Antimicrobial Resistance in Immunocompromised Outpatients: A Narrative Review of Current Evidence and Challenges
Abstract
1. Introduction
2. Immunocompromised Outpatients—A High-Risk Population
2.1. Types of Immunodeficiency and Representative Outpatient Groups
2.2. Antimicrobial Use Patterns in Immunocompromised Outpatients
3. Antimicrobial-Resistant Pathogens in Immunocompromised Outpatients
- Critical priority: Includes third-generation cephalosporin-resistant Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and carbapenem-resistant Enterobacterales (CRE).
- High priority: Includes Shigella spp., non-typhoidal Salmonella and fluoroquinolone-resistant Salmonella Typhi, methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Pseudomonas aeruginosa, and vancomycin-resistant Enterococcus faecium (VRE).
- Medium priority: Comprises ampicillin-resistant Haemophilus influenzae and macrolide-resistant Streptococcus pneumoniae.
- ▪
- Methicillin-resistant Staphylococcus aureus (MRSA): MRSA has resistance to one or more of the antibiotics, including cefoxitin, methicillin, and oxacillin. There can be asymptomatic proliferation of MRSA in the nose or skin or low-level infection of soft tissues. However, an intensive and sudden infection of the endocardium, blood, and surgical wound is possible. There is an assessment of 323,700 cases of infection and 10,600 cases of death attributable to MRSA among inpatients in the U.S. annually [36].
- ▪
- Drug-resistant, non-typhoidal Salmonella (NTS): Consuming polluted food or coming into contact with contaminated feces can transmit non-typhoidal Salmonella, leading to diarrhea, often accompanied by dysentery, fever, and abdominal cramps, with a significant risk of developing septic shock. Estimates suggest that non-typhoidal Salmonella causes 1.35 million cases and 420 related deaths annually in the U.S. Antimicrobial agents are responsible for 212,500 infection cases and 70 deaths [37].
- ▪
- Drug-resistant Salmonella typhi: Annually, there are an estimated eleven to twenty-one million cases of Salmonella typhi globally; approximately 5700 cases occur in the U.S., with 4100 exhibiting AMR, resulting in five or fewer fatalities each year. Salmonella typhi causes typhoid fever, which becomes more severe in the presence of headache, abdominal pain, and elevated fever. Severe infections sometimes lead to intestinal perforation, resulting in shock and mortality [38].
- ▪
- Multidrug-resistant Pseudomonas aeruginosa: Multidrug-resistant Pseudomonas aeruginosa, characterized by resistance to at least three classes of antimicrobial agents such as tazobactam/penicillin, carbapenems, aminoglycosides, fluoroquinolones, and extended-spectrum cephalosporins, is linked to infections arising from medical treatment, including pneumonia, surgical site infections (SSIs), urinary tract infections (UTIs), and bloodstream infections (BSIs). This pathogen predominantly affects immunocompromised or hospitalized patients and individuals with chronic lung disease, resulting in an estimated 32,600 infections and 2700 deaths among inpatients in the U.S. annually [36].
- ▪
- Vancomycin-resistant Enterococci (VRE): Severe infections in the UTIs, SSIs, BSIs, and so on arise from Gram-positive bacteria named enterococci. VRE causes nearly a third of these healthcare-related infections [39]. It is estimated that 54 thousand infections and 5400 deaths are associated with VRE acquisition in patients hospitalized in the U.S. annually. Enterococcus faecium and Enterococcus faecalis are the two most prevalent types of Enterococci; the former is more likely to be resistant to vancomycin. Prolonged residence in health centers, receiving care for cancer, having gained an organ graft, and being accepted to an Intensive Care Unit (ICU) are among the risk factors for contracting VRE-related infections [40].
- ▪
- Carbapenem-resistant Enterobacteriaceae (CRE): The CRE is considered a significant global concern as a cause of infections in about 13,100 patients and nearly 1100 cases of death in U.S. hospitals annually [36].
- ▪
- Carbapenem-resistant Acinetobacter spp. (CRAB): Antimicrobial resistance-generating genes in many Acinetobacter strains produce carbapenemase enzymes, making them resistant to sulfamethoxazole/trimethoprim, ampicillin/sulbactam, ESBL, and fluoroquinolones. Nearly all CRAB-related infections (urinary tract, wound, bloodstream, and pneumonia) occur in hospitalized patients, especially in critical care [41].
- ▪
- Multi-drug-resistant Neisseria gonorrhoeae: Approximately 550 thousand out of 1.14 million new Neisseria gonorrhoeae infections are AMR annually [36].
- ▪
- Extended Spectrum β-lactamase producing Enterobacteriaceae (ESBL): ESBLs are defined as enzymes that break down β-lactams, comprising cephalosporin and penicillin. Each year, approximately 197,400 infections and 9100 deaths occur among patients hospitalized in the U.S. due to ESBL-producing bacteria [42], primarily leading to urinary tract infections as well as wound, bloodstream, and respiratory tract infections [43].
- ▪
- Multi-drug-resistant Shigella: Shigellosis, characterized by abdominal pain, fever, and diarrhea, occurs due to Shigella, which predominantly spreads through orofecal contact with contaminated food or surfaces. Studies from the US estimate 450,000 Shigella infections, 77,000 of which are AMR, and fewer than five deaths each year. Immunocompromised individuals, travelers, children, and homosexual men are more susceptible to infection [44].
