Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems
Abstract
1. Introduction
2. Curcumin: Properties and Antimicrobial Potential in Food Systems
2.1. Antimicrobial Spectrum and Activity of Curcumin in Food Systems
2.2. Mechanisms of Antimicrobial Action
2.2.1. Disruption of Membrane and Cell Wall Integrity
2.2.2. Reactive Oxygen Species Generation
- i.
- Photodynamic Activation
- ii.
- Disruption of Bacterial Iron Homeostasis:
- iii.
- Autooxidation
2.2.3. Inhibition of Quorum Sensing and Biofilm Formation
2.2.4. Inhibition of Nucleic Acid Synthesis
2.2.5. Disruption of Protein Function and Metabolic Pathways
3. Antimicrobial Efficacy of Curcumin NPs and Nanoformulations in Food Systems
3.1. Antimicrobial Applications of Curcumin Nanoformulations in Food Systems
3.2. Safety Assessment of Curcumin NPs and Nanoformulations for Application in Food Systems
4. Applications of Nanoformulated Curcumin in Food Safety and Preservation
4.1. Active Food Packaging
4.2. Smart/Intelligent Packaging Systems
4.3. Antimicrobial Food Preservatives
4.3.1. Edible Coatings and Marinades for Meats and Poultry
4.3.2. Edible Coatings for Fresh Produce
4.3.3. Dairy Safety Applications
4.3.4. Aquaculture and Seafood Preservation
4.3.5. Grain and Cereal Protection
5. Limitations and Future Perspectives
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A Review on Food Spoilage Mechanisms, Food Borne Diseases and Commercial Aspects of Food Preservation and Processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Tropea, A. Microbial Contamination and Public Health: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7441. [Google Scholar] [CrossRef]
- Chavan, P.; Vashishth, R. Antimicrobial Resistance in Foodborne Pathogens: Consequences for Public Health and Future Approaches. Discov. Appl. Sci. 2025, 7, 623. [Google Scholar] [CrossRef]
- Geng, L.; Liu, K.; Zhang, H. Lipid Oxidation in Foods and Its Implications on Proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef]
- Ming, Z. The Impact of Oxidation on Food Quality and Preservation. J. Environ. Anal. Chem. 2024, 9, 385. [Google Scholar]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A. Food Preservation Techniques and Nanotechnology for Increased Shelf Life of Fruits, Vegetables, Beverages and Spices: A Review. Environ. Chem. Lett. 2021, 19, 1715–1735. [Google Scholar] [CrossRef] [PubMed]
- Sorathiya, K.B.; Melo, A.; Hogg, M.C.; Pintado, M. Organic Acids in Food Preservation: Exploring Synergies, Molecular Insights, and Sustainable Applications. Sustainability 2025, 17, 3434. [Google Scholar] [CrossRef]
- White, S.; Jackson-Davis, A.; Gordon, K.; Morris, K.; Dudley, A.; Abdallah-Ruiz, A.; Allgaier, K.; Sharpe, K.; Yenduri, A.K.; Green, K.; et al. A Review of Non-Thermal Interventions in Food Processing Technologies. J. Food Prot. 2025, 88, 100508. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, K.; Rao, A. Clean-Label Alternatives for Food Preservation: An Emerging Trend. Heliyon 2024, 10, e35815. [Google Scholar] [CrossRef]
- Li, S.; Jiang, S.; Jia, W.; Guo, T.; Wang, F.; Li, J.; Yao, Z. Natural Antimicrobials from Plants: Recent Advances and Future Prospects. Food Chem. 2024, 432, 137231. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Antimicrobial Efficacy of Curcumin Nanoparticles Against Aquatic Bacterial Pathogens. Futur. Pharmacol. 2025, 5, 44. [Google Scholar] [CrossRef]
- Varaprasad, K.; Sisubalan, N.; Jayaramudu, T.; Yallapu, M.M. Nanocurcumin: A New and Improved Way to Fight Cancer and Infections. Nano-Struct. Nano-Objects 2024, 40, 101352. [Google Scholar] [CrossRef]
- Kamble, M.G.; Singh, A.; Singh, S.V.; Kamble, M.G.; Sagar, N.A.; Rani, N. Nanotechnology for Encapsulation of Bioactive Components: A Review. Discov. Food 2025, 5, 116. [Google Scholar] [CrossRef]
- Ciuca, M.D.; Racovita, R.C. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int. J. Mol. Sci. 2023, 24, 8874. [Google Scholar] [CrossRef]
- Ajanaku, C.O.; Ademosun, O.T.; Atohengbe, P.O.; Ajayi, S.O.; Obafemi, Y.D.; Owolabi, O.A.; Akinduti, P.A.; Ajanaku, K.O. Functional Bioactive Compounds in Ginger, Turmeric, and Garlic. Front. Nutr. 2022, 9, 1012023. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, X.; Liu, S.; Zhang, H.; Wang, J. Interaction Mechanism between Cereal Phenolic Acids and Gluten Protein: Protein Structural Changes and Binding Mode. J. Sci. Food Agric. 2022, 102, 7387–7396. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Jin, C.; Lv, S.; Zhang, H.; Ren, F.; Wang, J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants 2023, 12, 1577. [Google Scholar] [CrossRef]
- Civelek, N.; Bilge, D. Investigating the Molecular Effects of Curcumin by Using Model Membranes. Food Biophys. 2022, 17, 232–247. [Google Scholar] [CrossRef]
