Unlocking the Potential of Meldonium: From Performance Enhancement to Therapeutic Insights
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Pharmacology of Meldonium
3.2. Clinical and Therapeutic Applications
3.2.1. Performance Enhancement Effects
3.2.2. Neuroprotective Effects and Other Indications
3.2.3. Psychiatric Benefits and Potential Treatment for Mental Health Conditions
3.2.4. Understanding the Safety Profile of Meldonium
3.3. Regulatory Challenges and Limitations in Clinical Research
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dambrova, M.; Makrecka-Kuka, M.; Vilskersts, R.; Makarova, E.; Kuka, J.; Liepinsh, E. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacol. Res. 2016, 113, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Mattiuzzi, C. Misuse of the metabolic modulator meldonium in sports. J. Sport Health Sci. 2017, 6, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.; de Araújo, A.; Ribeiro, W.; Silva, D.; Duarte, A.C.; de Sousa, V.; Pereira, H.G. Screening method of mildronate and over 300 doping agents by reversed-phase liquid chromatography-high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2021, 195, 113870. [Google Scholar] [CrossRef]
- Schobersberger, W.; Dünnwald, T.; Gmeiner, G.; Blank, C. Story behind meldonium-from pharmacology to performance enhancement: A narrative review. Br. J. Sports Med. 2017, 51, 22–25. [Google Scholar] [CrossRef]
- Berlato, D.G.; Bairros, A.V.D. Meldonium: Pharmacological, toxicological, and analytical aspects. Toxicol. Res. Appl. 2020, 4, 239784732091514. [Google Scholar] [CrossRef]
- Liu, F.; Sui, X.; Wang, Q.; Li, J.; Yang, W.; Yang, Y.; Xiao, Z.; Sun, Y.; Guo, X.; Yang, X.; et al. Insights into the pharmacodynamics and pharmacokinetics of meldonium after exposure to acute high altitude. Front. Pharmacol. 2023, 14, 1119046. [Google Scholar] [CrossRef] [PubMed]
- Knych, H.; Stanley, S.; McKemie, D.; Arthur, R.; Bondesson, U.; Hedeland, M.; Thevis, M.; Kass, P. Pharmacokinetics and pharmacodynamics of meldonium in exercised thoroughbred horses. Drug Test. Anal. 2017, 9, 1392–1399. [Google Scholar] [CrossRef]
- Rabin, O.; Uiba, V.; Miroshnikova, Y.; Zabelin, M.; Samoylov, A.; Karkischenko, V.; Semyonov, S.; Astrelina, T.; Razinkin, S. Meldonium long-term excretion period and pharmacokinetics in blood and urine of healthy athlete volunteers. Drug Test. Anal. 2018, 11, 554–566. [Google Scholar] [CrossRef]
- The Health Products Regulatory Authority (HPRA). Summary of Product Characteristics. 15 December 2023. Available online: https://www.hpra.ie/img/uploaded/swedocuments/Licence_PA22992-025-001_15122023133518.pdf (accessed on 22 March 2024).
- WADA. NOTICE—MELDONIUM. 11 April 2016. Available online: https://www.wada-ama.org/sites/default/files/resources/files/wada-2016-04-12-meldonium-notice-en.pdf (accessed on 22 March 2024).