3.1. Antimicrobial Resistance Surveillance and Emerging Trends Post-COVID-19
3.2. Factors Driving Antimicrobial Resistance in Immunocompromised Outpatients
3.3. Antimicrobial Stewardship in Immunocompromised Outpatients
4. Diagnostic Challenges of Infections in Immunocompromised Outpatients
Operational Barriers to Optimal Antibiotic Selection in Immunocompromised Outpatients
5. Infection Control and Antimicrobial Resistance Management in Immunocompromised Outpatient
6. Advancing Antimicrobial Resistance Management in Immunocompromised Outpatients
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olaru, I.D.; Tacconelli, E.; Yeung, S.; Ferrand, R.A.; Stabler, R.A.; Hopkins, H.; Aiken, A.M.; Kranzer, K. The association between antimicrobial resistance and HIV infection: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.M.; Jin, J.; Chee, Y.L.; Ding, Y.; Lee, Y.M.; Chng, W.J.; Chai, L.Y.; Tan, L.K.; Hsu, L.Y. Risk factors for adverse outcomes and multidrug-resistant Gram-negative bacteraemia in haematology patients with febrile neutropenia in a Singaporean university hospital. Singap. Med. J. 2012, 53, 720–725. [Google Scholar]
- Freifeld, A.G.; Bow, E.J.; Sepkowitz, K.A.; Boeckh, M.J.; Ito, J.I.; Mullen, C.A.; Raad, I.I.; Rolston, K.V.; Young, J.A.; Wingard, J.R. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 2011, 52, e56–e93. [Google Scholar] [CrossRef]
- Pilch, N.A.; Bowman, L.J.; Taber, D.J. Immunosuppression trends in solid organ transplantation: The future of individualization, monitoring, and management. Pharmacotherapy 2021, 41, 119–131. [Google Scholar] [CrossRef]
- Michniacki, T.F.; Choi, S.W.; Peltier, D.C. Immune Suppression in Allogeneic Hematopoietic Stem Cell Transplantation. Handb. Exp. Pharmacol. 2022, 272, 209–243. [Google Scholar] [CrossRef]
- Monteran, L.; Ershaid, N.; Doron, H.; Zait, Y.; Scharff, Y.e.; Ben-Yosef, S.; Avivi, C.; Barshack, I.; Sonnenblick, A.; Erez, N. Chemotherapy-induced complement signaling modulates immunosuppression and metastatic relapse in breast cancer. Nat. Commun. 2022, 13, 5797. [Google Scholar] [CrossRef]
- Sorohan, B.M.; Ismail, G.; Leca, N. Immunosuppression in HIV-positive kidney transplant recipients. Curr. Opin. Organ Transplant. 2023, 28, 279–289. [Google Scholar] [CrossRef]
- Anthony, F.-A.; Mayar, A.M. Infection Control in the Immunocompromised Host. In Infection Prevention in the Intensive Care Setting; Ellsworth, M., Ostrosky-Zeichner, L., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 141–167. [Google Scholar]
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 2 June 2024).
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Gupta, V.; Satlin, M.J.; Yu, K.C.; Martei, Y.; Sung, L.; Westblade, L.F.; Howard, S.; Ai, C.; Flayhart, D.C. Incidence and prevalence of antimicrobial resistance in outpatients with cancer: A multicentre, retrospective, cohort study. Lancet Oncol. 2025, 26, 620–628. [Google Scholar] [CrossRef]
- He, S.; Lin, J.; Li, L.; Cai, W.; Ye, J.; Li, Y.; Zhang, W.; Liu, N.; Gong, Z.; Ye, X. Multidrug-resistant Staphylococcus aureus nasal carriage among HIV-positive outpatients in Guangzhou, China: Prevalence, risk factors, phenotypic and molecular characteristics. J. Infect. Chemother. 2021, 27, 218–225. [Google Scholar] [CrossRef]
- Liberati, C.; Barbieri, E.; Cavagnero, F.; Petris, M.G.; Brigadoi, G.; Reggiani, G.; De Pieri, M.; Pierobon, M.; Marzollo, A.; Gabelli, M. Impact of a two step antimicrobial stewardship program in a paediatric haematology and oncology unit. Sci. Rep. 2024, 14, 29296. [Google Scholar] [CrossRef]
- Horikoshi, Y.; Kaneko, T.; Morikawa, Y.; Isogai, M.; Suwa, J.; Higuchi, H.; Yuza, Y.; Shoji, T.; Ito, K. The north wind and the sun: Pediatric antimicrobial stewardship program combining restrictive and persuasive approaches in hematology-oncology ward and hematopoietic stem cell transplant unit. Pediatr. Infect. Dis. J. 2018, 37, 164–168. [Google Scholar] [CrossRef]
- Muratore, E.; Baccelli, F.; Leardini, D.; Campoli, C.; Belotti, T.; Viale, P.; Prete, A.; Pession, A.; Masetti, R.; Zama, D. Antimicrobial stewardship interventions in pediatric oncology: A systematic review. J. Clin. Med. 2022, 11, 4545. [Google Scholar] [CrossRef] [PubMed]
- Stohs, E.; Chow, V.A.; Liu, C.; Bourassa, L.; Miles-Jay, A.; Knight, J.; Sweet, A.; Storer, B.E.; Mielcarek, M.; Pergam, S.A. Limited utility of outpatient surveillance blood cultures in hematopoietic cell transplant recipients on high-dose steroids for treatment of acute graft-versus-host-disease. Biol. Blood Marrow Transplant. 2019, 25, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Sayood, S.; Durkin, M.J. The challenge of outpatient antibiotic stewardship. JAMA Netw. Open 2023, 6, e2312996. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Rosen, E.A.; Stohs, E.J.; Imlay, H.; Nigo, M.; Gottesdiener, L.S.; So, M.; Tverdek, F.; Dadwal, S.; Gudiol, C.; et al. Tackling antimicrobial resistance in people who are immunocompromised: Leveraging diagnostic and antimicrobial stewardship. Lancet Infect. Dis. 2025, in press. [Google Scholar] [CrossRef]