- Truong, D.H.; Dinh, T.T.; My, T.; Trinh, D.; Hong, T.; Pham, M.; Pham, M.Q.; Gawlik-dziki, U.; Dao, D.Q. HOO Radical Scavenging Activity of Curcumin I and III in Physiological Conditions: A Theoretical Investigation on the in Fl Uence of Acid—Base Equilibrium and Tautomerism. RSC Adv. 2025, 15, 5649–5664. [Google Scholar] [CrossRef]
- Leferman, C.; Stoica, L.; Stoica, B.A.; Ciubotaru, A.D.; Badescu, A.C.; Bogdanici, C.-M.; Neagu, T.P.; Ghiciuc, C.-M. Mitochondria-Targeted Curcumin: A Potent Antibacterial Agent against Methicillin-Resistant Staphylococcus Aureus with a Possible Intracellular ROS Accumulation as the Mechanism of Action. Antibiotics 2023, 12, 401. [Google Scholar] [CrossRef]
- Buniowska-Olejnik, M.; Mykhalevych, A.; Urbański, J.; Berthold-Pluta, A.; Michałowska, D.; Banach, M. The Potential of Using Curcumin in Dairy and Milk-Based Products—A Review. J. Food Sci. 2024, 89, 5245–5254. [Google Scholar] [CrossRef]
- Dai, C.; Lin, J.; Li, H.; Shen, J.; Shen, Z.; Wang, Y.; Velkov, T. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. [Google Scholar] [CrossRef]
- Elghareeb, M.A.; Elshebrawy, H.A.; Zaher, H.A.; Sallam, K.I. Antimicrobial Effect of Curcumin, Alone or in Combination with Black Pepper, against Foodborne Pathogens in Vacuum-Packed Ground Mutton. Sci. Rep. 2025, 15, 24373. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.S.; Krishnan, R.; Begum, S.; Nath, D.; Mohanty, A.; Misra, M.; Kumar, S. Curcumin as Bioactive Agent in Active and Intelligent Food Packaging Systems: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70228. [Google Scholar] [CrossRef] [PubMed]
- Sandikci Altunatmaz, S.; Yilmaz Aksu, F.; Issa, G.; Basaran Kahraman, B.; Dulger Altiner, D.; Buyukunal, S.K. Antimicrobial Effects of Curcumin against L. monocytogenes, S. aureus, S. typhimurium and E. coli O157: H7 Pathogens in Minced Meat. Vet. Med. 2016, 61, 256–262. [Google Scholar] [CrossRef]
- Gulel, G.T.; Kanat, S.; Kucukgoz, E. Antibacterial Effect of Curcumin on Salmonella Typhimurium: In Vitro and Food Model Studies. Vet. Med. 2024, 69, 115–122. [Google Scholar] [CrossRef]
- Schamberger, B.; Plaetzer, K. Photofungizides Based on Curcumin and Derivates Thereof against Candida albicans and Aspergillus Niger. Antibiotics 2021, 10, 1315. [Google Scholar] [CrossRef]
- Karnwal, A.; Kumar, G.; Singh, R.; Selvaraj, M.; Malik, T.; Al Tawaha, A.R.M. Natural Biopolymers in Edible Coatings: Applications in Food Preservation. Food Chem. X 2025, 25, 102171. [Google Scholar] [CrossRef]
- Bagale, U.; Kadi, A.; Malinin, A.; Potoroko, I.; Sonawane, S.; Potdar, S. Ultrasound-Assisted Stable Curcumin Nanoemulsion and Its Application in Bakery Product. Int. J. Food Sci. 2022, 2022, 4784794. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim El-Sayed, M.; Shalaby, T.I. Production of Processed Cheese Supplemented with Curcumin Nanoemulsion. Am. J. Food Nutr. 2021, 9, 96–105. [Google Scholar] [CrossRef]
- Chen, Y.; Zha, E.; Zhang, Z.; Zhang, J.; Wang, R.; Li, J.; Sun, J. Effect of Combined Treatment of Curcumin and Sodium Bicarbonate on Quality Characteristics of Refrigerated Beef Meatballs. LWT 2024, 204, 116483. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef]
- Packiavathy, I.A.S.V.; Priya, S.; Pandian, S.K.; Ravi, A.V. Inhibition of Biofilm Development of Uropathogens by Curcumin—An Anti-Quorum Sensing Agent from Curcuma longa. Food Chem. 2014, 148, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Prakash, P. Making of Water Soluble Curcumin to Potentiate Conventional Antimicrobials by Inducing Apoptosis-like Phenomena among Drug-Resistant Bacteria. Sci. Rep. 2020, 10, 14204. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane. PLoS ONE 2015, 10, e0121313. [Google Scholar] [CrossRef]
- Morão, L.G.; Polaquini, C.R.; Kopacz, M.; Torrezan, G.S.; Ayusso, G.M.; Dilarri, G.; Cavalca, L.B.; Scheffers, A.Z.D.; Ferreira, H.; Regasini, L.O. A Simplified Curcumin Targets the Membrane of Bacillus Subtilis. Microbiologyopen 2019, 8, e683. [Google Scholar] [CrossRef]
- Morsy, M.K.; Al-Dalain, S.Y.; Haddad, M.A.; Diab, M.; Abd-Elaaty, E.M.; Abdeen, A.; Ibrahim, S.F.; Shukry, M.; Banatean-Dunea, I.; Fericean, L.; et al. Curcumin Nanoparticles as a Natural Antioxidant and Antimicrobial Preservative against Foodborne Pathogens in Processed Chicken Fingers. Front. Sustain. Food Syst. 2023, 7, 1267075. [Google Scholar] [CrossRef]
- Varshney, G.K.; Saini, R.K.; Gupta, P.K.; Das, K. Effect of Curcumin on the Diffusion Kinetics of a Hemicyanine Dye, LDS-698, across a Lipid Bilayer Probed by Second Harmonic Spectroscopy. Langmuir 2013, 29, 2912–2918. [Google Scholar] [CrossRef]
- Wray, R.; Iscla, I.; Blount, P. Curcumin Activation of a Bacterial Mechanosensitive Channel Underlies Its Membrane Permeability and Adjuvant Properties. PLoS Pathog. 2021, 17, e1010198. [Google Scholar] [CrossRef]
