A Pilot Study on Burnout in Medical Students (BuMS) over an Academic Year
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection and Exclusion Criteria
2.2. Questionnaires and Surveys
2.3. Inflammatory Cytokine Panel
2.4. Heart Rate Variability
2.5. DNA Isolation
2.6. Leukocyte Telomere Length Assay
2.7. Data Management and Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Survey Results for Burnout, Stress, and Depression
3.3. Lifestyle Questionnaire
3.4. Inflammatory Cytokines
3.5. Heart Rate Variability
3.6. Leukocyte Telomere Length
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maslach, C.; Jackson, S.E.; Leiter, M.P. Maslach Burnout Inventory: Third edition. In Evaluating Stress: A Book of Resources; Scarecrow Education: Lanham, MD, USA, 1997; pp. 191–218. [Google Scholar]
- Maslach, C.; Jackson, S.E. The measurement of experienced burnout. J. Organ. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Boone, S.; Tan, L.; Dyrbye, L.N.; Sotile, W.; Satele, D.; West, C.P.; Sloan, J.; Oreskovich, M.R. Burnout and satisfaction with work-life balance among US physicians relative to the general US population. Arch. Intern. Med. 2012, 172, 1377–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotenstein, L.S.; Torre, M.; Ramos, M.A.; Rosales, R.C.; Guille, C.; Sen, S.; Mata, D.A. Prevalence of Burnout Among Physicians: A Systematic Review. JAMA 2018, 320, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- West, C.P.; Dyrbye, L.N.; Erwin, P.J.; Shanafelt, T.D. Interventions to prevent and reduce physician burnout: A systematic review and meta-analysis. Lancet 2016, 388, 2272–2281. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; West, C.P.; Dyrbye, L.N.; Trockel, M.; Tutty, M.; Wang, H.; Carlasare, L.E.; Sinsky, C. Changes in Burnout and Satisfaction with Work-Life Integration in Physicians During the First 2 Years of the COVID-19 Pandemic. Mayo Clin. Proc. 2022, 97, 2248–2258. [Google Scholar] [CrossRef]
- Ryan, E.; Hore, K.; Power, J.; Jackson, T. The relationship between physician burnout and depression, anxiety, suicidality and substance abuse: A mixed methods systematic review. Front. Public. Health 2023, 11, 1133484. [Google Scholar] [CrossRef]
- Menon, N.K.; Shanafelt, T.D.; Sinsky, C.A.; Linzer, M.; Carlasare, L.; Brady, K.J.S.; Stillman, M.J.; Trockel, M.T. Association of Physician Burnout With Suicidal Ideation and Medical Errors. JAMA Netw. Open 2020, 3, e2028780. [Google Scholar] [CrossRef] [PubMed]
- Brunsberg, K.A.; Landrigan, C.P.; Garcia, B.M.; Petty, C.R.; Sectish, T.C.; Simpkin, A.L.; Spector, N.D.; Starmer, A.J.; West, D.C.; Calaman, S. Association of Pediatric Resident Physician Depression and Burnout with Harmful Medical Errors on Inpatient Services. Acad. Med. 2019, 94, 1150–1156. [Google Scholar] [CrossRef]
- Arnsten, A.F.T.; Shanafelt, T. Physician Distress and Burnout, the Neurobiological Perspective. Mayo Clin. Proc. 2021, 96, 763. [Google Scholar] [CrossRef]
- Rodrigues, H.; Cobucci, R.; Oliveira, A.; Cabral, J.V.; Medeiros, L.; Gurgel, K.; Souza, T.; Gonçalves, A.K. Burnout syndrome among medical residents: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0206840. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, H.; Alsubaiei, A.; Abduljawad, S.; Alshatti, A.; Fekih-Romdhane, F.; Husni, M.; Jahrami, H. Prevalence of burnout in medical students: A systematic review and meta-analysis. Int. J. Soc. Psychiatry 2022, 68, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W. Validation and utility of a self-report version of PRIME-MD: The PHQ primary care study. Primary Care Evaluation of Mental Disorders. Patient Health Questionnaire. JAMA 1999, 282, 1737–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From Stress to Inflammation and Major Depressive Disorder: A Social Signal Transduction Theory of Depression. Psychol. Bull. 2014, 140, 774. [Google Scholar] [CrossRef] [Green Version]
- Hänsel, A.; Hong, S.; Cámara, R.J.A.; von Känel, R. Inflammation as a psychophysiological biomarker in chronic psychosocial stress. Neurosci. Biobehav. Rev. 2010, 35, 115–121. [Google Scholar] [CrossRef]
