Physiological and Physical Determinants of Flat-Water Kayaking
Abstract
1. Introduction
2. Results
2.1. Studies Included in the Review
2.2. Quality Assessment Rating
3. Discussion
3.1. Physiological Determinants
3.1.1. Metabolic Factors
Maximum Oxygen Uptake
Aerobic and Anaerobic Thresholds
Peak Aerobic Power/Anaerobic Capacity
Other Metabolic Variables
3.2. Strength and Power
3.2.1. Upper-Body Pulling Capacity
3.2.2. Upper-Body Pushing Capacity
3.2.3. Lower-Body Capacity
3.3. Physical Determinants
3.3.1. Anthropometry
3.3.2. Muscle Girth and Mass
3.4. Gaps in the Research
3.5. Practical Recommendations
4. Materials and Methods
Search Strategy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1RM | 1 repetition maximum |
3RM | 3 repetition maximum |
ATP | Adenosine triphosphate |
VO2max | Maximal oxygen uptake |
References
- Dingley, A.F.; Willmott, A.P.; Fernandes, J.F.T. Self-selected versus standardised warm-ups; physiological response on 500 m sprint kayak performance. Sports 2020, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- van Someren, K.; Howatson, G. Prediction of flatwater kayaking performance. Int. J. Sports Physiol. Perform. 2008, 3, 207–218. [Google Scholar] [CrossRef]
- Baker, J. Biomechanics of paddling. In Proceedings of the ISBS-Conference Proceedings Archive, Melbourne, Australia, 2–6 July 2012. [Google Scholar]
- McDonnell, L.K.; Hume, P.A.; Nolte, V. A deterministic model based on evidence for the associations between kinematic variables and sprint kayak performance. Sports Biomech. 2013, 12, 205–220. [Google Scholar] [CrossRef]
- Baudouin, A.; Hawkins, D. A biomechanical review of factors affecting rowing performance. Br. J. Sports Med. 2002, 36, 396–402. [Google Scholar] [CrossRef]
- International Canoe Federation. World Top Athletes List in Canoe Sprint. 2018. Available online: https://www.canoeicf.com/canoe-sprint-world-championships/montemor-o-velho-2018/results (accessed on 21 May 2025).
- Zouhal, H.; Le Douairon Lahaye, S.; Ben Abderrahaman, A.; Minter, G.; Herbez, R.; Castagna, C. Energy system contribution to Olympic distances in flat water kayaking (500 and 1,000 m) in highly trained subjects. J. Strength Cond. Res. 2012, 26, 825–831. [Google Scholar] [CrossRef]
- McKean, M.R.; Burkett, B.J. The Influence of Upper-Body Strength on Flat-Water Sprint Kayak Performance in Elite Athletes. Int. J. Sports Physiol. Perform. 2014, 9, 707–714. [Google Scholar] [CrossRef]
- Hamano, S.; Ochi, E.; Tsuchiya, Y.; Muramatsu, E.; Suzukawa, K.; Igawa, S. Relationship between performance test and body composition/physical strength characteristic in sprint canoe and kayak paddlers. J. Sports Med. 2015, 6, 191–199. [Google Scholar]
- van Someren, K.; Palmer, G.S. Prediction of 200-m sprint kayaking performance. Can. J. Appl. Physiol. 2003, 28, 505–517. [Google Scholar] [CrossRef]
- Akca, F.; Muniroglu, S. Anthropometric-somatotype and strength profiles and on-water performance in Turkish elite kayakers. Int. J. Appl. Sports Sci. 2008, 20, 22–34. [Google Scholar]
- Bishop, D.; Bonetti, D.; Dawson, B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med. Sci. Sports Exerc. 2002, 34, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Broďáni, J.; Dvořáčková, N.; Czaková, M.; Malík, Z.; Lopata, P. Share of strength parameters of bench press and barbell bench pull on a horizontal bench in sports performance in kayak disciplines. Phys. Educ. Theory Methodol. 2021, 21, 90–95. [Google Scholar] [CrossRef]
- Borges, T.O.; Dascombe, B.; Bullock, N.; Coutts, A.J. Physiological characteristics of well-trained junior sprint kayak athletes. Int. J. Sports Physiol. Perform. 2015, 10, 593–599. [Google Scholar] [CrossRef]