- Dumford, D.; Skalweit, M.J. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host: An Update. Infect. Dis. Clin. 2020, 34, 821–847. [Google Scholar] [CrossRef]
- Ryan, L. Vaccinated but Not Protected—Living Immunocompromised During the Pandemic. JAMA 2021, 325, 2443–2444. [Google Scholar] [CrossRef]
- Yu, J.E. New primary immunodeficiencies 2023 update. Curr. Opin. Pediatr. 2024, 36, 112–123. [Google Scholar] [CrossRef]
- Tuano, K.S.; Seth, N.; Chinen, J. Secondary immunodeficiencies: An overview. Ann. Allergy Asthma Immunol. 2021, 127, 617–626. [Google Scholar] [CrossRef]
- Meneghini, M.; Bestard, O.; Grinyo, J.M. Immunosuppressive drugs modes of action. Best Pract. Res. Clin. Gastroenterol. 2021, 54–55, 101757. [Google Scholar] [CrossRef] [PubMed]
- Michael, H.; Amimo, J.O.; Rajashekara, G.; Saif, L.J.; Vlasova, A.N. Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights from Human, Mouse, and Pig Studies. Front. Immunol. 2022, 13, 826268. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, S.Y.; Sun, J.H.; Zhang, H.C.; Cai, Q.L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-induced immunosuppression: Mechanisms, diagnosis and current treatment options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- AbuSara, A.; Tayyeb, N.; Matalka, L.; Almomani, B.; Abaza, H.; Nazer, L. Prevalence and Predictors of Multi-Drug Resistant Organisms Among Ambulatory Cancer Patients with Urinary Tract Infections. Infect. Drug Resist. 2023, 16, 747–753. [Google Scholar] [CrossRef]
- Birmeka, M. Distribution pattern and prevalence of opportunistic infections and their possible reciprocal effects among HIV patients, Burayu health centers, Ethiopia. J. Infect. Dev. Ctries 2023, 17, 1022–1029. [Google Scholar] [CrossRef]
- Sweet, L.; Daniels, C.; Xu, X.; Sunil, T.; Topal, S.; Chu, X.; Noiman, A.; Barsoumian, A.; Ganesan, A.; Agan, B.K.; et al. Acute Respiratory Infection Incidence and Outpatient Antibiotic Prescription Patterns in People with or Without Human Immunodeficiency Virus Infection: A Virtual Cohort Study. Open Forum Infect. Dis. 2023, 10, ofad272. [Google Scholar] [CrossRef]
- Ayaz, C.M.; Ceylan, S.; Yılmaz, V.T.; Adanır, H.; Turhan, Ö. Timeline and Incidence of Infectious Complications in Older Transplant Recipients During the First Year Post-Transplantation. Pathogens 2024, 13, 1061. [Google Scholar] [CrossRef]
- Kinn, P.M.; Ince, D. Outpatient and peri-operative antibiotic stewardship in solid organ transplantation. Transpl. Infect. Dis. 2022, 24, e13922. [Google Scholar] [CrossRef]
- Chastain, D.B.; Stover, K.R. Urgent need to address infectious diseases due to immunosuppressive therapies. Ther. Adv. Infect. Dis. 2023, 10, 20499361231168512. [Google Scholar] [CrossRef]
- Boland, L.; Devresse, A.; Monchaud, C.; Briol, S.; Belaiche, S.; Giguet, B.; Couzi, L.; Thaunat, O.; Esposito, L.; Meszaros, M.; et al. Adaptative Strategy of Immunosuppressive Drugs Dosage Adjustments When Combined with Nirmatrelvir/Ritonavir in Solid Organ Transplant Recipients with COVID-19. Transpl. Int. 2024, 37, 12360. [Google Scholar] [CrossRef] [PubMed]
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef] [PubMed]
- Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P.; et al. The WHO Bacterial Priority Pathogens List 2024: A prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect. Dis. 2025, 25, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef]
- Clark, S.T.; Cronin, K.; Corbeil, A.J.; Patel, S.N. A Ten-Year Retrospective Survey of Antimicrobial Susceptibility Patterns among Salmonella enterica subsp. enterica Serovar Typhi Isolates in Ontario, Canada. Microbiol. Spectr. 2023, 11, e0482822. [Google Scholar] [CrossRef]
- Flynn, C.E.; Guarner, J. Emerging antimicrobial resistance. Mod. Pathol. 2023, 36, 100249. [Google Scholar] [CrossRef]
- Møller, D.L.; Sørensen, S.S.; Perch, M.; Gustafsson, F.; Rezahosseini, O.; Knudsen, A.D.; Scheike, T.; Knudsen, J.D.; Lundgren, J.; Rasmussen, A.; et al. Bacterial and fungal bloodstream infections in solid organ transplant recipients: Results from a Danish cohort with nationwide follow-up. Clin. Microbiol. Infect. 2022, 28, 391–397. [Google Scholar] [CrossRef]
- Calix, J.J.; de Almeida, M.C.S.; Potter, R.F.; Wallace, M.A.; Burnham, C.D.; Dantas, G. Outpatient Clonal Propagation and Rapid Regional Establishment of an Emergent Carbapenem-Resistant Acinetobacter baumannnii Lineage Sequence Type 499Pas. J. Infect. Dis. 2023, 227, 631–640. [Google Scholar] [CrossRef]
- Darkoh, C.; Keita, K.; Odo, C.; Oyaro, M.; Brown, E.L.; Arias, C.A.; Hanson, B.M.; DuPont, H.L. Emergence of Clinical Clostridioides difficile Isolates with Decreased Susceptibility to Vancomycin. Clin. Infect. Dis. 2022, 74, 120–126. [Google Scholar] [CrossRef]
