Cell Rep. 2018, 23, 3465–3479. [Google Scholar] [CrossRef]
- Peruzzotti-Jametti, L.; Willis, C.M.; Krzak, G.; Hamel, R.; Pirvan, L.; Ionescu, R.B.; Reisz, J.A.; Prag, H.A.; Garcia-Segura, M.E.; Wu, V.; et al. Mitochondrial complex I activity in microglia sustains neuroinflammation. Nature 2024, 628, 195–203. [Google Scholar] [CrossRef]
- Macht, V.A.; Vetreno, R.P.; Crews, F.T. Cholinergic and Neuroimmune Signaling Interact to Impact Adult Hippocampal Neurogenesis and Alcohol Pathology Across Development. Front. Pharmacol. 2022, 13, 849997. [Google Scholar] [CrossRef]
- Wolf, S.A.; Steiner, B.; Akpinarli, A.; Kammertoens, T.; Nassenstein, C.; Braun, A.; Blankenstein, T.; Kempermann, G. CD4-Positive T Lymphocytes Provide a Neuroimmunological Link in the Control of Adult Hippocampal Neurogenesis1. J. Immunol. 2009, 182, 3979–3984. [Google Scholar] [CrossRef]
- Kazmi, N.; Wallen, G.R.; Yang, L.; Alkhatib, J.; Schwandt, M.L.; Feng, D.; Gao, B.; Diazgranados, N.; Ramchandani, V.A.; Barb, J.J. An exploratory study of proinflammatory cytokines in individuals with alcohol use disorder: MCP-1 and IL-8 associated with alcohol consumption, sleep quality, anxiety, depression, and liver biomarkers. Front. Psychiatry 2022, 13, 931280. [Google Scholar] [CrossRef]
- Xie, L.; Rungratanawanich, W.; Yang, Q.; Tong, G.; Fu, E.; Lu, S.; Liu, Y.; Akbar, M.; Song, B.J.; Wang, X. Therapeutic strategies of small molecules in the microbiota-gut-brain axis for alcohol use disorder. Drug. Discov. Today 2023, 28, 103552. [Google Scholar] [CrossRef]
- Ramos, A.; Joshi, R.S.; Szabo, G. Innate immune activation: Parallels in alcohol use disorder and Alzheimer’s disease. Front. Mol. Neurosci. 2022, 15, 910298. [Google Scholar] [CrossRef]
- Kapoor, M.; Chao, M.J.; Johnson, E.C.; Novikova, G.; Lai, D.; Meyers, J.L.; Schulman, J.; Nurnberger, J.I., Jr.; Porjesz, B.; Liu, Y.; et al. Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases. Nat. Commun. 2021, 12, 5071. [Google Scholar] [CrossRef]
- Lähteenvuo, M.; Tiihonen, J.; Solismaa, A.; Tanskanen, A.; Mittendorfer-Rutz, E.; Taipale, H. Repurposing Semaglutide and Liraglutide for Alcohol Use Disorder. JAMA Psychiatry 2025, 82, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.R.; Garcia-Rivas, V.; Fai, C.; Thomas, M.A.; Zheng, X.; Picciotto, M.R.; Mineur, Y.S. Role of microglia in stress-induced alcohol intake in female and male mice. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Neupane, S.P. Neuroimmune Interface in the Comorbidity between Alcohol Use Disorder and Major Depression. Front. Immunol. 2016, 7, 655. [Google Scholar] [CrossRef]
- Barko, K.; Shelton, M.; Xue, X.; Afriyie-Agyemang, Y.; Puig, S.; Freyberg, Z.; Tseng, G.C.; Logan, R.W.; Seney, M.L. Brain region- and sex-specific transcriptional profiles of microglia. Front. Psychiatry 2022, 13, 945548. [Google Scholar] [CrossRef]
- Soares, A.R.; Garcia-Rivas, V.; Fai, C.; Thomas, M.; Zheng, X.; Picciotto, M.R.; Mineur, Y.S. Sex differences in the microglial response to stress and chronic alcohol exposure in mice. Biol. Sex. Differ. 2025, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Cruz, B.; Borgonetti, V.; Bajo, M.; Roberto, M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol. Stress 2023, 26, 100562. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, J.; Ferguson, L.; Harris, R.A. Neuroimmune signaling: A key component of alcohol abuse. Curr. Opin. Neurobiol. 2013, 23, 513–520. [Google Scholar] [CrossRef]
- Mineur, Y.S.; Garcia-Rivas, V.; Thomas, M.A.; Soares, A.R.; McKee, S.A.; Picciotto, M.R. Sex differences in stress-induced alcohol intake: A review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology 2022, 239, 2041–2061. [Google Scholar] [CrossRef]