- Forbes, S.C.; Fuller, D.L.; Krentz, J.R.; Chilibeck, P.D. Anthropometric and physiological predictors of flat-water 1000 m kayak performance in young adolescents and the effectiveness of a high volume Training Camp. Int. J. Exerc. Sci. 2009, 2, 106–114. [Google Scholar] [CrossRef]
- Fry, R.W.; Morton, A.R. Physiological and kinanthropometric attributes of elite flatwater kayakists. Med. Sci. Sports Exerc. 1991, 23, 1297. [Google Scholar] [CrossRef]
- López-Plaza, D.; Alacid, F.; Muyor, J.M.; López-Miñarro, P.Á. Sprint kayaking and canoeing performance prediction based on the relationship between maturity status, anthropometry and physical fitness in young elite paddlers. J. Sports Sci. 2017, 35, 1083–1090. [Google Scholar] [CrossRef]
- López-Plaza, D.; Alacid, F.; Rubio-Arias, J.Á.; López-Miñarro, P.Á.; Muyor, J.M.; Manonelles, P. Morphological and physical fitness profile of young female sprint kayakers. J. Strength Cond. Res. 2019, 33, 1963–1970. [Google Scholar] [CrossRef]
- Lum, D.; Aziz, A.R. Relationship between isometric force–time characteristics and sprint kayaking performance. Int. J. Sports Physiol. Perform. 2012, 16, 474–479. [Google Scholar] [CrossRef]
- Lum, D.; Barbosa, T.M.; Balasekaran, G. Sprint kayaking performance enhancement by isometric strength training inclusion: A randomized controlled trial. Sports 2021, 9, 16. [Google Scholar] [CrossRef]
- Paquette, M.; Bieuzen, F.; Billaut, F. Muscle oxygenation rather than VO2max as a strong predictor of performance in sprint canoe-kayak. Int. J. Sports Physiol. Perform. 2018, 13, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Pickett, C.W.; Nosaka, K.; Zois, J.; Hopkins, W.G.; Blazevich, A.J. Maximal upper-body strength and oxygen uptake are associated with performance in high-level 200-m sprint kayakers. J. Strength Cond. Res. 2018, 32, 3186–3192. [Google Scholar] [CrossRef]
- Ualí, I.; Herrero, A.J.; Garatachea, N.; Marín, P.J.; Alvear-Ordenes, I.; García-López, D. Maximal strength on different resistance training rowing exercises predicts start phase performance in elite kayakers. J. Strength Cond. Res. 2012, 26, 941–946. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Lundby, C.; Montero, D.; Joyner, M. Biology of VO2 max: Looking under the physiology lamp. Acta Physiol. 2017, 220, 218–228. [Google Scholar] [CrossRef]
- Levine, B.D. VO2max: What do we know, and what do we still need to know? J. Physiol. 2008, 586, 25–34. [Google Scholar] [CrossRef]
- Wang, L.; Lee, Y.; Wu, Y.; Zhang, X.; Jin, C.; Huang, Z.; Wang, Y.; Wang, Z.; Kris-Etherton, P.; Wu, S.; et al. A prospective study of waist circumference trajectories and incident cardiovascular disease in China: The Kailuan cohort study. Am. J. Clin. Nutr. 2021, 113, 338–347. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Cohen, D. Statistical Power Analysis for the Behavioral Science, 2nd ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
- López-Plaza, D.; Manonelles, P.; López-Miñarro, P.Á.; Muyor, J.M.; Alacid, F. A longitudinal analysis of morphological characteristics and body proportionality in young elite sprint paddlers. Phys. Sports Med. 2019, 47, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Chamari, K.; Padulo, J. ‘Aerobic’ and ‘Anaerobic’ terms used in exercise physiology: A critical terminology reflection. Sports Med.-Open 2015, 1, 9. [Google Scholar] [CrossRef] [PubMed]
- Tanner, R.; Gore, C. Physiological Tests for Elite Athletes; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Gaskill, S.; Ruby, B.; Walker, A.; Sanchez, O.; Serfass, R.; Leon, A. Validity and reliability of combining three methods to determine ventilatory threshold. Med. Sci. Sports Exerc. 2001, 33, 1841–1848. [Google Scholar] [CrossRef]