- Dube, E.; Okuthe, G.E. Applications of Antimicrobial Photodynamic Therapy in Aquaculture: Effect on Fish Pathogenic Bacteria. Fishes 2024, 9, 99. [Google Scholar] [CrossRef]
- Shen, Y.F.; Ma, W.P.; Ma, R.H.; Thakur, K.; Ni, Z.J.; Wang, W.; Wei, Z.J. Curcumin-Mediated Photodynamic Treatment Enhances Storage Quality of Fresh Wolfberries via Antioxidant System Modulation. Foods 2025, 14, 2843. [Google Scholar] [CrossRef]
- Joshi, P.; Soares, J.M.; Martins, G.M.; Cocca, L.H.Z.; De Boni, L.; De Oliveira, K.T.; Bagnato, V.S.; Blanco, K.C. Enhancing the Efficacy of Antimicrobial Photodynamic Therapy through Curcumin Modifications. Photochem. Photobiol. 2025, 101, 359–372. [Google Scholar] [CrossRef]
- Seididamyeh, M.; Netzel, M.E.; Mereddy, R.; Harmer, J.R.; Sultanbawa, Y. Photodynamic Inactivation of Botrytis cinerea Spores by Curcumin–Effect of Treatment Factors and Characterization of Photo-Generated Reactive Oxygen Species. Food Bioprocess Technol. 2024, 17, 670–685. [Google Scholar] [CrossRef]
- Scarano, A.; Laddomada, B.; Blando, F.; De Santis, S.; Verna, G.; Chieppa, M.; Santino, A. The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota. Antioxidants 2023, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food Chem. 2015, 63, 7606–7614. [Google Scholar] [CrossRef]
- Gordon, O.N.; Luis, P.B.; Sintim, H.O.; Schneider, C. Unraveling Curcumin Degradation: Autoxidation Proceeds through Spiroepoxide and Vinylether Intermediates En Route to the Main Bicyclopentadione. J. Biol. Chem. 2015, 290, 4817–4828. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (Ros) Revisited: Outlining Their Role in Biological Macromolecules (Dna, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Obeme-Imom, J.I.; Akpor, B.O.; Rotimi, D.; Batiha, G.E.-s.; Owolabi, A. Altered Redox Status, DNA Damage and Modulation of L-Tryptophan Metabolism Contribute to Antimicrobial Action of Curcumin. Heliyon 2020, 6, e03495. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Yao, B.; Hu, T.; Ma, Z.; Shi, W.; Ye, Y. Curcumin Inhibits Aspergillus Flavus Infection and Aflatoxin Production Possibly by Inducing ROS Burst. Food Res. Int. 2023, 167, 112646. [Google Scholar] [CrossRef]
- Alum, E.U.; Gulumbe, B.H.; Izah, S.C.; Uti, D.E.; Aja, P.M.; Igwenyi, I.O.; Offor, C.E. Natural Product-Based Inhibitors of Quorum Sensing: A Novel Approach to Combat Antibiotic Resistance. Biochem. Biophys. Rep. 2025, 43, 102111. [Google Scholar] [CrossRef]
- Chadha, J.; Harjai, K.; Chhibber, S. Repurposing Phytochemicals as Anti-Virulent Agents to Attenuate Quorum Sensing-Regulated Virulence Factors and Biofilm Formation in Pseudomonas Aeruginosa. Microb. Biotechnol. 2022, 15, 1695–1718. [Google Scholar] [CrossRef]
- Alisaac, A. Curcumin-Mediated Downregulation of Gene Expression Inhibits Enterococcus Faecalis Biofilm Formation. Arab. J. Sci. Eng. 2025. [Google Scholar] [CrossRef]
- Mangoudehi, H.T.; Zamani, H.; Shahangian, S.S.; Mirzanejad, L. Effect of Curcumin on the Expression of AhyI/R Quorum Sensing Genes and Some Associated Phenotypes in Pathogenic Aeromonas Hydrophila Fish Isolates. World J. Microbiol. Biotechnol. 2020, 36, 70. [Google Scholar] [CrossRef]
- Fernandes, S.; Borges, A.; Gomes, I.B.; Sousa, S.F.; Simões, M. Curcumin and 10-Undecenoic Acid as Natural Quorum Sensing Inhibitors of LuxS/AI-2 of Bacillus Subtilis and LasI/LasR of Pseudomonas Aeruginosa. Food Res. Int. 2023, 165, 112519. [Google Scholar] [CrossRef]
- Kali, A.; Bhuvaneshwar, D.; Charles, P.M.V.; Seetha, K.S. Antibacterial Synergy of Curcumin with Antibiotics against Biofilm Producing Clinical Bacterial Isolates. J. Basic Clin. Pharm. 2016, 7, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Murai, H.; Kuboniwa, M.; Kakiuchi, M.; Matsumura, R.; Hirata, Y.; Amano, A. Curcumin Inhibits Growth of Porphyromonas Gingivalis by Arrest of Bacterial Dipeptidyl Peptidase Activity. J. Oral Microbiol. 2024, 16, 2373040. [Google Scholar] [CrossRef]
- Kaur, S.; Modi, N.H.; Panda, D.; Roy, N. Probing the Binding Site of Curcumin in Escherichia coli and Bacillus Subtilis FtsZ—A Structural Insight to Unveil Antibacterial Activity of Curcumin. Eur. J. Med. Chem. 2010, 45, 4209–4214. [Google Scholar] [CrossRef] [PubMed]
- Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin Inhibits FtsZ Assembly: An Attractive Mechanism for Its Antibacterial Activity. Biochem. J. 2008, 410, 147–155. [Google Scholar] [CrossRef]
- Prajapati, J.; Rao, P.; Poojara, L.; Goswami, D.; Acharya, D.; Patel, S.K.; Rawal, R.M. Unravelling the Antifungal Mode of Action of Curcumin by Potential Inhibition of CYP51B: A Computational Study Validated in Vitro on Mucormycosis Agent, Rhizopus Oryzae. Arch. Biochem. Biophys. 2021, 712, 109048. [Google Scholar] [CrossRef]