- Pidpruzhnykov, Y.V.; Sabko, V.E.; Iurchenko, V.V.; Zupanets, I.A. UPLC-MS/MS method for bioequivalence study of oral drugs of meldonium. Biomed. Chromatogr. 2012, 26, 599–605. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, J.; Wang, Z.; Wang, J.; Liu, Y.; Luo, Z.; Wen, A. Determination of mildronate by LC-MS/MS and its application to a pharmacokinetic study in healthy Chinese volunteers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 551–556. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, L.J.; Yang, J.; Zhang, Q.Z.; Peng, W.X. Nonlinear pharmacokinetic properties of mildronate capsules: A randomized, open-label, single- and multiple-dose study in healthy volunteers. Fundam. Clin. Pharmacol. 2013, 27, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Forsdahl, G.; Jančić-Stojanović, B.; Anđelković, M.; Dikić, N.; Geisendorfer, T.; Jeitler, V.; Gmeiner, G. Urinary excretion studies of meldonium after multidose parenteral application. J. Pharm. Biomed. Anal. 2018, 161, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Markoulides, M.; Chowdhury, R.; Schofield, C. Structural analysis of the 2-oxoglutarate binding site of the circadian rhythm linked oxygenase jmjd5. Sci. Rep. 2022, 12, 20680. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, M.; Turkina, S.; Lopushkova, Y. New data on well-known drug: Focus on meldonium. Meditsinskiy Sov. 2021, 14, 110–117. [Google Scholar] [CrossRef]
- Liepinsh, E.; Makarova, E.; Sevostjanovs, E.; Hartmane, D.; Cirule, H.; Zharkova-Malkova, O.; Grinberga, S.; Dambrova, M. Carnitine and γ-butyrobetaine stimulate elimination of meldonium due to competition for octn2-mediated transport. Basic Clin. Pharmacol. Toxicol. 2017, 120, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, F.; Yang, W.; Sun, Y.; Wang, X.; Sui, X.; Yang, J.; Wang, Q.; Song, W.; Zhang, M.; et al. Meldonium ameliorates hypoxia-induced lung injury and oxidative stress by regulating platelet-type phosphofructokinase-mediated glycolysis. Front. Pharmacol. 2022, 13, 863451. [Google Scholar] [CrossRef] [PubMed]
- Bezuglov, E.; Talibov, O.; Butovskiy, M.; Khaitin, V.; Aчкacoв, E.; Waśkiewicz, Z.; Lazarev, A. The inclusion in WADA prohibited list is not always supported by scientific evidence: A narrative review. Asian J. Sports Med. 2021, 12, e110753. [Google Scholar] [CrossRef]
- Greenblatt, H.; Greenblatt, D. Meldonium (mildronate): A performance-enhancing drug? Clin. Pharmacol. Drug Dev. 2016, 5, 167–169. [Google Scholar] [CrossRef]
- Cristo, F.; Finicelli, M.; Digilio, F.; Paladino, S.; Valentino, A.; Scialò, F.; D’Apolito, M.; Saturnino, C.; Galderisi, U.; Giordano, A.; et al. Meldonium improves huntington’s disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression. J. Cell. Physiol. 2018, 234, 9233–9246. [Google Scholar] [CrossRef]
- Fulas, O.; Laferrière, A.; Stein, R.; Bohle, D.; Coderre, T. Topical combination of meldonium and n-acetyl cysteine relieves allodynia in rat models of crps-1 and peripheral neuropathic pain by enhancing no-mediated tissue oxygenation. J. Neurochem. 2020, 152, 570–584. [Google Scholar] [CrossRef]
- Chaynikov, P.N.; Cherkasova, V.G.; Solomatina, N.V.; Kulesh, A.M. The effectiveness of Mildronate® in enhancing mental performance and correcting psychoemotional status in young ice hockey league players. Ural Med. J. 2015, 131, 56–61. Available online: http://elib.usma.ru/handle/usma/14012 (accessed on 8 March 2024).