- Costill, D.L.; Thomason, H.; Roberts, E. Fractional utilization of the aerobic capacity during distance running. Med. Sci. Sports 1973, 5, 248–252. [Google Scholar] [CrossRef]
- Weltman, A. The Blood Lactate Response to Exercise; Human Kinetics: Champaign, IL, USA, 1995. [Google Scholar]
- Chatham, J.C. Lactate—The forgotten fuel! J. Physiol. 2002, 542, 333. [Google Scholar] [CrossRef]
- Van Hall, G. Lactate as a fuel for mitochondrial respiration. Acta Physiol. Scand. 2000, 168, 643–656. [Google Scholar] [CrossRef]
- Brooks, G.A. Lactate doesn’t necessarily cause fatigue: Why are we surprised? J. Physiol. 2001, 536, 1. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. Lactate: Link between glycolytic and oxidative metabolism. Sports Med. 2007, 37, 341–343. [Google Scholar] [CrossRef]
- Ghosh, A.K. Anaerobic threshold: Its concept and role in endurance sport. Malays. J. Med. Sci. 2004, 11, 24. [Google Scholar] [PubMed]
- Osborne, M.; Chapman, D.; Gardner, S. Ergometer-based maximal neuromuscular power. In Physiological Tests for Elite Athletes; Tanner, R., Gore, C., Eds.; Human Kinetics: Champaign, IL, USA, 2013; pp. 45–57. [Google Scholar]
- Green, S. Applied Physiology. Med. J. Aus 1946, 2, 844. [Google Scholar]
- Aagard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.-M.; Wagner, A.; Magnusson, S.P.; Halkjær-Kristensen, J.; Simonsen, E.B. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J. Physiol. 2001, 534, 613–623. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Coleman, D.R.; Horne, S.; Cannavan, D. Anatomical predictors of maximum isometric and concentric knee extensor moment. Eur. J. Appl. Physiol. 2009, 105, 869–878. [Google Scholar] [CrossRef]
- Driss, T.; Vandewalle, H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. BioMed Res. Int. 2013, 2013, e589361. [Google Scholar] [CrossRef]
- Kordi, M.; Folland, J.; Goodall, S.; Haralabidis, N.; Maden-Wilkinson, T.; Sarika Patel, T.; Leeder, J.; Barratt, P.; Howatson, G. Mechanical and morphological determinants of peak power output in elite cyclists. Scand. J. Med. Sci. Sports 2020, 30, 227–237. [Google Scholar] [CrossRef]
- Brown, B.M.; Lauder, M.; Dyson, R. Notational analysis of sprint kayaking: Differentiating between ability levels. Int. J. Perform. Analysis Sport 2011, 11, 171–183. [Google Scholar] [CrossRef]
- Shastri, L.; Alkhalil, M.; Forbes, C.; El-Wadi, T.; Rafferty, G.; Ishida, K.; Formenti, F. Skeletal muscle oxygenation during cycling at different power output and cadence. Physiol. Rep. 2019, 7, e13963. [Google Scholar] [CrossRef]
- Fleming, N.; Donne, B.; Fletcher, D.; Mahony, N. A biomechanical assessment of ergometer task specificity in elite flatwater kayakers. J. Sports Sci. Med. 2012, 11, 16–25. [Google Scholar] [PubMed]
- Hay, J.G.; Yanai, T. Evaluating the Techniques of Elite U.S. Kayakers. A Report to U.S. Olympic Committee and U.S. Canoe and Kayak Team; University of Iowa: Iowa City, IA, USA, 1996. [Google Scholar]
- Gomes, B.B.; Ramos, N.V.; Conceição, F.; Sanders, R.; Vaz, M.; Vilas-Boas, J.P. Paddling time parameters and paddling efficiency with the increase in stroke rate in kayaking. Sports Biomech. 2022, 21, 1303–1311. [Google Scholar] [CrossRef]
- Zatsiorsky, V.; Kraemer, W.; Fry, A. Science and Practice of Strength Training, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2020. [Google Scholar]
- Bazyler, C.D.; Sato, K.; Wassinger, C.A.; Lamont, H.S.; Stone, M.H. The efficacy of incorporating partial squats in maximal strength training. J. Strength Cond. Res. 2014, 28, 3024–3032. [Google Scholar] [CrossRef]