- Bryant, S.; Almahmoud, I.; Pierre, I.; Bardet, J.; Touati, S.; Maubon, D.; Cornet, M.; Richarme, C.; Maurin, M.; Pavese, P.; et al. Evaluation of Microbiological Performance and the Potential Clinical Impact of the ePlex® Blood Culture Identification Panels for the Rapid Diagnosis of Bacteremia and Fungemia. Front. Cell. Infect. Microbiol. 2020, 10, 594951. [Google Scholar] [CrossRef]
- Shad, A.A.; Shad, W.A. Shigella sonnei: Virulence and antibiotic resistance. Arch. Microbiol. 2021, 203, 45–58. [Google Scholar] [CrossRef]
- Meade, E.; Rawe, S.; Slattery, M.; Garvey, M. An assessment of alternative therapeutic options for the treatment of prolonged zoonotic fungal infections in companion animals. J. Microbiol. Biotechnol. 2019, 4, 000149. [Google Scholar]
- Meade, E.; Savage, M.; Slattery, M.; Garvey, M. Disinfection of mycotic species isolated from cases of bovine mastitis showing antifungal resistance. Cohesive J. Microbiol. Infect. Dis. 2020, 3, 10.31031. [Google Scholar] [CrossRef]
- Fissiha, W.; Kinde, M.Z. Anthelmintic Resistance and Its Mechanism: A Review. Infect. Drug Resist. 2021, 14, 5403–5410. [Google Scholar] [CrossRef] [PubMed]
- Lampejo, T. Influenza and antiviral resistance: An overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1201–1208. [Google Scholar] [CrossRef]
- Afshinnekoo, E.; Bhattacharya, C.; Burguete-García, A.; Castro-Nallar, E.; Deng, Y.; Desnues, C.; Dias-Neto, E.; Elhaik, E.; Iraola, G.; Jang, S.; et al. COVID-19 drug practices risk antimicrobial resistance evolution. Lancet Microbe 2021, 2, e135–e136. [Google Scholar] [CrossRef]
- CDC. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/covid-19.html?CDC_AAref_Val=https://www.cdc.gov/drugresistance/covid19.html (accessed on 15 September 2021).
- Porretta, A.D.; Baggiani, A.; Arzilli, G.; Casigliani, V.; Mariotti, T.; Mariottini, F.; Scardina, G.; Sironi, D.; Totaro, M.; Barnini, S.; et al. Increased Risk of Acquisition of New Delhi Metallo-β-Lactamase-Producing Carbapenem-Resistant Enterobacterales (NDM-CRE) among a Cohort of COVID-19 Patients in a Teaching Hospital in Tuscany, Italy. Pathogens 2020, 9, 635. [Google Scholar] [CrossRef]
- Narayanan, S.; Chua, J.V.; Baddley, J.W. Coronavirus Disease 2019-Associated Mucormycosis: Risk Factors and Mechanisms of Disease. Clin. Infect. Dis. 2022, 74, 1279–1283. [Google Scholar] [CrossRef]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. Jama 2020, 323, 2085–2086. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Wang, Z.; Chen, H.; Tian, L.; Liu, D. Nosocomial infection among patients with COVID-19: A retrospective data analysis of 918 cases from a single center in Wuhan, China. Infect. Control Hosp. Epidemiol. 2020, 41, 982–983. [Google Scholar] [CrossRef]
- Wang, L.; He, W.; Yu, X.; Hu, D.; Bao, M.; Liu, H.; Zhou, J.; Jiang, H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020, 80, 639–645. [Google Scholar] [CrossRef]
- Jacob, S.M.; Kalaivani, M.; Velusamy, P. Impact of COVID-19 Pandemic on Antimicrobial Resistance: A Review of Trends and Antibiotic Patterns in India. Texila Int. J. Public Health 2024, 12. [Google Scholar] [CrossRef]
- Righi, E.; Peri, A.M.; Harris, P.N.; Wailan, A.M.; Liborio, M.; Lane, S.W.; Paterson, D.L. Global prevalence of carbapenem resistance in neutropenic patients and association with mortality and carbapenem use: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 668–677. [Google Scholar] [CrossRef]
- Taur, Y.; Xavier, J.B.; Lipuma, L.; Ubeda, C.; Goldberg, J.; Gobourne, A.; Lee, Y.J.; Dubin, K.A.; Socci, N.D.; Viale, A.; et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 2012, 55, 905–914. [Google Scholar] [CrossRef]
- Sangiorgio, G.; Calvo, M.; Migliorisi, G.; Campanile, F.; Stefani, S. The Impact of Enterococcus spp. in the Immunocompromised Host: A Comprehensive Review. Pathogens 2024, 13, 409. [Google Scholar] [CrossRef] [PubMed]
- Shahi, F.; Redeker, K.; Chong, J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob Resist. 2019, 1, dlz015. [Google Scholar] [CrossRef] [PubMed]
- Grupper, M.; Nicolau, D.P. Obesity and skin and soft tissue infections: How to optimize antimicrobial usage for prevention and treatment? Curr. Opin. Infect. Dis. 2017, 30, 180–191. [Google Scholar] [CrossRef]
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef]
- Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on antimicrobial stewardship from 1990 to 2019. Glob. Health 2021, 17, 1. [Google Scholar] [CrossRef]
- Hand, J.; Imlay, H. Antimicrobial stewardship in immunocompromised patients: Current state and future opportunities. Infect. Dis. Clin. 2023, 37, 823–851. [Google Scholar]
- Amin, A.N.; Dellinger, E.P.; Harnett, G.; Kraft, B.D.; LaPlante, K.L.; LoVecchio, F.; McKinnell, J.A.; Tillotson, G.; Valentine, S. It’s about the patients: Practical antibiotic stewardship in outpatient settings in the United States. Front. Med. 2022, 9, 901980. [Google Scholar] [CrossRef]