- Watson, C.; Stone, G.; Overbeek, D.; Chiba, T.; Burns, M. Performance-enhancing drugs and the olympics. J. Intern. Med. 2022, 291, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.; Hancu, G.; Popescu, G.; Lungu, I. Doping in sports, a never-ending story? Adv. Pharm. Bull. 2018, 8, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Bezrukov, V.; Sykalo, N.; Kuprash, L.; Panteleymonova, T. Treatment optimization of the age-related cardiovascular and neurological pathology using known metabolic, cytoprotective, vasodilatory action substances. Rev. Ageing Longev. 2022, 4, 114–129. [Google Scholar] [CrossRef]
- Todorović, Z.; Đurašević, S.; Stojković, M.; Grigorov, I.; Pavlović, S.; Jasnić, N.; Tosti, T.; Macut, J.B.; Thiemermann, C.; Đorđević, J. Lipidomics provides new insight into pathogenesis and therapeutic targets of the ischemia—Reperfusion injury. Int. J. Mol. Sci. 2021, 22, 2798. [Google Scholar] [CrossRef] [PubMed]
- Novikov, V.; Levchenkova, O.; Ivantsova, E.; Vorobieva, V. Mitochondrial dysfunctions and antihypoxants. Rev. Clin. Pharmacol. Drug Ther. 2020, 17, 31–42. [Google Scholar] [CrossRef]
- Tanashyan, M.M.; Maksimova MYu Shabalina, A.A.; Fedin, P.A.; Medvedev, R.B.; Bolotova, T.A. Chronic cerebrovascular diseases and neuroprotection: The clinical efficacy of meldonium (Mildronat). Zhurnal Nevrol. i Psikhiatrii Im. SS Korsakova 2020, 120, 14–21. (In Russian) [Google Scholar] [CrossRef]
- Filippova, A.V.; Pereverzev, A.P.; Ebzeeva, E.Y.; Ostroumova, O.D. Mildronate. Chronic fatigue syndrome. Med. Alph. 2020, 7, 15–20. (In Russian) [Google Scholar] [CrossRef]
- Tretzel, L.; Görgens, C.; Geyer, H.; Thomas, A.; Dib, J.; Guddat, S.; Pop, V.; Schänzer, W.; Thevis, M. Analyses of meldonium (mildronate) from blood, dried blood spots (dbs), and urine suggest drug incorporation into erythrocytes. Int. J. Sports Med. 2016, 37, 500–502. [Google Scholar] [CrossRef]
- Sjakste, N.; Gutcaits, A.; Kalvinsh, I. Mildronate: An Antiischemic Drug for Neurological Indications. CNS Drug Rev. 2005, 11, 151–168. [Google Scholar] [CrossRef]
- Mytrokhina, O.; Kuryata, O. AB0828 Effects of meldonium for chronic heart failure after miocarditis in patients with connective tissue disease. Ann. Rheum. Dis. 2013, 71 (Suppl. S3), 686. [Google Scholar] [CrossRef]
- Beitnere, U.; van Groen, T.; Kumar, A.; Jansone, B.; Klusa, V.; Kadish, I. Mildronate improves cognition and reduces amyloid-β pathology in transgenic Alzheimer’s disease mice. J. Neurosci. Res. 2014, 92, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Zvejniece, L.; Svalbe, B.; Makrecka, M.; Liepinsh, E.; Kalvinsh, I.; Dambrova, M. Mildronate exerts acute anticonvulsant and antihypnotic effects. Behav. Pharmacol. 2010, 21, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Turkina, S.V.; Poletaeva, L.V.; Inozemtseva, M.A. Use of Meldonium in Comprehensive Treatment of Patients with Type 2 Diabetes Associated with Peripheral Neuropathy. Role of Insulin Resistance. J. Volgogr. State Med. Univ. 2015, 12, 120–123. Available online: https://www.volgmed.ru/uploads/journals/articles/1467893551-vestnik-2015-2-2425.pdf (accessed on 10 March 2024).
- Federal Medical-Biological Agency. Formulary Guide on the Use of Medications in Youth Sports; MBP-Agency: Luton, UK, 2014; Available online: http://centralsportschool.ru/f/formulyarnoe_rukovodstvo_dlya_vrachej_sportivnyh_uchrezhdenij.pdf (accessed on 22 March 2014).
- Ministry of Health of the Russian Federation. Instructions for the Use of the Medication Meldonium Organica; AO “Organica”; Ministry of Health of the Russian Federation: Moscow, Russia, 2021; Available online: https://organica-nk.ru/wp-content/uploads/2019/04/Izmneniya-v-instruktsii-ot-29.09.21-250mg.pdf (accessed on 22 March 2024).
- PЛC®. Meльдoний (Meldonium). Available online: https://www.rlsnet.ru/drugs/meldonii-35454 (accessed on 14 March 2024).
- Pupure, J.; Rumaks, J.; Isajevs, S.; Korzakova, O.; Puncule, J.; Svirskis, S.; Kalviņš, I.; Kluša, V. Mildronate’s protective effects in the peripheral nervous system: Stavudine-induced neuropathy and formalin-induced inflammation. Proc. Latv. Acad. Sciences. Sect. B. Nat. Exact Appl. Sci. 2010, 64, 114–118. [Google Scholar] [CrossRef]
- Frantsuzova, T.I.; Chistyakov, S.I.; Balashov, V.P.; Ovsyannikova, L.A. Pharmacological methods of preventing stress-induced conditions in experiments. Proceedings of Higher Educational Institutions. Volga Reg. Med. Sci. 2010, 4, 26–35. Available online: https://cyberleninka.ru/article/n/farmakologicheskie-sposoby-profilaktiki-stress-indutsirovannyh-sostoyaniy-v-eksperimente (accessed on 12 March 2024).