- Mirkov, D.M.; Nedeljkovic, A.; Milanovic, S.; Jaric, S. Muscle strength testing: Evaluation of tests of explosive force production. Eur. J. Appl. Physiol. 2004, 91, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Mosti, M.P.; Carlsen, T.; Aas, E.; Hoff, J.; Stunes, A.K.; Syversen, U. Maximal strength training improves bone mineral density and neuromuscular performance in young adult women. J. Strength Cond. Res. 2014, 28, 2935–2945. [Google Scholar] [CrossRef]
- Häkkinen, K.; Myllylä, E. Acute effects of muscle fatigue and recovery on force production and relaxation in endurance, power and strength athletes. J. Sports Med. Phys. Fit. 1990, 30, 5–12. [Google Scholar]
- Mann, R.V.; Kearney, J. A biomechanical analysis of the Olympic-style flatwater kayak stroke. Med. Sci. Sports Exerc. 1980, 12, 183. [Google Scholar] [CrossRef]
- Fernandes, J.F.T.; Lamb, K.L.; Twist, C. A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during three popular resistance exercises. J. Strength Cond. Res. 2018, 32, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- González-Hernández, J.M.; Jimenez-Reyes, P.; Janicijevic, D.; Tufano, J.J.; Marquez, G.; Garcia-Ramos, A. Effect of different interset rest intervals on mean velocity during the squat and bench press exercises. Sports Biomech. 2020, 22, 834–847. [Google Scholar] [CrossRef]
- Willardson, J.M.; Burkett, L.N. The effect of rest interval length on bench press performance with heavy vs. light loads. J. Strength Cond. Res. 2006, 20, 396–399. [Google Scholar] [CrossRef]
- Nilsson, J.E.; Rosdahl, H.G. Contribution of leg-muscle forces to paddle force and kayak speed during maximal-effort flat-water paddling. Int. J. Sports Physiol. Perform. 2016, 11, 22–27. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Andersen, L.L.; Andersen, J.L.; Zebis, M.K.; Aagaard, P. Early and late rate of force development: Differential adaptive responses to resistance training? Scand. J. Med. Sci. Sports 2010, 20, e162–e169. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Fink, J.; Kikuchi, N.; Yoshida, S.; Terada, K.; Nakazato, K. Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus 2016, 5, 698. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Contreras, B.; Vigotsky, A.D.; Peterson, M. Differential Effects of Heavy Versus Moderate Loads on Measures of Strength and Hypertrophy in Resistance-Trained Men. J. Sports Sci. Med. 2016, 15, 715–722. [Google Scholar] [PubMed]
- Ackland, T.R.; Ong, K.B.; Kerr, D.A.; Ridge, B. Morphological characteristics of Olympic sprint canoe and kayak paddlers. J. Sci. Med. Sport. 2003, 6, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Aitken, D.; Jenkins, D.G. Anthropometric-based selection and sprint kayak training in children. J. Sports Sci. 1998, 16, 539–543. [Google Scholar] [CrossRef]
- Di Cagno, A.; Baldari, C.; Battaglia, C.; Brasili, P.; Merni, F.; Piazza, M.; Toselli, S.; Ventrella, A.R.; Guidetti, L. Leaping ability and body composition in rhythmic gymnasts for talent identification. J. Sports Med. Phys. Fit. 2008, 48, 341–346. [Google Scholar]
- Galy, O.; Zongo, P.; Chamari, K.; Chaouachi, A.; Michalak, E.; Dellal, A.; Castagna, C.; Hue, O. Anthropometric and physiological characteristics of Melanesian futsal players: A first approach to talent identification in Oceania. Biol. Sport. 2015, 32, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.; Vaeyens, R.; Matthys, S.; Multael, M.; Lefevre, J.; Lenoir, M.; Philppaerts, R. Anthropometric and performance measures for the development of a talent detection and identification model in youth handball. J. Sports Sci. 2009, 27, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Yasin, S.N.; Ma’mun, A.; Rusdiana, A.; Abdullah, A.G.; Nur, L. The Talent Identification of Kayak Athletes: A Research-based on Analytic Hierarchy Process. Int. J. Hum. Move Sports Sci. 2020, 8, 395–402. [Google Scholar] [CrossRef]