- Von Känel, R.; Bellingrath, S.; Kudielka, B.M. Association between burnout and circulating levels of pro- and anti-inflammatory cytokines in schoolteachers. J. Psychosom. Res. 2008, 65, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Grossi, G.; Perski, A.; Evengård, B.; Blomkvist, V.; Orth-Gomér, K. Physiological correlates of burnout among women. J. Psychosom. Res. 2003, 55, 309–316. [Google Scholar] [CrossRef]
- Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav. Immun. 2007, 21, 901–912. [Google Scholar] [CrossRef]
- Marsland, A.L.; Sathanoori, R.; Muldoon, M.F.; Manuck, S.B. Stimulated production of interleukin-8 covaries with psychosocial risk factors for inflammatory disease among middle-aged community volunteers. Brain Behav. Immun. 2007, 21, 218–228. [Google Scholar] [CrossRef]
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Fauce, S.R.; Effros, R.B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 2008, 22, 600–605. [Google Scholar] [CrossRef] [Green Version]
- Mathur, M.B.; Epel, E.; Kind, S.; Desai, M.; Parks, C.G.; Sandler, D.P.; Khazeni, N. Perceived Stress and Telomere Length: A Systematic Review, Meta-Analysis, and Methodologic Considerations for Advancing the Field. Brain Behav. Immun. 2016, 54, 158. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Epel, E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res. Rev. 2022, 73, 101507. [Google Scholar] [CrossRef] [PubMed]
- Lopizzo, N.; Tosato, S.; Begni, V.; Tomassi, S.; Cattane, N.; Barcella, M.; Turco, G.; Ruggeri, M.; Riva, M.A.; Pariante, C.M.; et al. Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events. Transl. Psychiatry 2017, 7, e1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, H.; Larson, M.G.; Venditti, F.J.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef] [Green Version]
- Lennartsson, A.K.; Jonsdottir, I.; Sjörs, A. Low heart rate variability in patients with clinical burnout. Int. J. Psychophysiol. 2016, 110, 171–178. [Google Scholar] [CrossRef]
- Kotov, A.V.; Revina, N.E. Heart rate variability during “alarm stage” of burnout syndrome in emergency doctors. Bull. Exp. Biol. Med. 2012, 153, 598–600. [Google Scholar] [CrossRef]
- Sun, G.; Shinba, T.; Kirimoto, T.; Matsui, T. An Objective Screening Method for Major Depressive Disorder Using Logistic Regression Analysis of Heart Rate Variability Data Obtained in a Mental Task Paradigm. Front. Psychiatry 2016, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Shinba, T.; Kariya, N.; Matsui, Y.; Ozawa, N.; Matsuda, Y.; Yamamoto, K.I. Decrease in heart rate variability response to task is related to anxiety and depressiveness in normal subjects. Psychiatry Clin. Neurosci. 2008, 62, 603–609. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, G. Hidden Signals-The History and Methods of Heart Rate Variability. Front. Public. Health 2017, 5, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montpetit, A.J.; Alhareeri, A.A.; Montpetit, M.; Starkweather, A.R.; Elmore, L.W.; Filler, K.; Mohanraj, L.; Burton, C.W.; Menzies, V.S.; Lyon, D.E.; et al. Telomere Length: A Review of Methods for Measurement. Nurs. Res. 2014, 63, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Smith, D.L.; Esteves, K.; Drury, S. Telomere length measurement by qPCR—Summary of critical factors and recommendations for assay design. Psychoneuroendocrinology 2019, 99, 271. [Google Scholar] [CrossRef]
- Akamine, R.; Yamamoto, T.; Watanabe, M.; Yamazaki, N.; Kataoka, M.; Ishikawa, M.; Ooie, T.; Baba, Y.; Shinohara, Y. Usefulness of the 5′ region of the cDNA encoding acidic ribosomal phosphoprotein P0 conserved among rats, mice, and humans as a standard probe for gene expression analysis in different tissues and animal species. J. Biochem. Biophys. Methods 2007, 70, 481–486. [Google Scholar] [CrossRef]
- Hudon, S.F.; Palencia Hurtado, E.; Beck, J.D.; Burden, S.J.; Bendixsen, D.P.; Callery, K.R.; Sorensen Forbey, J.; Waits, L.P.; Miller, R.A.; Nielsen, Ó.K.; et al. Primers to highly conserved elements optimized for qPCR-based telomere length measurement in vertebrates. Mol. Ecol. Resour. 2021, 21, 59–67. [Google Scholar] [CrossRef]
- Goglin, S.E.; Farzaneh-Far, R.; Epel, E.S.; Lin, J.; Blackburn, E.H.; Whooley, M.A. Change in Leukocyte Telomere Length Predicts Mortality in Patients with Stable Coronary Heart Disease from the Heart and Soul Study. PLoS ONE 2016, 11, e0160748. [Google Scholar] [CrossRef] [Green Version]
- Ridout, K.K.; Ridout, S.J.; Guille, C.; Mata, D.A.; Akil, H.; Sen, S. Physician Training Stress and Accelerated Cellular Aging. Biol. Psychiatry 2019, 86, 725. [Google Scholar] [CrossRef]