- Stoenica, L.; Senkov, O.; Gerardy-Schahn, R.; Weinhold, B.; Schachner, M.; Dityatev, A. In Vivo Synaptic Plasticity in the Dentate Gyrus of Mice Deficient in the Neural Cell Adhesion Molecule NCAM or Its Polysialic Acid. Eur. J. Neurosci. 2006, 23, 2255–2264. [Google Scholar] [CrossRef]
- Klusa, V.; Beitnere, U.; Pupure, J.; Isajevs, S.; Rumaks, J.; Svirskis, S.; Dzirkale, Z.; Kalvinsh, I. Mildronate and its neuroregulatory mechanisms: Targeting the mitochondria, neuroinflammation, and protein expression. Medicina 2013, 49, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Statsenko, M.E.; Nedogoda, S.V.; Turkina, S.V.; Tyshchenko, I.A.; Poletaeva, L.V.; Chumachok, E.V.; Ledyaeva, A.A.; Tsoma, V.V. Possibilities of mildronate in the correction of cognitive impairment in elderly patients with arterial hypertension. Russ. J. Cardiol. 2011, 4, 91–95. Available online: https://cyberleninka.ru/article/n/vozmozhnosti-mildronata-v-korrektsii-kognitivnyh-narusheniy-u-patsientov-s-arterialnoy-gipertenziey-pozhilogo-vozrasta (accessed on 11 March 2024).
- Tynterova, A.M.; Belousova, Y.D.; Reznik, E.Y. Clinical characteristics and metabolic therapy of fatigue in the acute and early recovery periods of ischemic stroke. Zhurnal Nevrol. i psikhiatrii Im. SS Korsakova 2023, 123, 94–100. (In Russian) [Google Scholar] [CrossRef]
- Chukhlovina, M.L. The use of mildronate in ischemic stroke in young individuals. Med. Perspect. 2008, 13, 52–56. Available online: https://cyberleninka.ru/article/n/primenenie-mildronata-pri-ishemicheskom-insulte-u-lits-molodogo-vozrasta (accessed on 11 March 2024).
- Popova, O.V.; Nureev, I.T.; Trukhina, S.I.; Shushkanova, E.G.; Trukhin, A.N.; Tsirkin, V.I.; Zlokazova, M.V. Features of higher mental functions, electrical brain activity, and learning success in adolescents and students with signs of ADHD. Vyatka Med. Bull. 2009, 6, 77–81. [Google Scholar]
- Shorikova, A.I.; Filippova, E.V. The Use of Various Medicinal Preparations in the Therapy of Chronic Alcoholism. In Current Issues in Modern Medical Science and Healthcare: Proceedings of the VI International Scientific and Practical Conference of Young Scientists and Students Dedicated to the Year of Science and Technology, Ekaterinburg, Russia, 8–9 April 2021; Ural State Medical University: Ekaterinburg, Russia, 2021; Volume 2, pp. 1164–1169. Available online: http://elib.usma.ru/handle/usma/6069 (accessed on 12 March 2024).
- Petrov, V.M.; Zakharov, A.G.; Zamuraeva, L.V. Changes in some physiological indicators with prolonged alcohol consumption and their correction by mildronate. Bull. KRSU 2011, 11, 109–113. Available online: http://lib.krsu.edu.kg/uploads/files/public/3262.pdf (accessed on 10 March 2024).
- Petrov, V.M.; Proshchenko, D.A.; Kabonina, O.A. The Influence of Alcohol and Mildronate on the Blood Coagulation System under Low- and High-Altitude Conditions. Bull. Ural. State Med. Univ. 2017, 4, 66–70. Available online: http://elib.usma.ru/bitstream/usma/419/1/usmu_vestnik_2017_4_022.pdf (accessed on 10 March 2024).