- Gilliver, S.F.; Degens, H.; Rittweger, J.; Sargeant, A.J.; Jones, D.A. Variation in the determinants of power of chemically skinned human muscle fibres. Exp. Physiol. 2009, 94, 1070–1078. [Google Scholar] [CrossRef]
- DiNaso, J. The Relationship Between Thigh Muscle Size and 1RM Squat Strength Among Bodybuilders, Powerlifters, and Olympic Weightlifters. Master’s Thesis, Eastern Illinois University, Charleston, IL, USA, 2003. [Google Scholar]
- Meijer, J.P.; Jaspers, R.T.; Rittweger, J.; Seynnes, O.R.; Kamandulis, S.; Brazaitis, M.; Skurvydas, A.; Pišot, R.; Šimunič, B.; Narici, M.V.; et al. Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects. Exp. Physiol. 2015, 100, 1331–1341. [Google Scholar] [CrossRef]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef]
- Jones, M.T.; Jagim, A.R.; Haff, G.G.; Carr, P.J.; Martin, J.; Oliver, J.M. Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise. Sports 2016, 4, 43. [Google Scholar] [CrossRef]
- Roberts, M.D.; Haun, C.T.; Vann, C.G.; Osburn, S.C.; Young, K.C. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific “Unicorn” or Resistance Training Adaptation? Front. Physiol. 2020, 11, 816. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low- vs. high-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 3508. [Google Scholar] [CrossRef]
- Sandford, G.N.; Laursen, P.B.; Buchheit, M. Anaerobic speed/power reserve and sport performance: Scientific basis, current applications and future directions. Sports Med. 2021, 51, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Winchcombe, C.E.; Binnie, M.J.; Doyle, M.M.; Hogan, C.; Peeling, P. Development of an On-Water Graded Exercise Test for Flat-Water Sprint Kayak Athletes. Int. J. Sports Physiol. Perform. 2019, 14, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B. Training for intense exercise performance: High-intensity or high-volume training? Scand. J. Med. Sci. Sports 2010, 20 (Suppl. 2), 1–10. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
Authors | n | Sex | Population (Kayakers) | NIH Rating |
---|---|---|---|---|
Akca et al. [11] | 11 | M | National level | Good |
Bishop [12] | 9 | F | High performance | Fair |
Broďáni et al. [13] | 17 | M and F | International level | Poor |
Borges et al. [14] | 21 | M and F | Well trained; junior | Fair |
Forbes et al. [15] | 13 | M and F | Junior | Fair |
Fry et al. [16] | 38 | M | State and non-state level | Fair |
Hamano et al. [9] | 2 | M | College; well trained | Fair |
López-Plaza et al. [17] | 89 | M | Young | Good |
López-Plaza et al. [18] | 86 | F | Young | Fair |
Lum et al. [19] | 23 | M and F | Well trained | Good |
Lum et al. [20] | 20 | M and F | National and collegiate level | Good |
McKean et al. [8] | 24 | M and F | Elite level | Fair |
Paquette et al. [21] | 19 | M | Highly trained | Fair |
Pickett et al. [22] | 22 | M | National and international level | Fair |
Uali et al. [23] | 10 | M and F | Elite level; junior | Fair |
van Someran et al. [10] | 26 | M | National and international level | Fair |
van Someran et al. [2] | 18 | M | Competitive | Fair |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m |
---|---|---|---|---|---|---|
Bishop [12] | 9 | F | High performance | - | −0.72 to −0.82 | - |
Borges et al. [14] | 21 | M and F | Well-trained junior | −0.76 to −0.86 | - | −0.84 to −0.90 |
Forbes et al. [15] | 18 | M and F | Junior | - | - | −0.76 to −0.90 |
Fry and Morton [16] | 38 | M | State and non-state | - | −0.56 to −0.59 | −0.64 to −0.71 |