- Rocha, O.B.; do Carmo Silva, L.; de Carvalho Júnior, M.A.B.; de Oliveira, A.A.; de Almeida Soares, C.M.; Pereira, M. In Vitro and in Silico Analysis Reveals Antifungal Activity and Potential Targets of Curcumin on Paracoccidioides Spp. Braz. J. Microbiol. 2021, 52, 1897–1911. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, S.; Li, N.; Lin, D. Curcumin: A Magical Small Molecule with a Large Role in Active-Intelligent Degradable Food Packaging. Int. J. Mol. Sci. 2025, 26, 3917. [Google Scholar] [CrossRef]
- Ghosh, M.; Sarkar, N. Exploring the World of Curcumin: Photophysics, Photochemistry, and Applications in Nanoscience and Biology. ChemBioChem 2024, 25, e202400335. [Google Scholar] [CrossRef]
- Bertoncini-Silva, C.; Vlad, A.; Ricciarelli, R.; Giacomo Fassini, P.; Suen, V.M.M.; Zingg, J.M. Enhancing the Bioavailability and Bioactivity of Curcumin for Disease Prevention and Treatment. Antioxidants 2024, 13, 331. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, S.; Wang, J.; Chen, Q. A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems. Front. Nutr. 2021, 8, 783831. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mageed, H.M.; AbuelEzz, N.Z.; Ali, A.A.; Abdelaziz, A.E.; Nada, D.; Abdelraouf, S.M.; Fouad, S.A.; Bishr, A.; Radwan, R.A. Newly Designed Curcumin-Loaded Hybrid Nanoparticles: A Multifunctional Strategy for Combating Oxidative Stress, Inflammation, and Infections to Accelerate Wound Healing and Tissue Regeneration. BMC Biotechnol. 2025, 25, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Taheri-Ledari, R.; Ganjali, F.; Afruzi, F.H.; Hajizadeh, Z.; Saeidirad, M.; Qazi, F.S.; Kashtiaray, A.; Sehat, S.S.; Hamblin, M.R.; et al. Nanoscale Bioconjugates: A Review of the Structural Attributes of Drug-Loaded Nanocarrier Conjugates for Selective Cancer Therapy. Heliyon 2022, 8, e09577. [Google Scholar] [CrossRef]
- Kaur, G.; Panigrahi, C.; Agarwal, S.; Khuntia, A.; Sahoo, M. Recent Trends and Advancements in Nanoemulsions: Production Methods, Functional Properties, Applications in Food Sector, Safety and Toxicological Effects. Food Phys. 2024, 1, 100024. [Google Scholar] [CrossRef]
- Yu, X.; Zou, Y.; Zhang, Z.; Wei, T.; Ye, Z.; Yuk, H.; Zheng, Q. Recent Advances in Antimicrobial Applications of Curcumin-Mediated Photodynamic Inactivation in Foods. Food Control 2022, 138, 108986. [Google Scholar] [CrossRef]
- Wang, R.; Fan, W.; Zhu, L.; Wang, W.; Luo, X.; Yan, W.; Wang, T.; Zhang, H. Edible Rice Starch Films Incorporated with Curcumin Nanoparticles Exerting Anti-Microbial Properties for Strawberry Preservation. Int. J. Biol. Macromol. 2025, 310, 142993. [Google Scholar] [CrossRef]
- Wang, C.; Pan, J.; Xu, H.; Chen, Q.; Zhou, S.; Tang, L.; Qiu, L.; Jiang, P. Facilely Prepared Ferric-Curcumin Complex Nanoparticles Exert Improved Stability and Photothermal Enhanced Antibacterial Effects for Food Preservation. LWT-Food Sci. Technol. 2024, 205, 116418. [Google Scholar]
- Wahyuni, L.S.; Nuryono, N.; Hatmanto, A.D. Optimizing Banana Preservation with Bandgap-Dependent Curcumin-Modified Cu-Doped-ZnO Nanoparticles in Chitosan Edible Coatings. Surf. Interfaces 2025, 61, 106104. [Google Scholar] [CrossRef]
- Li, S.; Wei, N.; Wei, J.; Fang, C.; Feng, T.; Liu, F.; Liu, X. Curcumin and Silver Nanoparticles Loaded Antibacterial Multifunctional Pectin/Gelatin Films for Food Packaging Applications. Int. J. Biol. Macromol. 2024, 266, 131248. [Google Scholar] [CrossRef]
- Wu, C.; Zhu, Y.; Wu, T.; Wang, L.; Yuan, Y.; Chen, J.; Hu, Y.; Pang, J. Enhanced Functional Properties of Biopolymer Film Incorporated with Curcurmin-Loaded Mesoporous Silica Nanoparticles for Food Packaging. Food Chem. 2019, 288, 139–145. [Google Scholar] [CrossRef]
- Salarbashi, D.; Tafaghodi, M.; Fathi, M.; Aboutorabzade, S.M.; Sabbagh, F. Development of Curcumin-Loaded Prunus Armeniaca Gum Nanoparticles: Synthesis, Characterization, Control Release Behavior, and Evaluation of Anticancer and Antimicrobial Properties. Food Sci. Nutr. 2021, 9, 6109–6119. [Google Scholar] [CrossRef]
- Quichaba, M.B.; Moreira, T.F.M.; de Oliveira, A.; de Carvalho, A.S.; de Menezes, J.L.; Gonçalves, O.H.; de Abreu Filho, B.A.; Leimann, F.V. Biopreservatives against Foodborne Bacteria: Combined Effect of Nisin and Nanoncapsulated Curcumin and Co-Encapsulation of Nisin and Curcumin. J. Food Sci. Technol. 2023, 60, 581–589. [Google Scholar] [CrossRef]
- Viana, T.; Menezes, D.; Gouveia, A.; Martha, J.; Mikcha, G.; Machinski, M.; Alves, B.; Filho, D.A. Use of Nanoencapsulated Curcumin against Vegetative Cells and Spores of Alicyclobacillus Spp. in Industrialized Orange Juice. Int. J. Food Microbiol. 2021, 360, 109442. [Google Scholar] [CrossRef]
- Roy, S.; Min, S.; Biswas, D.; Rhim, J. Pullulan/Chitosan-Based Functional Film Incorporated with Curcumin-Integrated Chitosan Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2023, 660, 130898. [Google Scholar] [CrossRef]