- Santos-Galindo, M.; Acaz-Fonseca, E.; Bellini, M.J.; Garcia-Segura, L.M. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide. Biol. Sex Differ. 2011, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Guneykaya, D.; Ivanov, A.; Hernandez, D.P.; Haage, V.; Wojtas, B.; Meyer, N.; Maricos, M.; Jordan, P.; Buonfiglioli, A.; Gielniewski, B.; et al. Transcriptional and Translational Differences of Microglia from Male and Female Brains. Cell Rep. 2018, 24, 2773–2783.e2776. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Gelosa, P.; Castiglioni, L.; Cimino, M.; Rizzi, N.; Pepe, G.; Lolli, F.; Marcello, E.; Sironi, L.; Vegeto, E.; et al. Sex-Specific Features of Microglia from Adult Mice. Cell Rep. 2018, 23, 3501–3511. [Google Scholar] [CrossRef]
- Mattei, D.; Ivanov, A.; Hammer, J.; Ugursu, B.; Schalbetter, S.; Richetto, J.; Weber-Stadlbauer, U.; Mueller, F.; Scarborough, J.; Wolf, S.A.; et al. Microglia undergo molecular and functional adaptations to dark and light phases in male laboratory mice. Brain Behav. Immun. 2024, 120, 571–583. [Google Scholar] [CrossRef]
- Sullivan, O.; Ciernia, A.V. Work hard, play hard: How sexually differentiated microglia work to shape social play and reproductive behavior. Front. Behav. Neurosci. 2022, 16, 989011. [Google Scholar] [CrossRef]
- Vegeto, E.; Belcredito, S.; Etteri, S.; Ghisletti, S.; Brusadelli, A.; Meda, C.; Krust, A.; Dupont, S.; Ciana, P.; Chambon, P.; et al. Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol. Proc. Natl. Acad. Sci. USA 2003, 100, 9614–9619. [Google Scholar] [CrossRef]
- Vegeto, E.; Bonincontro, C.; Pollio, G.; Sala, A.; Viappiani, S.; Nardi, F.; Brusadelli, A.; Viviani, B.; Ciana, P.; Maggi, A. Estrogen Prevents the Lipopolysaccharide-Induced Inflammatory Response in Microglia. J. Neurosci. 2001, 21, 1809–1818. [Google Scholar] [CrossRef]
- Villa, A.; Vegeto, E.; Poletti, A.; Maggi, A. Estrogens, Neuroinflammation, and Neurodegeneration. Endocr. Rev. 2016, 37, 372–402. [Google Scholar] [CrossRef] [PubMed]
- Motomura, K.; Miller, D.; Galaz, J.; Liu, T.N.; Romero, R.; Gomez-Lopez, N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J. Steroid Biochem. Mol. Biol. 2023, 229, 106254. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Garcia, C.; Atif, F.; Yousuf, S.; Sayeed, I.; Neigh, G.N.; Stein, D.G. Progesterone Attenuates Stress-Induced NLRP3 Inflammasome Activation and Enhances Autophagy following Ischemic Brain Injury. Int. J. Mol. Sci. 2020, 21, 3740. [Google Scholar] [CrossRef]
- Gupta, A.; Perkins, R.B.; Ortega, G.; Feldman, S.; Villa, A. Barrier use during oro-genital sex and oral Human Papillomavirus prevalence: Analysis of NHANES 2009–2014. Oral. Dis. 2019, 25, 609–616. [Google Scholar] [CrossRef]
- Portis, S.M.; Haass-Koffler, C.L. New Microglial Mechanisms Revealed in Alcohol Use Disorder: How Does That Translate? Biol. Psychiatry 2020, 88, 893–895. [Google Scholar] [CrossRef]
- Petrakis, I.L.; Ralevski, E.; Gueorguieva, R.; Sloan, M.E.; Devine, L.; Yoon, G.; Arias, A.J.; Sofuoglu, M. Targeting neuroinflammation with minocycline in heavy drinkers. Psychopharmacology 2019, 236, 3013–3021. [Google Scholar] [CrossRef] [PubMed]
- Hendershot, C.S.; Bremmer, M.P.; Paladino, M.B.; Kostantinis, G.; Gilmore, T.A.; Sullivan, N.R.; Tow, A.C.; Dermody, S.S.; Prince, M.A.; Jordan, R.; et al. Once-Weekly Semaglutide in Adults with Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2025, 82, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Jerlhag, E. GLP-1 Receptor Agonists: Promising Therapeutic Targets for Alcohol Use Disorder. Endocrinology 2025, 166, bqaf028. [Google Scholar] [CrossRef]