Hamano et al. [9] | 12 | M | College; well trained | - | 0.63 | - |
López-Plaza et al. [18] | 86 | F | Young | - | - | −0.31 |
López-Plaza et al. [30] | 89 | M | Young | - | −0.22 | - |
Paquette et al. [21] | 19 | M and F | Highly trained | 0.75 | - | - |
Pickett et al. [22] | 22 | M | National/international | −0.71 | - | - |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m |
---|---|---|---|---|---|---|
Borges et al. [14] | 21 | M and F | Well-trained juniors | −0.65 | - | −0.68 |
Fry and Morton [16] | 38 | M | State and non-state | - | −0.48 | −0.63 |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m |
---|---|---|---|---|---|---|
Bishop [12] | 9 | F | High performance | - | −0.89 | - |
Borges et al. [14] | 21 | M and F | Well-trained juniors | −0.74 | - | - |
Forbes et al. [15] | 18 | M and F | Juniors | - | - | −0.71 to −0.83 |
van Someran and Howatson [2] | 18 | M | Competitive | −0.54 | −0.52 | - |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m |
---|---|---|---|---|---|---|
Hamano et al. [9] | 12 | M | College; well trained | - | 0.63 | - |
van Someran and Howatson [2] | 18 | M | Competitive | −0.68 | −0.84 | −0.65 |
van Someran and Palmer [10] | 26 | M | National and international | −0.69 | - | - |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m |
---|---|---|---|---|---|---|
van Someran and Howatson [2] | 18 | M | Competitive | −0.74 | −0.87 | −0.74 |
van Someran and Palmer [10] | 26 | M | National and international | −0.73 | - | - |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m |
---|---|---|---|---|---|---|
Borges et al. [14] | 21 | M and F | Well-trained junior kayakers | −0.42 to −0.54 | −0.49 | −0.49 |
Paquette et al. [21] | 22 | M | National/international | −0.70 to −0.93 | −0.85 | −0.85 |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m | Kayak Ergometer |
---|---|---|---|---|---|---|---|
Akca and Muniroglu [11] | 11 | M | National | −0.80 (1 min bench press) −0.68 (1RM bench pull) −0.71 (1 min bench pull) | −0.89 (1 min bench press) −0.80 (1RM bench pull) −0.85 (1 min bench pull) | −0.72 (1 min bench press) −0.65 (1 min bench pull) | - |
Broďáni et al. [13] | 17 | M and F | −0.51 (power endurance test for bench pull) | −0.49 (power endurance test for bench pull) | - | - | |
Forbes et al. [15] | 13 | M and F | Junior | - | - | −0.92 (1RM bench press) −0.85 (1RM bench pull) | - |
Fry and Morton [16] | 38 | M | State and non-state | - | −0.46 to −0.62 (isokinetic simulated kayak stroke) | −0.55 to −0.68 | - |
Hamano et al. [9] | 12 | M | College; well trained | - | 0.63 | - | 0.64 (grip strength) 0.59 (1RM bench press) |
López-Plaza et al. [17] | 89 | M | Young | 0.51 (overhead medicine ball throw) | 0.44 (overhead medicine ball throw) | 0.51 (overhead medicine ball throw) | |
López-Plaza et al. [18] | 86 | F | Young | 0.29 (overhead medicine ball throw) | 0.22 (overhead medicine ball throw) | 0.28 (overhead medicine ball throw) | |
Lum and Aziz [19] | 23 | M and F | Well-trained | −0.70 to −0.75 (isometric bench press peak force) −0.53 to −0.61 (isometric bench press RFD) −0.83 to −0.88 (isometric-prone bench pull peak force) −0.53 to −0.62 (isometric-prone bench pull RFD) | - | - | 0.74 to 0.79 (isometric bench press peak force) 0.64 to 0.68 (isometric bench press RFD) 0.83 to 0.86 (isometric-prone bench pull peak force) 0.66 to 0.86 (isometric-prone bench pull RFD) |
Lum et al. [20] | 20 | M and F | National and collegiate | - | - | - | 0.52 (isometric bench pull peak force @120 degrees) |
McKean and Burkett [8] | 25 | M and F | Elite | −0.56 to −0.85 (1RM bench press) −0.63 to −0.82 (1RM pull-up) | −0.55 to −0.91 (1RM bench press) −0.60 to −0.82 (1RM pull-up) | −0.62 to −0.97 (1RM bench press) −0.59 to −0.85 (1RM pull-up) | - |