- Axmedov, S.J. Effects of the drug Mildronate. Innov. Dev. Educ. Act. 2023, 2, 40–59. [Google Scholar] [CrossRef]
- Adami, P.E.; Koutlianos, N.; Baggish, A.; Bermon, S.; Cavarretta, E.; Deligiannis, A.; Furlanello, F.; Kouidi, E.; Marques-Vidal, P.; Niebauer, J.; et al. Cardiovascular effects of doping substances, commonly prescribed medications and ergogenic aids in relation to sports: A position statement of the sport cardiology and exercise nucleus of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, J.A.A.C.; Henning, A.; Cohen, A.F.; Kayser, B. Dealing with doping. A plea for better science, governance and education. Br. J. Clin. Pharmacol. 2022, 88, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Jargin, S. Drugs and dietary supplements with unproven effects in research and practice. J. Complement. Med. Res. 2019, 10, 27. [Google Scholar] [CrossRef]
- Vilskersts, R.; Kigitovica, D.; Korzh, S.; Videja, M.; Vilks, K.; Cirule, H.; Skride, A.; Makrecka-Kuka, M.; Liepinsh, E.; Dambrova, M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int. J. Mol. Sci. 2021, 23, 45. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, G.; Zhao, J.; Li, D.; Yan, X.; Liu, J.; Liu, X.; Zhao, H.; Xia, J.; Zhang, X.; et al. Efficacy and safety of mildronate for acute ischemic stroke: A randomized, double-blind, active-controlled phase II multicenter trial. Clin. Drug Investig. 2013, 33, 755–760. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, J.; Peng, W.; Wang, X.; Chen, Z.; Tang, H.; Liang, Y.; Ma, Z.; Chen, J.; Chen, X.; et al. Single- and Multiple-dose Pharmacokinetic, Safety and Tolerability Study of Mildronate Injection in Healthy Chinese Subjects Pharmacokinetic of Mildronate Injection. Drug Res. 2016, 66, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Arduini, A.; Zammit, V.A. A tennis lesson: Sharp practice in the science behind the Sharapova case. Postgrad. Med. J. 2016, 92, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Kirimoto, T.; Asaka, N.; Hayashi, Y.; Maeda, T.; Irimura, K.; Matsuura, N. MET-88: SR Ca2+-Uptake Stimulator for Treating Chronic Heart Failure. Cardiovasc. Drug Rev. 2006, 17, 75–86. [Google Scholar] [CrossRef]
- Görgens, C.; Guddat, S.; Dib, J.; Geyer, H.; Schänzer, W.; Thevis, M. Mildronate (Meldonium) in Professional Sports—Monitoring Doping Control Urine Samples Using Hydrophilic Interaction Liquid Chromatography—High Resolution/High Accuracy Mass Spectrometry. Drug Test. Anal. 2015, 7, 973–979. [Google Scholar] [CrossRef]
- Stuart, M.; Schneider, C.; Steinbach, K. Meldonium Use by Athletes at the Baku 2015 European Games: Table 1. Br. J. Sports Med. 2016, 50, 694–698. [Google Scholar] [CrossRef] [PubMed]
- What Are the Dangers of Meldonium? Available online: https://www.mngz.ru/russia-world-sensation/3825443-chem-opasen-meldoniy.html (accessed on 26 April 2024). (In Russian).
- Kalinin, D. Factor XII(a) inhibitors: A review of the patent literature. Expert Opin. Ther. Pat. 2021, 31, 1155–1176. [Google Scholar] [CrossRef]
- Liepinsh, E.; Skapare, E.; Svalbe, B.; Makrecka, M.; Cirule, H.; Dambrova, M. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. Eur. J. Pharmacol. 2011, 658, 277–283. [Google Scholar] [CrossRef]
- Ministry of Health of the Republic of Belarus. State Institution “Center for Expertise and Testing in Healthcare”. Instructions for Use of Meldonium Farmland. 21 September 2020. Available online: https://www.rceth.by/NDfiles/instr/20_09_2389_s.pdf (accessed on 26 April 2024).
- Ryashentseva, A.; Gorbunov, A.; The Negative Influence of Meldonium on the Human Body. Center for Scientific Cooperation “Interactive Plus”. 2016, pp. 1–5. Available online: https://interactive-plus.ru/e-articles/303/Action303-80823.pdf (accessed on 14 March 2024). (In Russian).