- Xin, S.; Xiao, L.; Dong, X.; Li, X.; Wang, Y.; Hu, X.; Sameen, D.E.; Qin, W.; Zhu, B. Preparation of Chitosan/Curcumin Nanoparticles Based Zein and Potato Starch Composite Fi Lms for Schizothorax Prenati Fillet Preservation. Int. J. Biol. Macromol. 2020, 164, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Yan, Y.; Xu, D.; Wu, J.; Xu, C.; Fu, L.; Lin, B. Curcumin-Loaded NanoMOFs@CMFP: A Biological Preserving Paste with Antibacterial Properties and Long-Acting, Controllable Release. Food Chem. 2021, 337, 127987. [Google Scholar] [PubMed]
- Zhang, L.; Chen, D.; Yu, D.; Regenstein, J.M.; Jiang, Q.; Dong, J.; Chen, W.; Xia, W. Modulating Physicochemical, Antimicrobial and Release Properties of Chitosan/Zein Bilayer Films with Curcumin/Nisin-Loaded Pectin Nanoparticles. Food Hydrocoll. 2022, 133, 107955. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, D.; Xu, Y.; Jiang, Q.; Xia, W.; Yu, D. Changes in Quality and Microbial Diversity of Refrigerated Carp Fillets Treated by Chitosan/Zein Bilayer Film with Curcumin/Nisin-Loaded Pectin Nanoparticles. Food Biosci. 2023, 54, 102941. [Google Scholar] [CrossRef]
- Ni, Y.; Nie, H.; Wang, J.; Lin, J.; Wang, Q.; Sun, J.; Zhang, W.; Wang, J. Enhanced Functional Properties of Chitosan Films Incorporated with Curcumin-Loaded Hollow Graphitic Carbon Nitride Nanoparticles for Bananas Preservation. Food Chem. 2022, 366, 130539. [Google Scholar] [CrossRef]
- Xu, P.; Wang, T.; He, J.; Xiong, W.; Ren, J.; Feng, W. Antibacterial Rice Protein Nanoparticles with a High Curcumin Loading for Fruit Preservation. Food Biosci. 2024, 61, 104935. [Google Scholar] [CrossRef]
- Fallah, A.A.; Sarmast, E.; Habibian, S.; Isvand, A.; Dini, H.; Jafari, T.; Soleimani, M.; Mousavi, A. Low-Dose Gamma Irradiation and Pectin Biodegradable Nanocomposite Coating Containing Curcumin Nanoparticles and Ajowan (Carum copticum) Essential Oil Nanoemulsion for Storage of Chilled Lamb Loins. Meat Sci. 2022, 184, 108700. [Google Scholar] [CrossRef] [PubMed]
- Alanchari, M.; Mohammadi, M.; Yazdian, F.; Ahangari, H.; Ahmadi, N.; Emam-Djomeh, Z.; Homayouni-Rad, A.; Ehsani, A. Optimization and Antimicrobial Efficacy of Curcumin Loaded Solid Lipid Nanoparticles against Foodborne Bacteria in Hamburger Patty. J. Food Sci. 2021, 86, 2242–2254. [Google Scholar] [CrossRef]
- Wypij, M.; Trzcińska-Wencel, J.; Golińska, P.; Avila-Quezada, G.D.; Ingle, A.P.; Rai, M. The Strategic Applications of Natural Polymer Nanocomposites in Food Packaging and Agriculture: Chances, Challenges, and Consumers’ Perception. Front. Chem. 2024, 10, 1106230. [Google Scholar] [CrossRef]
- Makoni, P.A.; Kasongo, K.W.; Walker, R.B. Short Term Stability Testing of Efavirenz-Loaded Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid Carrier (NLC) Dispersions. Pharmaceutics 2019, 11, 397. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.N.; Lee, S.; Lim, Y.M.; Yang, S.; Chew, Y.; Chua, A.; Liew, K. Bin Recent Advances in Vitamin E TPGS-Based Organic Nanocarriers for Enhancing the Oral Bioavailability of Active Compounds: A Systematic Review. Pharmaceutics 2025, 17, 485. [Google Scholar] [CrossRef]
- Kadirvel, V.; Palanisamy, Y.; Ganesan, N.D. Active Packaging System—An Overview of Recent Advances for Enhanced Food Quality and Safety. Packag. Technol. Sci. 2025, 38, 145–162. [Google Scholar] [CrossRef]
- Li, J.; Xu, F.; Dai, Y.; Zhang, J.; Shi, Y.; Lai, D.; Sriboonvorakul, N.; Hu, J. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14, 5421. [Google Scholar] [CrossRef]
- Awlqadr, F.H.; Altemimi, A.B.; Omar, A.M.A.; Saeed, M.N.; Qadir, S.A.; Faraj, A.M.; Al-Manhel, A.J.A.; Salih, T.H.; Hesarinejad, M.A.; Vieira, I.R.S. Advancing Sustainability in Fruit and Vegetable Packaging: The Role of Nanotechnology in Food Preservation. eFood 2025, 6, e70060. [Google Scholar] [CrossRef]
- Rezagholizade-shirvan, A.; Fathi Najafi, M.; Behmadi, H.; Masrournia, M. Preparation of Nano-Composites Based on Curcumin/Chitosan-PVA-Alginate to Improve Stability, Antioxidant, Antibacterial and Anticancer Activity of Curcumin. Inorg. Chem. Commun. 2022, 145, 110022. [Google Scholar] [CrossRef]
- Liang, Q.; Cao, P.; Lu, H.; Du, Y.; Kang, L.; Ma, H.; Ren, X. Ultrasonic Engineering of Zein-Curcumin Nanoparticles/Sodium Alginate Composite Films for Active Food Packaging Applications. Int. J. Biol. Macromol. 2025, 315, 144268. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Wang, Y. Advances in Bio-Based Smart Food Packaging for Enhanced Food Safety. Trends Food Sci. Technol. 2025, 159, 104960. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lim, N.; Parka, S.K.; Lee, N.Y. Curcumin—A Natural Colorant-Based PH Indicator for Molecular Diagnostics. Analyst 2025, 150, 1632–1641. [Google Scholar] [CrossRef]