Pickett et al. [22] | 22 | M | National/international | −0.80 (3RM bench press) −0.76 (3RM bench row) −0.73 (3RM chin-up) | - | - | - |
van Someren and Howatson [2] | 18 | M | Competitive | −0.47 (isometric pulling strength in simulated kayak stroke) −0.57 (isokinetic pulling power in simulated kayak stroke) | −0.60 (isometric pulling strength in simulated kayak stroke) −0.66 (isokinetic pulling power in simulated kayak stroke) | - | - |
van Someren and Palmer [10] | 26 | M | National/international | −0.47 (isokinetic pulling power in simulated kayak stroke) |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m | Kayak Ergometer |
---|---|---|---|---|---|---|---|
Hamano et al. [9] | 12 | M | College; well trained | - | - | - | 0.71 to 0.72 (isokinetic knee flexion) |
López-Plaza et al. [18] | 86 | F | Young | −0.23 (counter movement jump) | - | - | - |
López-Plaza et al. [17] | 89 | M | Young | −0.23 (counter movement jump) | −0.39 (counter movement jump) | −0.23 (counter movement jump) | - |
Lum and Aziz [19] | 23 | M and F | Well trained | −0.44 to −0.67 (isometric squat peak force) −0.47 (isometric squat RFD) | - | - | 0.47 to 0.61 (isometric squat peak force) |
Lum et al. [20] | 20 | M and F | National and collegiate | −0.51 (isometric squat peak force @90 degrees) | - | - | - |
Pickett et al. [22] | 11 | M and F | Well trained | 0.05 (IMTP peak) −0.49 (IMTP @0.03 s) | - | - | - |
Authors | n | Sex | Population | 200 m | 500 m | 1000 m | Kayak Ergometer |
---|---|---|---|---|---|---|---|
Akca and Muniroglu [11] | 11 | M | National | −0.70 (relaxed biceps girth) −0.80 (flexed biceps girth) | −0.76 (relaxed biceps girth) −0.80 (flexed biceps girth) −0.81 (thigh girth) | −0.77 (thigh girth) | - |
Fry and Morton [16] | 38 | M | State and non-state | - | −0.49 (biceps girth) −0.42 (forearm girth) −0.52 (chest girth) | −0.64 (biceps girth) −0.60 (forearm girth) −0.68 (chest girth) | - |
Hamano et al. [9] | 12 | M | College; well trained | - | - | - | 0.73 (upper-limb girth) 0.62 (lower-limb girth) 0.83 (chest girth) 0.74 (waist girth) 0.75 (hip girth) 0.91 (calf girth) 0.90 (arms lean mass) 0.85 (legs lean mass) 0.64 (trunk lean mass) 0.82 (total body lean mass) |
López-Plaza et al. [18] | 86 | F | Young | −0.35 (muscle mass) | −0.34 (muscle mass) | −0.32 (muscle mass) | - |
López-Plaza et al. [17] | 89 | M | Young | - | −0.24 (muscle mass percentage) | - | - |
van Someren and Howatson [2] | 18 | M | Competitive | −0.53 (chest girth) | −0.50 (chest girth) | ||
van Someren and Palmer [10] | 26 | M | National/international | −0.41 (tensed upper-arm girth) −0.44 (relaxed upper-arm girth) −0.48 (tensed forearm girth) −0.51 (relaxed forearm girth) −0.51 (chest girth) | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.S.; Dingley, A.; Lum, D.; Tan, F.; Fernandes, J.F.T. Physiological and Physical Determinants of Flat-Water Kayaking. Muscles 2025, 4, 32. https://doi.org/10.3390/muscles4030032
Lee YS, Dingley A, Lum D, Tan F, Fernandes JFT. Physiological and Physical Determinants of Flat-Water Kayaking. Muscles. 2025; 4(3):32. https://doi.org/10.3390/muscles4030032
Chicago/Turabian StyleLee, Yi Shin, Amelia Dingley, Danny Lum, Frankie Tan, and John F. T. Fernandes. 2025. "Physiological and Physical Determinants of Flat-Water Kayaking" Muscles 4, no. 3: 32. https://doi.org/10.3390/muscles4030032
APA StyleLee, Y. S., Dingley, A., Lum, D., Tan, F., & Fernandes, J. F. T. (2025). Physiological and Physical Determinants of Flat-Water Kayaking. Muscles, 4(3), 32. https://doi.org/10.3390/muscles4030032