- Cordiner, R. Meldonium. Pract. Diabetes 2016, 33, 330–331a. [Google Scholar] [CrossRef]
- Hughes, D. Comment: Meldonium and the WADA Prohibited List. Aust. Prescr. 2016, 39, 102. [Google Scholar] [CrossRef]
- Pitsiladis, Y.; Wang, G.; Lacoste, A.; Schneider, C.; Smith, A.D.; Di Gianfrancesco, A.; Pigozzi, F. Make sport great again: The use and abuse of the therapeutic use exemptions process. Curr. Sports Med. Rep. 2017, 6, 123–125. [Google Scholar] [CrossRef]
- Geltzer, A. When the standards aren’t standard: Evidence-based medicine in the Russian context. Soc. Sci. Med. 2009, 68, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Chirkova, A.; Petrenko, A.; Vasilyev, P. Testing Meldonium: Assessing Soviet pragmatic alternatives to the randomized controlled trial. Clin. Trials 2021, 18, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Dzerve, V.; MILSS I Study Group. A dose-dependent improvement in exercise tolerance in patients with stable angina treated with mildronate: A clinical trial “MILSS I”. Medicina 2011, 47, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Kaye, A. Response to “off-label drug use. Am. J. Med. Qual. 2016, 32, 109. [Google Scholar] [CrossRef]
- Meher, B.; Das, S.; Mohanty, R. Meldonium: Drug which brought disrepute to sport. Int. J. Basic. Clin. Pharmacol. 2017, 6, 1841. [Google Scholar] [CrossRef]
- Butrina, L.V. Optimization of Pharmacotherapy for Asthenic Syndrome in Patients with Somatic Pathology. Doctoral Dissertation, Volgograd State Medical University, Volgograd, Russia, 2004. Available online: https://freereferats.ru/advanced_search_result.php?keywords=01004297681 (accessed on 26 April 2024).
Pharmacokinetic Aspect (s) | Description | References |
---|---|---|
Absorption | After oral intake, it is rapidly absorbed, with a bioavailability of 78%, and the Tmax in plasma is 1–2 h. Food intake prolongs the time to reach maximum concentration (Tmax) but does not impact the maximum concentration (Cmax). | [9] |
Distribution | Meldonium concentration in the blood plasma peaks within 1 to 2 h after administration. Cmax and AUC rise with dose proportionality. | [9] |
Biotransformation | Meldonium undergoes hepatic metabolism primarily through gamma-butyrobetaine hydroxylase (BBOX), leading to the formation of various metabolites, including succinic acid, the main metabolite detected in plasma. | [5,9] |
Elimination | Renal excretion is vital for removing meldonium and its metabolites, showing two distinct phases in elimination curves: an initial phase of rapid excretion, with a half-life estimated to be between 5 and 15 h, followed by a subsequent, more prolonged elimination phase with a half-life exceeding 100 h. | [9,10] |
Indications | Contraindications |
---|---|
Comprehensive therapy of ischemic heart disease (angina, myocardial infarction) | Hypersensitivity to the components of the medication |
Chronic Heart Failure and cardiomyopathies | Increased intracranial pressure (in cases of venous outflow disorders and intracranial tumors) |
Comprehensive therapy of acute and chronic cerebrovascular disorders | Age under 18 years (efficacy and safety not established) |
Hemophthalmos and retinal hemorrhages of various etiologies, thrombosis of the central retinal vein and its branches, and retinopathies of various etiologies (diabetic, hypertensive). | Pregnancy |
Reduced performance; mental and physical overloads (including in athletes). | Breastfeeding period |
Withdrawal syndrome in alcohol use disorder | Unstable liver and/or kidney diseases |
Indication(s) | Administration and Dosage |
---|---|
Ischemic heart disease (myocardial infarction) | IV bolus of 0.5–1.0 g per day |
Stable angina (chronic heart failure) and cardiomyopathy | IV bolus of 0.5–1.0 g per day or IM at a dose of 0.5 g 1–2 times a day for 10–14 days, followed by oral administration. The total course of treatment is 4–6 weeks. |
Cerebral Circulatory Disorders | In the acute phase: IV bolus of 0.5 g once a day for 10 days, then switching to oral administration of 0.5–1 g. The total course of treatment is 4–6 weeks. In chronic cerebral circulatory insufficiency: IM/IV once a day for 10 days, then orally. The total course of treatment is 4–6 weeks. |