- Zhou, S.; Li, N.; Peng, H.; Yang, X.; Lin, D. The Development of Highly PH-Sensitive Bacterial Cellulose Nanofibers/Gelatin-Based Intelligent Films Loaded with Anthocyanin/Curcumin for the Fresh-Keeping and Freshness Detection of Fresh Pork. Foods 2023, 12, 3719. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Guo, F.; Yu, Y.; Lu, J.; Li, Y.; Cheng, Q.; Peng, J.; Yu, G. Biodegradable Cellulose/Curcumin Films with Janus Structure for Food Packaging and Freshness Monitoring. Carbohydr. Polym. 2024, 324, 121516. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; He, J.; Luo, J.; Cai, J.; Wei, J.; Li, P. Preparation of Curcumin-Loaded Chitosan/Polyvinyl Alcohol Intelligent Active Films for Food Packaging and Freshness Monitoring. Int. J. Biol. Macromol. 2024, 276, 133807. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Yang, M.; Yassin, S.; Abdalkarim, H.; Yu, H. In Situ Growth of Curcumin-Loaded Cellulose Composite Film for Real-Time Monitoring of Food Freshness in Smart Packaging. Int. J. Biol. Macromol. 2024, 279, 135090. [Google Scholar] [CrossRef]
- Kossyvaki, D.; Contardi, M.; Athanassiou, A.; Fragouli, D. Colorimetric Indicators Based on Anthocyanin Polymer Composites: A Review. Polymers 2022, 14, 4129. [Google Scholar] [CrossRef] [PubMed]
- Ranade, T.; Sati, A.; Pratap, A. Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions. Chem. Pap. 2025, 79, 1303–1334. [Google Scholar] [CrossRef]
- Hettiarachchi, S.S.; Perera, Y.; Dunuweera, S.P.; Dunuweera, A.N.; Rajapakse, S.; Rajapakse, R.M.G. Comparison of Antibacterial Activity of Nanocurcumin with Bulk Curcumin. ACS Omega 2022, 7, 46494–46500. [Google Scholar] [CrossRef]
- Ujilestari, T.; Febrisiantosa, A.; Sholikin, M.M.; Wahyuningsih, R.; Wahyono, T. Nanoemulsion Application in Meat Product and Its Functionality: Review. J. Anim. Sci. Technol. 2023, 65, 275–292. [Google Scholar] [CrossRef]
- Abdou, E.S.; Galhoum, G.F.; Mohamed, E.N. Curcumin Loaded Nanoemulsions/Pectin Coatings for Refrigerated Chicken Fillets. Food Hydrocoll. 2018, 83, 445–453. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking Microbial Contamination to Food Spoilage and Food Waste: The Role of Smart Packaging, Spoilage Risk Assessments, and Date Labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef]
- Wu, C.; Li, L.; Zhong, Q.; Cai, R.; Wang, P.; Xu, X.; Zhou, G.; Han, M.; Liu, Q.; Hu, T.; et al. Myofibrillar Protein–Curcumin Nanocomplexes Prepared at Different Ionic Strengths to Improve Oxidative Stability of Marinated Chicken Meat Products. LWT 2019, 99, 69–76. [Google Scholar] [CrossRef]
- Pellegrino, M.; Elechi, J.O.G.; Plastina, P.; Loizzo, M.R. Application of Natural Edible Coating to Enhance the Shelf Life of Red Fruits and Their Bioactive Content. Appl. Sci. 2024, 14, 4552. [Google Scholar] [CrossRef]
- Gao, H.; Cheng, C.; Fang, S.; McClements, D.J.; Ma, L.; Chen, X.; Zou, L.; Liang, R.; Liu, W. Study on Curcumin Encapsulated in Whole Nutritional Food Model Milk: Effect of Fat Content, and Partitioning Situation. J. Funct. Foods 2022, 90, 104990. [Google Scholar] [CrossRef]
- Ould Yahia, Z.; Xie, L.; Rashwan, A.K.; Paul, B.; Liu, S.; Chen, W. Gum Arabic Modified Nano-Nutriosomes for Curcumin Encapsulation: Characterization, Influence on Physicochemical, Microstructural and Microbial Properties of Integrated Yogurt. Int. J. Biol. Macromol. 2025, 308, 142202. [Google Scholar] [CrossRef] [PubMed]
- Shawir, S.M.; Lotfy, T.M.R.; Kamel, R.M.; Khater, A.E.; Younes, N.M. Potential Application of Curcumin Nanoemulsions to Preserve Properties of Refrigerated Cheese. Biocatal. Agric. Biotechnol. 2024, 59, 103243. [Google Scholar] [CrossRef]
- Amini, S.M.; Getso, M.I.; Farahyar, S.; Khodavaisy, S.; Roudbary, M.; Mahabadi, V.P.; Mahmoudi, S. Antifungal Activity of Green-Synthesized Curcumin-Coated Silver Nanoparticles Alone and in Combination with Fluconazole and Itraconazole against Candida and Aspergillus Species. Curr. Med. Mycol. 2023, 9, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, H.O.; Oreiby, A.; Abdelhamid, M.A.A.; Ki, M.R.; Pack, S.P. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics 2024, 9, 425. [Google Scholar] [CrossRef]
- Dong, S.; Chen, L.; Li, S.; Feng, K.; Liu, G.; Dong, H.; Xu, G.; Ou, H.; Liu, Y.; Zhao, Y.; et al. Antifungal Activity of Curcumin-Mediated Photodynamic Inactivation against Fusarium Graminearum on Maize. Grain Oil Sci. Technol. 2025, 8, 21–31. [Google Scholar] [CrossRef]
- Mukubesa, N.; Nguenha, R.; Hong, H.T.; Seididamyeh, M.; Netzel, M.E.; Sultanbawa, Y. Curcumin-Based Photosensitization, a Green Treatment in Inactivating Aspergillus Flavus Spores in Peanuts. Foods 2022, 11, 354. [Google Scholar] [CrossRef]