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A. Better tests, better care: Improved diagnostics for infectious diseases. Clin. Infect. Dis. 2013, 57, S139–S170. [Google Scholar] [CrossRef]
- Cheng, G.-S.; Crothers, K.; Aliberti, S.; Bergeron, A.; Boeckh, M.; Chien, J.W.; Cilloniz, C.; Cohen, K.; Dean, N.; Dela Cruz, C.S. Immunocompromised host pneumonia: Definitions and diagnostic criteria: An official American Thoracic Society workshop report. Ann. Am. Thorac. Soc. 2023, 20, 341–353. [Google Scholar] [CrossRef]
- van der Velden, F.J.; Gennery, A.R.; Emonts, M. Biomarkers for diagnosing febrile illness in immunocompromised children: A systematic review of the literature. Front. Pediatr. 2022, 10, 828569. [Google Scholar] [CrossRef]
- Martinez-Nadal, G.; Puerta-Alcalde, P.; Gudiol, C.; Cardozo, C.; Albasanz-Puig, A.; Marco, F.; Laporte-Amargós, J.; Moreno-García, E.; Domingo-Doménech, E.; Chumbita, M. Inappropriate empirical antibiotic treatment in high-risk neutropenic patients with bacteremia in the era of multidrug resistance. Clin. Infect. Dis. 2020, 70, 1068–1074. [Google Scholar] [CrossRef]
- Dumas, G.; Joseph, A.; Zafrani, L. Diagnostic tests for infections in critically ill immunocompromised patients. Intensive Care Med. 2024, 50, 1920–1922. [Google Scholar] [CrossRef] [PubMed]
- Lletí, M.S.; Navalón, M.D.C.; Pitarch, M.T.; García-Bustos, V. Etiology, diagnosis, and management of pneumonia in immunosuppressed patients. Rev. Española Quimioter. 2022, 35, 89. [Google Scholar]
- Vindenes, T.; Melinscak, H.; Linder, K.; Alsoubani, M. Antimicrobial stewardship in immunocompromised hosts. In Antimicrobial Stewardship in Non-Traditional Settings: A Practical Guide; Springer: Berlin/Heidelberg, Germany, 2023; pp. 123–159. [Google Scholar]
- Altshuler, J.; Aitken, S.L.; Maslow, M.; Papadopoulos, J.; Safdar, A. Antibiotic Consideration in Transplant Recipients. In Principles and Practice of Transplant Infectious Diseases; Springer: Berlin/Heidelberg, Germany, 2019; pp. 855–901. [Google Scholar]
- Soueges, S.; Faure, E.; Parize, P.; Lanternier-Dessap, F.; Lecuyer, H.; Huynh, A.; Martin-Blondel, G.; Gaborit, B.; Blot, M.; Magallon, A. Real-world multicentre study of cefiderocol treatment of immunocompromised patients with infections caused by multidrug-resistant Gram-negative bacteria: CEFI-ID. J. Infect. 2025, 90, 106376. [Google Scholar] [CrossRef] [PubMed]
- Pouch, S.M.; Satlin, M.J. Carbapenem-resistant Enterobacteriaceae in special populations: Solid organ transplant recipients, stem cell transplant recipients, and patients with hematologic malignancies. Virulence 2017, 8, 391–402. [Google Scholar] [CrossRef]
- Ramirez, J.A.; Musher, D.M.; Evans, S.E.; Cruz, C.D.; Crothers, K.A.; Hage, C.A.; Aliberti, S.; Anzueto, A.; Arancibia, F.; Arnold, F. Treatment of community-acquired pneumonia in immunocompromised adults: A consensus statement regarding initial strategies. Chest 2020, 158, 1896–1911. [Google Scholar] [CrossRef]
- Azoulay, E.; Russell, L.; Van de Louw, A.; Metaxa, V.; Bauer, P.; Povoa, P.; Montero, J.G.; Loeches, I.M.; Mehta, S.; Puxty, K. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med. 2020, 46, 298–314. [Google Scholar] [CrossRef]
- Tran, N.K.; Kretsch, C.; LaValley, C.; Rashidi, H.H. Machine learning and artificial intelligence for the diagnosis of infectious diseases in immunocompromised patients. Curr. Opin. Infect. Dis. 2023, 36, 235–242. [Google Scholar] [CrossRef]
- Ullah, N.; Fusco, L.; Ametrano, L.; Bartalucci, C.; Giacobbe, D.R.; Vena, A.; Mikulska, M.; Bassetti, M. Diagnostic approach to pneumonia in immunocompromised hosts. J. Clin. Med. 2025, 14, 389. [Google Scholar] [CrossRef] [PubMed]
- Boodman, C.; Garcia, O.F.; Kabbani, D.; Villalobos, A.P.C.; Beeson, A.; Marx, G.E.; van Griensven, J.; Doucette, K. Donor-derived Bartonella quintana infection in solid organ transplantation: An emerging public health issue with diagnostic challenges. In Open Forum Infectious Diseases; Oxford University Press: Cary, NC, USA, 2024; p. ofae381. [Google Scholar]
- Cawcutt, K.A.; Patel, R.; Gerber, J.; Caliendo, A.M.; Cosgrove, S.E.; Ashley, E.D.; Garzaro, P.; Miller, M.; Lautenbach, E. Leveraging existing and soon-to-be-available novel diagnostics for optimizing outpatient antibiotic stewardship in patients with respiratory tract infections. Clin. Infect. Dis. 2021, 72, e1115–e1121. [Google Scholar] [CrossRef] [PubMed]
- Goebel, M.C.; Trautner, B.W.; Grigoryan, L. The five Ds of outpatient antibiotic stewardship for urinary tract infections. Clin. Microbiol. Rev. 2021, 34, e00003-20. [Google Scholar] [CrossRef] [PubMed]
- Duhaniuc, A.; Păduraru, D.; Nastase, E.-V.; Trofin, F.; Iancu, L.-S.; Sima, C.-M.; Dorneanu, O.-S. Multidrug-resistant bacteria in immunocompromised patients. Pharmaceuticals 2024, 17, 1151. [Google Scholar] [CrossRef]
- Majumdar, A.; Shah, M.R.; Park, J.J.; Narayanan, N.; Kaye, K.S.; Bhatt, P.J. Challenges and opportunities in antimicrobial stewardship among hematopoietic stem cell transplant and oncology patients. Antibiotics 2023, 12, 592. [Google Scholar] [CrossRef]