- Lin, J.; Cheon, J.; Brown, R.; Coccia, M.; Puterman, E.; Aschbacher, K.; Sinclair, E.; Epel, E.; Blackburn, E.H. Systematic and Cell Type-Specific Telomere Length Changes in Subsets of Lymphocytes. J. Immunol. Res. 2016, 2016, 5371050. [Google Scholar] [CrossRef] [Green Version]
- Gardner, M.; Bann, D.; Wiley, L.; Cooper, R.; Hardy, R.; Nitsch, D.; Martin-Ruiz, C.; Shiels, P.; Sayer, A.A.; Barbieri, M.; et al. Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol. 2014, 51, 15. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2021, 11, 1816. [Google Scholar] [CrossRef]
- Verhoeven, J.E.; Van Oppen, P.; Puterman, E.; Elzinga, B.; Penninx, B.W.J.H. The Association of Early and Recent Psychosocial Life Stress with Leukocyte Telomere Length. Psychosom. Med. 2015, 77, 882–891. [Google Scholar] [CrossRef] [Green Version]
- Puterman, E.; Lin, J.; Krauss, J.; Blackburn, E.H.; Epel, E.S. Determinants of telomere attrition over 1 year in healthy older women: Stress and health behaviors matter. Mol. Psychiatry 2015, 20, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Van Ockenburg, S.L.; Bos, E.H.; De Jonge, P.; Van Der Harst, P.; Gans, R.O.B.; Rosmalen, J.G.M. Stressful life events and leukocyte telomere attrition in adulthood: A prospective population-based cohort study. Psychol. Med. 2015, 45, 2975–2984. [Google Scholar] [CrossRef]
- Muntz, M.D.; Franco, J.; Ferguson, C.C.; Ark, T.K.; Kalet, A. Telehealth and Medical Student Education in the Time of COVID-19 and Beyond. Acad. Med. 2021, 96, 1655–1659. [Google Scholar] [CrossRef]
- Subramanian, T.; Rowland, K.J. Opportunities and Challenges in Medical Education During the COVID-19 Pandemic. Pediatr. Ann. 2022, 51, e319–e323. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Number of Participants | % | |
---|---|---|---|
Sex | Male | 4 | 44.4 |
Female | 5 | 55.6 | |
Age group (years) | <18 | 0 | 0.0 |
18–24 | 7 | 77.8 | |
>24 | 2 | 22.2 | |
Race | White | 7 | 77.8 |
Asian | 2 | 22.2 | |
Black | 0 | 0.0 | |
Native American or Alaskan Native | 0 | 0.0 | |
Native Hawaiian or Other Pacific Islander | 0 | 0.0 | |
Ethnicities | Non-Hispanic or Latino | 8 | 88.9 |
Hispanic or Latino | 1 | 11.1 |
Cytokine | Fall Semester (Mean ± SEM) | Spring Semester (Mean ± SEM) | Reference Range |
---|---|---|---|
TNF-α (pg/mL) | 7.2 ± 7.2 | 7.1 ± 7.1 | <7.2 |
IFN-γ (pg/mL) | Below detection threshold | Below detection threshold | <4.2 |
IL-1β (pg/mL) | 7.8 ± 7.8 | 8.7 ± 7.5 | <6.7 |
IL-2 (pg/mL) | 3.4 ± 3.4 | 3.0 ± 3.0 | <2.1 |
sIL-2R (pg/mL) | 420.6 ± 72.4 | 458.7 ± 68.0 | 175.4–858.2 |
IL-4 (pg/mL) | Below detection threshold | Below detection threshold | <2.2 |
IL-5 (pg/mL) | Below detection threshold | Below detection threshold | <2.1 |
IL-6 (pg/mL) | Below detection threshold | Below detection threshold | <2.0 |
IL-8 (pg/mL) | Below detection threshold | Below detection threshold | <3.0 |
IL-10 (pg/mL) | Below detection threshold | Below detection threshold | <2.8 |
IL-12 (pg/mL) | 3.0 ± 3.0 | 3.0 ± 3.0 | <1.9 |
IL-13 (pg/mL) | Below detection threshold | Below detection threshold | <2.3 |
IL-17 (pg/mL) | 6.4 ± 3.9 | 3.9 ± 2.6 | <1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashby, F.J.; Dodd, W.S.; Helm, E.W.; Stribling, D.; Spiryda, L.B.; Heldermon, C.D.; Xia, Y. A Pilot Study on Burnout in Medical Students (BuMS) over an Academic Year. Int. Med. Educ. 2023, 2, 161-174. https://doi.org/10.3390/ime2030016
Ashby FJ, Dodd WS, Helm EW, Stribling D, Spiryda LB, Heldermon CD, Xia Y. A Pilot Study on Burnout in Medical Students (BuMS) over an Academic Year. International Medical Education. 2023; 2(3):161-174. https://doi.org/10.3390/ime2030016
Chicago/Turabian StyleAshby, Frederick J., William S. Dodd, Emily W. Helm, Daniel Stribling, Lisa B. Spiryda, Coy D. Heldermon, and Yuxing Xia. 2023. "A Pilot Study on Burnout in Medical Students (BuMS) over an Academic Year" International Medical Education 2, no. 3: 161-174. https://doi.org/10.3390/ime2030016
APA StyleAshby, F. J., Dodd, W. S., Helm, E. W., Stribling, D., Spiryda, L. B., Heldermon, C. D., & Xia, Y. (2023). A Pilot Study on Burnout in Medical Students (BuMS) over an Academic Year. International Medical Education, 2(3), 161-174. https://doi.org/10.3390/ime2030016