Hemophthalmos, retinal hemorrhages, thrombosis of the central retinal vein and its branches, and various etiologies of retinopathies (diabetic, hypertensive) | Parabulbarly at a dose of 0.05 g for 10 days. |
Mental and Physical Exhaustion of various etiologies | IM/IV once a day at a dose of 0.5 g. The course of treatment is 10–14 days. Treatment may be repeated every 2–3 weeks if necessary. |
Alcohol Use Disorder | IM/IV twice a day at a dose of 0.5 g. The course of treatment is 7–10 days. |
Authors | Description of Findings |
---|---|
Jargin, 2019 [54] | Considering the reduced accessibility of ATP as an energy source due to decreased carnitine levels, meldonium could potentially lead to cell damage and diminished heart function in cases of heart failure and myocardial infarction. |
Berlato and Bairros, 2020 [5] | There have been no documented cases of acute or chronic meldonium toxicity in humans. |
Vilskersts et al., 2021 [55] | Meldonium treatment prevents RV and LV systolic dysfunction by improving mitochondrial function in models resembling cardiovascular issues seen in COVID-19 patients. |
Zhu et al., 2013 [56] | The administration of meldonium via injection is equally effective and safe as using Cinepazide injections in treating acute stroke. |
Schobersberger et al., 2017 [4] | Meldonium has proven beneficial in cardiovascular, neurological, and metabolic diseases for its anti-ischemic and cardioprotective properties, without major side effects. |
Zhao et al., 2016 [57] | The medication is safe and well-tolerated within a dosage range from 250 to 750 mg. |
Heuberger et al., 2022 [53] | Use of meldonium is associated with stomach or esophageal burning, muscle spasms, dizziness, tension-induced discomfort, depression, sedation or drowsiness, rapid heart rate, vision disturbances, appetite loss, and increased appetite, which are among the potential side effects. |
Adami et al., 2022 [52] | Athletes have reported adverse effects such as allergic reactions (skin redness, itching, hives, rash, or angioedema), digestive issues, rapid heartbeat, and changes in blood pressure (either increase or decrease). |
Arduini and Zammit, 2016 [58] | WADA added meldonium to the list of banned substances due to its real danger for athletes who may overdose and lower intracellular carnitine to pathological levels. |
Drug–Drug Interactions | Description |
---|---|
Glyceryl trinitrate | Meldonium could potentially enhance the effect [9]. |
Nifedipine | Meldonium could potentially enhance the effect [9]. Potential additive hypotensive effect |
Beta-blockers | Meldonium could potentially enhance the effect [9]. Potential additive hypotensive effect |
Other hypotensive agents and peripheral vasodilators | Meldonium could potentially enhance the effect [9]. |
Anticoagulants | Synergistic therapeutic combination comprising meldonium acetylsalicylate and warfarin sodium for use as an anticoagulant agent [63]. Potential increased risk of bleeding due to additive effects. |
Antidiabetic agents (e.g., insulin, metformin) | Possible additive hypoglycemic effect, requiring dose adjustments [64]. |
HIV medications | Meldonium exhibits a protective effect against efavirenz-induced cardio- and neurotoxicity [65]. |
Other agents | An overdose of meldonium may exacerbate the cardiotoxicity of cyclophosphamide [65]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellman, V. Unlocking the Potential of Meldonium: From Performance Enhancement to Therapeutic Insights. Psychoactives 2024, 3, 235-247. https://doi.org/10.3390/psychoactives3020015
Bellman V. Unlocking the Potential of Meldonium: From Performance Enhancement to Therapeutic Insights. Psychoactives. 2024; 3(2):235-247. https://doi.org/10.3390/psychoactives3020015
Chicago/Turabian StyleBellman, Val. 2024. "Unlocking the Potential of Meldonium: From Performance Enhancement to Therapeutic Insights" Psychoactives 3, no. 2: 235-247. https://doi.org/10.3390/psychoactives3020015
APA StyleBellman, V. (2024). Unlocking the Potential of Meldonium: From Performance Enhancement to Therapeutic Insights. Psychoactives, 3(2), 235-247. https://doi.org/10.3390/psychoactives3020015