- Giacobbe, D.; Giani, T.; Bassetti, M.; Marchese, A.; Viscoli, C.; Rossolini, G. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: Therapeutic implications. Clin. Microbiol. Infect. 2020, 26, 713–722. [Google Scholar] [CrossRef]
- Castillo Almeida, N.E.; Cichon, C.J.; Gomez, C.A. How I approach diarrhea in hematological transplant patients: A practical tool. Transpl. Infect. Dis. 2023, 25, e14184. [Google Scholar] [CrossRef]
- Hernández-Jiménez, P.; López-Medrano, F.; Fernández-Ruiz, M.; Silva, J.T.; Corbella, L.; San-Juan, R.; Lizasoain, M.; Díaz-Regañón, J.; Viedma, E.; Aguado, J.M. Risk factors and outcomes for multidrug resistant Pseudomonas aeruginosa infection in immunocompromised patients. Antibiotics 2022, 11, 1459. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Taplitz, R.A.; Kennedy, E.B.; Bow, E.J.; Crews, J.; Gleason, C.; Hawley, D.K.; Langston, A.A.; Nastoupil, L.J.; Rajotte, M.; Rolston, K. Outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology and Infectious Diseases Society of America clinical practice guideline update. J. Clin. Oncol. 2018, 36, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Norris, A.H.; Shrestha, N.K.; Allison, G.M.; Keller, S.C.; Bhavan, K.P.; Zurlo, J.J.; Hersh, A.L.; Gorski, L.A.; Bosso, J.A.; Rathore, M.H. 2018 Infectious Diseases Society of America clinical practice guideline for the management of outpatient parenteral antimicrobial therapy. Clin. Infect. Dis. 2019, 68, e1–e35. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O. Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, G.V. Core elements of outpatient antibiotic stewardship. MMWR Recomm. Rep. 2016, 65, 1–12. [Google Scholar] [CrossRef]
- Singhal, T. “Rationalization of empiric antibiotic therapy”—A move towards preventing emergence of resistant infections. Indian J. Pediatr. 2020, 87, 945–950. [Google Scholar] [CrossRef]
- Murray, A.K.; Zhang, L.; Yin, X.; Zhang, T.; Buckling, A.; Snape, J.; Gaze, W.H. Novel insights into selection for antibiotic resistance in complex microbial communities. MBio 2018, 9, 10–1128. [Google Scholar] [CrossRef]
- Hamers, R.L.; Dobreva, Z.; Cassini, A.; Tamara, A.; Lazarus, G.; Asadinia, K.S.; Burzo, S.; Olaru, I.D.; Dona, D.; Emdin, F.; et al. Global knowledge gaps on antimicrobial resistance in the human health sector: A scoping review. Int. J. Infect. Dis. 2023, 134, 142–149. [Google Scholar] [CrossRef]
- Hassall, J.; Coxon, C.; Patel, V.C.; Goldenberg, S.D.; Sergaki, C. Limitations of current techniques in clinical antimicrobial resistance diagnosis: Examples and future prospects. npj Antimicrob. Resist. 2024, 2, 16. [Google Scholar] [CrossRef]
- Banerjee, R.; Patel, R. Molecular diagnostics for genotypic detection of antibiotic resistance: Current landscape and future directions. JAC Antimicrob. Resist. 2023, 5, dlad018. [Google Scholar] [CrossRef]
- Soh, J.H.; Balleza, E.; Abdul Rahim, M.N.; Chan, H.M.; Mohd Ali, S.; Chuah, J.K.C.; Edris, S.; Atef, A.; Bahieldin, A.; Ying, J.Y.; et al. CRISPR-based systems for sensitive and rapid on-site COVID-19 diagnostics. Trends Biotechnol. 2022, 40, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Sardzikova, S.; Andrijkova, K.; Svec, P.; Beke, G.; Klucar, L.; Minarik, G.; Bielik, V.; Kolenova, A.; Soltys, K. Gut diversity and the resistome as biomarkers of febrile neutropenia outcome in paediatric oncology patients undergoing hematopoietic stem cell transplantation. Sci. Rep. 2024, 14, 5504. [Google Scholar] [CrossRef] [PubMed]
- Corbin, C.K.; Sung, L.; Chattopadhyay, A.; Noshad, M.; Chang, A.; Deresinksi, S.; Baiocchi, M.; Chen, J.H. Personalized antibiograms for machine learning driven antibiotic selection. Commun. Med. 2022, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Choi, Y.H.; Choi, J.Y.; Choi, H.J.; Park, R.W.; Rhie, S.J. Translation of Machine Learning-Based Prediction Algorithms to Personalised Empiric Antibiotic Selection: A Population-Based Cohort Study. Int. J. Antimicrob. Agents 2023, 62, 106966. [Google Scholar] [CrossRef]
- Bae, J.Y.; Bae, J.; So, M.K.; Choi, H.J.; Lee, M. The Impact of the Rapid Blood Culture Identification Panel on Antibiotic Treatment and Clinical Outcomes in Bloodstream Infections, Particularly Those Associated with Multidrug-Resistant Micro-Organisms. Diagnostics 2023, 13, 3504. [Google Scholar] [CrossRef]
- Bergas, A.; Lopez de Egea, G.; Albasanz-Puig, A.; Machado, M.; Viñado, B.; Estévez-Prieto, A.; Maluquer, C.; Carro, I.; Pérez-González, A.; Regalado-Artamendi, I.; et al. Effectiveness of the BioFire FilmArray for the rapid detection of bloodstream infection in haematological patients with febrile neutropenia (the ONFIRE study): Study protocol of a prospective, multicentre observational study at three reference university hospitals in Spain. BMJ Open 2025, 15, e101040. [Google Scholar] [CrossRef]