- Chuong, V.; Farokhnia, M.; Khom, S.; Pince, C.L.; Elvig, S.K.; Vlkolinsky, R.; Marchette, R.C.; Koob, G.F.; Roberto, M.; Vendruscolo, L.F.; et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 2023, 8, e170671. [Google Scholar] [CrossRef]
- Reiner, D.J.; Mietlicki-Baase, E.G.; McGrath, L.E.; Zimmer, D.J.; Bence, K.K.; Sousa, G.L.; Konanur, V.R.; Krawczyk, J.; Burk, D.H.; Kanoski, S.E.; et al. Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance. J. Neurosci. 2016, 36, 3531–3540. [Google Scholar] [CrossRef]
- Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 1181–1194. [Google Scholar] [CrossRef]
- Noguchi, T.; Katoh, H.; Nomura, S.; Okada, K.; Watanabe, M. The GLP-1 receptor agonist exenatide improves recovery from spinal cord injury by inducing macrophage polarization toward the M2 phenotype. Front. Neurosci. 2024, 18, 1342944. [Google Scholar] [CrossRef]
- Kuthati, Y.; Davuluri, V.N.G.; Wong, C.-S. Therapeutic Effects of GLP-1 Receptor Agonists and DPP-4 Inhibitors in Neuropathic Pain: Mechanisms and Clinical Implications. Biomolecules 2025, 15, 622. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Conigrave, J.H.; Lewohl, J.; Haber, P.; Morley, K.C. Alcohol use disorder and circulating cytokines: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 89, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, H.; Liu, D.; Li, X.; He, L.; Pan, J.; Shen, Q.; Peng, Y. CB2R activation ameliorates late adolescent chronic alcohol exposure-induced anxiety-like behaviors during withdrawal by preventing morphological changes and suppressing NLRP3 inflammasome activation in prefrontal cortex microglia in mice. Brain Behav. Immun. 2023, 110, 60–79. [Google Scholar] [CrossRef]
- Johns, A.E.; Taga, A.; Charalampopoulou, A.; Gross, S.K.; Rust, K.; McCray, B.A.; Sullivan, J.M.; Maragakis, N.J. Exploring P2X7 receptor antagonism as a therapeutic target for neuroprotection in an hiPSC motor neuron model. Stem Cells Transl. Med. 2024, 13, 1198–1212. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Wang, Q.; Ao, H.; Shoblock, J.R.; Lord, B.; Aluisio, L.; Fraser, I.; Nepomuceno, D.; Neff, R.A.; Welty, N.; et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br. J. Pharmacol. 2013, 170, 624–640. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, C.; García-Magro, N.; Negredo, P.; Avendaño, C.; Bhattacharya, A.; Ceusters, M.; García, A.G. Chronic administration of P2X7 receptor antagonist JNJ-47965567 delays disease onset and progression, and improves motor performance in ALS SOD1G93A female mice. Dis. Models Mech. 2020, 13, dmm045732. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; de Diego-Garcia, L.; Vegliante, G.; Moreno, O.; Gil, B.; Ramos-Cabrer, P.; Mitra, M.; Martin, A.F.; Menendez-Mendez, A.; Wang, Y.; et al. P2X7R antagonism suppresses long-lasting brain hyperexcitability following traumatic brain injury in mice. Theranostics 2025, 15, 1399–1419. [Google Scholar] [CrossRef]
- Eren-Yazicioglu, C.Y.; Yigit, A.; Dogruoz, R.E.; Yapici-Eser, H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front. Behav. Neurosci. 2021, 14, 614884. [Google Scholar] [CrossRef]
- Withey, S.L.; Deshpande, H.U.; Cao, L.; Bergman, J.; Kohut, S.J. Effects of chronic naltrexone treatment on relapse-related behavior and neural responses to fentanyl in awake nonhuman primates. Psychopharmacology 2024, 241, 2289–2302. [Google Scholar] [CrossRef]
- Simms-Williams, N.; Treves, N.; Yin, H.; Lu, S.; Yu, O.; Pradhan, R.; Renoux, C.; Suissa, S.; Azoulay, L. Effect of combination treatment with glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors on incidence of cardiovascular and serious renal events: Population based cohort study. BMJ 2024, 385, e078242. [Google Scholar] [CrossRef]