- Wang, M.-g.; Liu, K.-d.; Jin, W.-j.; Li, R.-b.; Liu, J.-q.; Fang, L.-x.; Sun, J.; Liao, X.-p. Mechanistic Insight into Curcumin-Induced Conjugative Plasmid Transfer Acceleration: Role of Intracellular Arginine Uptake. Food Microbiol. 2026, 133, 104895. [Google Scholar] [CrossRef]
- Gali, L.; Pirozzi, A.; Donsì, F. Biopolymer- and Lipid-Based Carriers for the Delivery of Plant-Based Ingredients. Pharmaceutics 2023, 15, 927. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ye, T.; Liu, Y.; Chen, X.; Miao, G. Effects of Food Matrix and Probiotics on the Bioavailability of Curcumin in Different Nanoformulations. J. Sci. Food Agric. 2021, 101, 5627–5635. [Google Scholar] [CrossRef]
- Seref, N.; Cufaoglu, G. Food Packaging and Chemical Migration: A Food Safety Perspective. J. Food Sci. 2025, 90, e70265. [Google Scholar] [CrossRef]
- Gupta, R.K.; Pipliya, S.; Karunanithi, S.; Eswaran U, G.M.; Kumar, S.; Mandliya, S.; Srivastav, P.P.; Suthar, T.; Shaikh, A.M.; Harsányi, E.; et al. Migration of Chemical Compounds from Packaging Materials into Packaged Foods: Interaction, Mechanism, Assessment, and Regulations. Foods 2024, 13, 3125. [Google Scholar] [CrossRef]
Curcuminnanoformulation | % (w/w) Curcumin in Nanoformulation | Shape, Size, Zeta Potential | Applied Area | Effect | Ref |
---|---|---|---|---|---|
Curcumin NPs | - | Spherical, 80 ± 2 nm, zeta potential was 4.5 mV | Preservative in processed chicken fingers | Strong activity against S. aureus, E. coli, and B. cereus; reduces lipid oxidation, stabilises pH, lowers microbial counts, extending shelf life beyond 3 days (compared to 1 day for the control). | [37] |
Curcumin NPs in rice starch (RS) films | 0.5 to 3 | Spherical, 141 ± 7 nm, zeta potential was −30.3 mV | Food packaging films for strawberry preservation | Inhibited B. cinerea, preserved pH and sweetness, reduced weight loss, delayed softening, and extended freshness | [70] |
Ferric-curcumin (Fe-Curcumin) NPs | - | 65 nm, zeta potential was −67.2 mV | Pork preservation | Enhanced stability, antibacterial efficacy against S. aureus and E. coli, disrupt biofilms and preserve pork freshness in chitosan films (Total Viable Count value of 6.41 at Day 15 compared to 8.06 at Day 10 for the control) | [71] |
Curcumin-modified Cu-doped ZnO NPs (Cu-ZnO@Curcumin) | ≈ 1 | Round, 30 nm | Banana edible coating | Reduced spoilage by reducing banana fruit mass loss by up to 17.58% after seven days of storage, compared to uncoated fruit, delayed ripening, and enhanced antibacterial activity | [72] |
Curcumin-AgNPs in pectin/gelatin films | 0.3 | AgNPs spherical and 20 nm | Shrimp packaging films | Inhibited S. aureus and E. coli, enhanced antioxidant activity, and introduced pH-sensitive colour changes that visually indicated food spoilage. | [73] |
Curcumin-loaded mesoporous silica NPs | 1.85 | Hexagonal, pore size of 6 nm | Food packaging films | Improved film strength, pH-responsive sustained release, prolonged activity against S. aureus and E. coli. | [74] |
Curcumin-loaded Prunus armeniaca gum NPs | - | Spherical, 50–100 nm | Edible coating for shrimp during storage | Superior antimicrobial activity against S. aureus and E. coli, effectively extending shrimp shelf life by maintaining low pH, reducing total volatile basic nitrogen and enabling controlled curcumin release. | [75] |
Curcumin nanoencapsulated in polyvinylpyrrolidone (PVP) and Tween 80 | 8.3 | Spherical, 12 nm | Food preservation | Curcumin nanoformulation was readily dispersible in water, showing enhanced water solubility, inhibited S. aureus and showed synergistic antibacterial effects when co-encapsulated with nisin | [76] |
Curcumin nanoencapsulated in PVP | 8.3 | Irregular shape, 20 to 250 nm | Orange juice | Enhanced antimicrobial activity against S. aureus (with a 4 log CFU/mL reduction at 125 μg/mL), Salmonella Enteritidis, and Alicyclobacillus acidoterrestris (including spores with 1.04 log CFU/mL compared to 6.31 log CFU/mL for orange juice without the curcumin nanoformulation (control)), reduced cytotoxicity to normal cells, retained antioxidant capacity, and maintained pH and color stability in orange juice. | [77] |
Curcumin-integrated chitosan NPs (CTNP@Curcumin) in pullulan/chitosan films | 1–4 | Spherical, 37 ± 7 nm, zeta potential of 50 mV | Active food packaging | Enhanced UV shielding, mechanical strength, antioxidant capacity, and hydrophobicity. Improved antibacterial activity against E. coli and L. monocytogenes. | [78] |
Curcumin-loaded chitosan NPs incorporated into zein/potato starch composite film. | - | Spherical, 218 to 359 nm | Preservation of Schizothorax prenati fillets | Enhanced curcumin stability, release, and antioxidant performance. Composite films inhibited S. prenati spoilage (reaching almost 6 log CFU/g by day 15 while the control group exceeded 6 log CFU/g by day 12), extended shelf life to 15 days, reduced lipid oxidation and microbial growth, and maintained texture, odour, and sensory quality better than polyethene packaging. | [79] |