- Mayorga-Ramos, A.; Zúñiga-Miranda, J.; Carrera-Pacheco, S.E.; Barba-Ostria, C.; Guamán, L.P. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect. Dis. 2023, 9, 1283–1302. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Liang, Y.; Du, X.; Yang, C.; Yang, L.; Xie, J.; Zhao, R.; Tong, Y.; Qiu, S.; et al. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics 2020, 10, 6310–6321. [Google Scholar] [CrossRef]
- Hadid, A.; McDonald, E.G.; Ding, Q.; Phillipp, C.; Trottier, A.; Dixon, P.C.; Jlassi, O.; Cheng, M.P.; Papenburg, J.; Libman, M.; et al. Development of machine learning prediction models for systemic inflammatory response following controlled exposure to a live attenuated influenza vaccine in healthy adults using multimodal wearable biosensors in Canada: A single-centre, prospective controlled trial. Lancet Digit. Health 2025, 7, 100886. [Google Scholar] [CrossRef]
- Sadeq, A.A.; Alhaj, L.Z.; Shamseddine, J.M.; Conway, B.R.; Bond, S.E.; Ali, R.; Lattyak, W.J.; Babiker, Z.O.; Aldeyab, M. Impact of integrating guidelines into an antimicrobial stewardship smartphone application on outpatient antibiotic prescribing: A segmented interrupted time series analysis. Front. Digit. Health 2025, 7, 1647528. [Google Scholar] [CrossRef]
- Carpenter, R.E. Precision Metagenomics in Elder Care: Renovating Infection Diagnostics and Antimicrobial Stewardship. 2025. Available online: https://scholarworks.uttyler.edu/hrd_fac/55/ (accessed on 26 February 2025).
- Sanchez, G.V.; Kabbani, S.; Tsay, S.V.; Bizune, D.; Hersh, A.L.; Luciano, A.; Hicks, L.A. Antibiotic stewardship in outpatient telemedicine: Adapting Centers for Disease Control and Prevention Core Elements to optimize antibiotic use. Telemed. e-Health 2024, 30, 951–962. [Google Scholar] [CrossRef]
Category | Diagnostic Challenges | Examples/Details | Ref. |
---|---|---|---|
Specimen Handling and Transport | Risk of contamination and compromised integrity | Elevated urine culture contamination despite refrigeration and clear instructions. | [82] |
Invasive Procedures | Risks in critically ill patients | Fiberoptic bronchoscopy with BAL → hypoxemia, bleeding; trend toward non-invasive alternatives. | [77,79] |
Guidelines and Evidence Gaps | Lack of standardized protocols; exclusion from trials | Heterogeneous immunocompromised groups inconsistent stewardship, few accepted guidelines. | [64,84] |
Advanced Molecular Assays | High cost, limited availability, over-detection | mNGS confined to resource-rich settings; risk of identifying colonizers/nonviable organisms; over-testing → inappropriate antibiotics. | [85,86] |
HIV/AIDS | Immune defects predispose to common + opportunistic pathogens | CD4+ T-cell depletion, B-cell/neutrophil dysfunction; MDR bacteria rising. | [67,72] |
Transplant Recipients | Atypical infection presentation | HSCT: multifactorial diarrhea (infection vs. mucositis vs. GVHD); risk of MDR Pseudomonas. | [86,87] |
Cancer Patients (especially hematologic) | Neutropenia masks signs, ↑ MDR infections | Risk for MRSA, VRE, ESBL-producing and carbapenemase-producing Gram-negatives. | [88,89] |
Autoimmune/Inflammatory Conditions | Expanded pathogen spectrum due to therapies | TNFα inhibitors → fungal, herpesvirus infections; anti-CD20 drugs → encapsulated bacteria. | [70] |
Diabetes Mellitus (as comorbidity) | Higher MDR and fungal risks | MDR Pseudomonas; mucormycosis complicating diagnosis. | [87] |
Domain | Key Challenges | Examples/Evidence | Ref. |
---|---|---|---|
Antimicrobial resistance | High rate of inappropriate empirical antibiotic treatment (IEAT) due to urgent empiric use before pathogen ID | Pathogen identified in only ~50% of bacterial pneumonia cases; high IEAT in febrile neutropenia even under IDSA guidance. | [77,79] |
Limited effectiveness of empiric therapy in MDR infections | Only 23% of KPC + K. pneumoniae cases received adequate therapy vs. 74% in non-ESBL/KPC strains; <one third of MDR P. aeruginosa adequately treated; reluctance to use cefiderocol. | [87] | |
Rising prevalence of MDROs among immunocompromised | CRE in 1–18% of transplant recipients; CRE bacteremia in 16–24% hematologic malignancies; 64% rise in community ESBL infections (2012–2017). | [64,82,87] | |
Complex resistance mechanisms complicating therapy | P. aeruginosa OprD loss → carbapenem resistance; A. baumannii acquiring OXA carbapenemases + serine β-lactamases; widespread fosA gene in non-E. coli GNB. | [92] | |
Diagnostic delays prolong broad-spectrum use | Cultures/AST 24–72 h; prescribers struggle to adjust despite rapid tests (MALDI-TOF, molecular). | [91] | |
Limited new treatment options | A. baumannii carbapenem-resistant → pan-resistance risk; cautious use of cefiderocol; renewed interest in polymyxins, Fosfomycin. | [93] | |
Difficulty differentiating colonization vs. infection | e.g., Stenotrophomonas maltophilia frequently colonizer but also risk factor for systemic infection. | [88] | |