- Mousavi, A.; Shojaei, S.; Soleimani, H.; Semirani-Nezhad, D.; Ebrahimi, P.; Zafari, A.; Ebrahimi, R.; Roozbehi, K.; Harrison, A.; Syed, M.A.; et al. Safety, efficacy, and cardiovascular benefits of combination therapy with SGLT-2 inhibitors and GLP-1 receptor agonists in patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2025, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.E. Combining Glucagon-Like Peptide 1 Receptor Agonists and Sodium–Glucose Cotransporter 2 Inhibitors to Target Multiple Organ Defects in Type 2 Diabetes. Diabetes Spectr. 2020, 33, 165–174. [Google Scholar] [CrossRef]
- Melbourne, J.K.; Chandler, C.M.; Van Doorn, C.E.; Bardo, M.T.; Pauly, J.R.; Peng, H.; Nixon, K. Primed for addiction: A critical review of the role of microglia in the neurodevelopmental consequences of adolescent alcohol drinking. Alcohol Clin. Exp. Res. 2021, 45, 1908–1926. [Google Scholar] [CrossRef]
- Neupane, S.P.; Bramness, J.G.; Lien, L. Comorbid post-traumatic stress disorder in alcohol use disorder: Relationships to demography, drinking and neuroimmune profile. BMC Psychiatry 2017, 17, 312. [Google Scholar] [CrossRef] [PubMed]
- Zillich, L.; Poisel, E.; Frank, J.; Foo, J.C.; Friske, M.M.; Streit, F.; Sirignano, L.; Heilmann-Heimbach, S.; Heimbach, A.; Hoffmann, P.; et al. Multi-omics signatures of alcohol use disorder in the dorsal and ventral striatum. Transl. Psychiatry 2022, 12, 190. [Google Scholar] [CrossRef]
- Hillmer, A.T.; Sandiego, C.M.; Hannestad, J.; Angarita, G.A.; Kumar, A.; McGovern, E.M.; Huang, Y.; O’Connor, K.C.; Carson, R.E.; O’Malley, S.S.; et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol. Psychiatry 2017, 22, 1759–1766. [Google Scholar] [CrossRef]
- Carlson, E.R.; Melbourne, J.K.; Nixon, K. Pharmacological depletion of microglia protects against alcohol-induced corticolimbic neurodegeneration during intoxication in male rats. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Miguel-Hidalgo, J.J. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front. Mol. Neurosci. 2018, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Adermark, L.; Bowers, M.S. Disentangling the Role of Astrocytes in Alcohol Use Disorder. Alcohol Clin. Exp. Res. 2016, 40, 1802–1816. [Google Scholar] [CrossRef] [PubMed]
Finding | Male | Female | Reference |
---|---|---|---|
Microglial density in the amygdala | Increased after EtOH at the chronic stage | Higher baseline and stress-induced increases | [17,26,57] |
Cytokine expression | Moderate proinflammatory response | Heightened proinflammatory signaling | [17,57] |
Behavioral vulnerability | Impulsivity and anxiety-like behaviors | Greater sensitivity to stress-induced drinking | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.-H.; Zuo, W.; Chaudhry, F.; Chinn, L. Neuroimmune Mechanisms in Alcohol Use Disorder: Microglial Modulation and Therapeutic Horizons. Psychoactives 2025, 4, 33. https://doi.org/10.3390/psychoactives4030033
Ye J-H, Zuo W, Chaudhry F, Chinn L. Neuroimmune Mechanisms in Alcohol Use Disorder: Microglial Modulation and Therapeutic Horizons. Psychoactives. 2025; 4(3):33. https://doi.org/10.3390/psychoactives4030033
Chicago/Turabian StyleYe, Jiang-Hong, Wanhong Zuo, Faraz Chaudhry, and Lawrence Chinn. 2025. "Neuroimmune Mechanisms in Alcohol Use Disorder: Microglial Modulation and Therapeutic Horizons" Psychoactives 4, no. 3: 33. https://doi.org/10.3390/psychoactives4030033
APA StyleYe, J.-H., Zuo, W., Chaudhry, F., & Chinn, L. (2025). Neuroimmune Mechanisms in Alcohol Use Disorder: Microglial Modulation and Therapeutic Horizons. Psychoactives, 4(3), 33. https://doi.org/10.3390/psychoactives4030033