Curcumin-loaded nano Metal–Organic Frameworks (MOFs) integrated with carboxymethylated filter paper (CMFP) | 5 | - | Pitayas preservation | Delayed pitaya spoilage, reducing the rotten area to <5% by day 6, while controls rotted fully. Strong antibacterial activity against S. aureus and exceptional antioxidant performance. | [80] |
Curcumin-nisin-loaded pectin NPs in chitosan/zein bilayer films | 1–3 | Spherical, 143 nm, ζ-potential of −33.0 mV | Intended for active food packaging | Enhanced mechanical strength, UV blocking, and barrier properties, while significantly boosting antimicrobial (against S. aureus, E. coli) and antioxidant activity. The films also showed controlled release and reduced water sensitivity | [81] |
- | - | Grass Carp fillet preservation | Enhanced barrier, antioxidant, and antimicrobial properties, reducing Pseudomonas and Shewanella growth, lipid oxidation, and biogenic amine formation, while extending shelf life and preserving sensory, pH, and colour stability in refrigerated fish fillets. | [82] | |
Curcumin-loaded hollow graphitic carbon nitride (HCNS-Curcumin) in chitosan films | 7 | Spherical | Food packaging films for banana preservation | Improved curcumin’s thermal stability and slow-release behaviour. Sustained antibacterial activity against S. aureus and E. coli, reduced water vapour permeability, and extended banana shelf life by minimising weight loss, softening, and microbial spoilage. | [83] |
Curcumin-loaded rice protein NPs | 0.79–23 | 18 to 28 nm | Preservation of freshly cut apples | Improved curcumin’s thermal and photo-stability, enhanced antibacterial activity against E. coli and S. aureus, and preserved freshly cut apples by reducing microbial growth (with 1.46 log CFU/g compared to 6.57 log CFU/g for the control group (without curcumin-loaded rice protein NPs) after 7 days of storage), oxidative browning, and weight loss, while maintaining flavour and antioxidant effectiveness. | [84] |
Curcumin NPs in pectin (PE) biodegradable nanocomposite coating with ajowan essential oil nanoemulsion (ANE). | 0.2 | 10 nm | Storage of chilled lamb loins | Enhanced antimicrobial and antioxidant activity, effectively inhibiting L. monocytogenes, S. aureus, E. coli, and S. Typhimurium. When combined with ajowan oil and irradiation, the curcumin NPs PE nanocomposite extended the shelf life of lamb loin to 25 days. | [85] |
Curcumin-loaded solid lipid NPs | - | Spherical, 127 ± 1 nm, zeta potential of −30 ± 0.3 mV | Preservation of hamburger patties | Strong antimicrobial activity against S. aureus and E. coli, reducing bacterial growth in hamburger patties during 8-day storage at 4 °C, outperforming free curcumin and enhancing food safety through sustained release. | [86] |
NPs | Applied Cell Line | Toxicity Effect | Ref |
---|---|---|---|
Curcumin NPs in rice starch (RS) films | Human colorectal adenocarcinoma cells (Caco-2) | RS (control) film was non-cytotoxic across all concentrations. Incorporation of curcumin NPs slightly increased cytotoxicity in RS@Curcumin NP3.0% films; however, cell viability remained >80% at 1000 μg/mL, confirming good biosafety. | [70] |
Ferric-curcumin (Fe-Curcumin) NPs | Mouse fibroblast cell line (3T3) | After 24 h exposure at the highest concentration (400 μg/mL), no detrimental effect on 3T3 cell viability was observed. | [71] |
Curcumin-AgNPs in pectin/gelatin films | Human embryonic kidney cells | Films containing curcumin (0.3 wt%) and ≤0.5 wt% AgNPs showed good biocompatibility (>80% viability). Higher AgNP concentrations caused significant cytotoxicity. | [73] |
Curcumin-loaded mesoporous silica NPs | Breast cancer cell line and human ovarian cancer cell line | Curcumin-loaded NPs were cytotoxic to cancer cell lines, suggesting selective anticancer potential. | [74] |
Curcumin nanoencapsulated in PVP | Non-tumour liver primary culture (PLP-2) and the African green monkey non-tumour culture (Vero cells) | Nanoencapsulation reduced curcumin toxicity toward non-tumour PLP-2 and Vero cells. | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dube, E. Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems. Appl. Biosci. 2025, 4, 46. https://doi.org/10.3390/applbiosci4040046
Dube E. Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems. Applied Biosciences. 2025; 4(4):46. https://doi.org/10.3390/applbiosci4040046
Chicago/Turabian StyleDube, Edith. 2025. "Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems" Applied Biosciences 4, no. 4: 46. https://doi.org/10.3390/applbiosci4040046
APA StyleDube, E. (2025). Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems. Applied Biosciences, 4(4), 46. https://doi.org/10.3390/applbiosci4040046