Antibiotics themselves drive resistance | Broad-spectrum exposure (vancomycin, carbapenems), prolonged hospitalization → selection pressure, relapse, GVHD. | [93,94] | |
Implementation of antibiotic stewardship | Clinicians’ reluctance to narrow the spectrum or shorten treatment | Driven by fear of undertreatment in high-risk patients despite toxicity/MDRO risk. | [64] |
Lack of customized, consistent guidelines | CAP guidelines vary—some same as immunocompetent, others recommend broader coverage and longer durations. | [64] | |
Diagnostic limitations in outpatients | Minimal/atypical signs; invasive tests often not feasible (e.g., coagulopathy, severe illness); MDRO colonization vs. infection difficult. | [83] | |
Therapeutic complexities | Drug–drug interactions with immunosuppressants; prophylactic antibiotics select resistance; cefiderocol linked to relapse/resistance. | [90] | |
Operational/economic barriers | OPAT shaped by cost and insurance constraints; adherence issues; PWID complications (catheter misuse, vascular access infections). | [92] | |
Patient adherence and psychosocial factors | Non-compliance, patient satisfaction pressures, and psychosocial stress undermine stewardship outcomes. | [92] |
Technology/Program | Application in Immunocompromised Outpatients | Ref. |
---|---|---|
Rapid molecular diagnostics (FilmArray blood culture identification panel) | Identifies bloodstream pathogens (Gram-positive, Gram-negative, yeasts) within 1–2 h; reduces time to targeted therapy in CRE/VRE infections; ongoing trials show higher sensitivity and specificity vs. conventional blood cultures. | [102,103] |
CRISPR-Cas Phage Systems PRESA (phage-delivered resistance eradication with subsequent antibiotic) | Phage-induced CRISPR-Cas9 eliminates resistance genes; recovers antibiotic susceptibility; durable effect (>240 h) without the emergence of mutational resistance; promising for high-risk immunocompromised patients. | [104,105] |
AI-driven approaches and personalized medicine | Machine learning (ML) generates patient-specific treatment recommendations; reduces unnecessary broad-spectrum use; and enables targeted therapy; Rapid resistance prediction using Whole-Genome Sequencing. | [106] |
Digital health applications for antimicrobial stewardship | Smartphone-based guideline integration (e.g., Firstline); improved outpatient prescribing aligned with WHO AWaRe; demonstrated large-scale impact in Abu Dhabi clinics. | [107] |
Metagenomic surveillance systems | Shotgun metagenomics of gut microbiome predicts febrile neutropenia in pediatric cancer patients; tracks AMR genes in hospital wastewater; links patient microbiota with AMR dissemination in both hospital and urban settings. | [108] |
Wearables for early infection detection | AI-powered smart wearables identify systemic inflammation and viral infections pre-symptomatically with 90% accuracy, which is vital for individuals with diminished immune responses. | [108] |
Telemedicine-enhanced stewardship programs | Remote stewardship programs decrease antibiotic usage, guarantee adherence, and minimize costs; they are customized to the CDC’s Core Elements for outpatient settings. | [109] |
Real-world implementation of novel antimicrobials (Cefiderocol programs) | Real-world use shows 53.3% clinical success in immunocompromised patients; these highlight the necessity of reserving novel antimicrobials for suitable clinical contexts while enforcing stringent stewardship management. | [74] |
Educational and hospital-based stewardship bundles | Early screening and rigorous guidelines reduce AMR and enhance outcomes in organ transplant recipients; educational bundles decrease broad-spectrum antibiotic use in oncology outpatients. | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, F.; Rajabi, E.; Ghanbari, Z.; Fattahniya, S.; Samiee, R.; Akhavan, M.; Salehi, M.; Shafaati, M. Antimicrobial Resistance in Immunocompromised Outpatients: A Narrative Review of Current Evidence and Challenges. Pharmacoepidemiology 2025, 4, 21. https://doi.org/10.3390/pharma4040021
Sadeghi F, Rajabi E, Ghanbari Z, Fattahniya S, Samiee R, Akhavan M, Salehi M, Shafaati M. Antimicrobial Resistance in Immunocompromised Outpatients: A Narrative Review of Current Evidence and Challenges. Pharmacoepidemiology. 2025; 4(4):21. https://doi.org/10.3390/pharma4040021
Chicago/Turabian StyleSadeghi, Farhood, Erta Rajabi, Zahra Ghanbari, Sajjad Fattahniya, Reza Samiee, Mandana Akhavan, Mohammadreza Salehi, and Maryam Shafaati. 2025. "Antimicrobial Resistance in Immunocompromised Outpatients: A Narrative Review of Current Evidence and Challenges" Pharmacoepidemiology 4, no. 4: 21. https://doi.org/10.3390/pharma4040021
APA StyleSadeghi, F., Rajabi, E., Ghanbari, Z., Fattahniya, S., Samiee, R., Akhavan, M., Salehi, M., & Shafaati, M. (2025). Antimicrobial Resistance in Immunocompromised Outpatients: A Narrative Review of Current Evidence and Challenges. Pharmacoepidemiology, 4(4), 21. https://doi.org/10.3390/pharma4040021