The Use of Dixon Magnetic Resonance Imaging Methods for the Quantification of Rotator Cuff Fatty Infiltration: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Literature Search Results
2.2. Participant Characteristics
2.3. Characteristics of MR Imaging Post-Processing
2.4. Characteristics of MR Imaging Sequences
Study | Study Design, Level of Evidence | N (Male/Female) | MRI Unit | Fat Fraction Software | Dixon Images Used |
---|---|---|---|---|---|
Lee 2015 [19] | Retrospective, III | 89 (42/47) | 3T Siemens | PACS | In Phase and Opposed Phase |
Nozaki 2015 [20] | Prospective, II | 359 (185/174) | 3T Siemens | PACS | Fat and Water Only |
Agten 2016 [21] | Prospective Case–Control, III | 60 (41/19) | 1.5T Siemens | MATLAB | Fat and Water Only |
Nozaki 2016 [22] | Prospective, II | 50 (18/32) | 3T Siemens | PACS | Fat and Water Only |
Horiuchi 2017 [23] | Retrospective, III | 200 (86/114) | 3T Siemens | PACS | In Phase and Fat Only |
Matsumura 2017 [12] | Prospective, II | 40 (20/20) | 3T GE | OsiriX MD | Fat and Water Only |
Kalin 2018 [13] | Prospective, II | 76 (37/39) | 3T Philips | Myrian | Fat and Water Only |
Yoon 2018 [24] | Prospective, II | 24 (10/14) | 3T Siemens | PACS | Fat and Water Only |
Khanna 2019 [14] | Retrospective, III | 13 (5/8) | 3T Siemens | AnalyzeDirect and MATLAB | Fat and Water Only |
Kalin 2019 [25] | Prospective, II | 40 (28/12) | 3T Siemens | Syngo.Via | In Phase/Opposed Phase and Fat and Water Only |
Hahn 2021 [15] | Retrospective, III | 57 (30/27) | 3T Philips | PACS | Fat and Water Only |
Xu 2023 [26] | Prospective Case Series, IV | 46 (15/31) | 3T Siemens | Syngo.Via (VB10B) | Fat and Water Only |
Study | N (Male/Female) | Dixon Sequencing | Dixon Parameters | T2* Correction | Fat Fraction Calculation |
---|---|---|---|---|---|
Lee 2015 [19] | 89 (42/47) | 3D 3-point Dixon VIBE | TR (ms) = 12.5 TE1, TE2, TE3 (ms) = 2.45, 6.12, 9.8 Thickness (mm) = 3.0 Flip Angle (o) = 11 Matrix (pixel) = 256 × 256 FOV (mm) = 140 × 140 TA (min:s) = 1:09 | Using a linear fit in log space, T2* value per pixel was estimated from two in-phase echoes (TE 2.45, 9.8) and used to correct the signal intensity of the opposed-phase (TE 6.12) and the first in-phase (TE 2.45) echoes. | [SFat/(SFat + SWater)] × 100 |
Agten 2016 [21] | 60 (41/19) | 3D Multi-echo Dixon | TR (ms) = 20 TE1–TE6 (ms) = 2.39, 4.78, 6.34, 7.90, 9.46, and 11.02 Thickness (mm) = 3.0 Flip Angle (o) = 10 Matrix (pixel) = 144 × 192 FOV (mm) = 120 × 160 TA (min:s) = 3:29 | Multi-peak fat spectral model developed for liver fat by Zhong [27]. | Algorithm automatically calculated a fat percentage map |
Yoon 2018 [24] | 50 (18/32) | 3D Multi-point Dixon VIBE | TR (ms) = 9.15 TE1–TE6 (ms) = 1.09, 2.46, 3.69, 4.92, 6.15, and 7.38 Thickness (mm) = 4.0 Flip Angle (o) = 4 Matrix (pixel) = 120 × 101 FOV (mm) = 300 × 300 TA (min:s) = 1:20 | T2*-corrected images acquired in the oblique sagittal plane. | The algorithm automatically calculated a fat percentage map based on three regions of interest. |
Study | N (Male/Female) | Dixon Sequencing | Dixon Parameters | Fat Fraction Calculation |
---|---|---|---|---|
Nozaki 2015 [20] | 359 (185/174) | 3D 2-point Dixon VIBE | TR (ms) = 6.5 TE1 & TE2 (ms) = 1.225 & 2.4 Thickness (mm) = 2.5 Flip Angle (o) = 10 Matrix (pixel) = 128 × 128 FOV (mm) = 196 TA (min:s) = 2:30 | SFat/(Swater + SFat) = SFat/SIn |
Nozaki 2016 [22] | 50 (18/32) | 3D 2-point Dixon VIBE | TR (ms) = 6.5 TE1 & TE2 (ms) = 1.225 & 2.4 Thickness (mm) = 2.5 Flip Angle (o) = 10 Matrix (pixel) = 128 × 128 FOV (mm) = 196 TA (min:s) = 2:30 | SFat/(Swater + SFat) = SFat/SIn |
Horiuchi 2017 [23] | 200 (86/114) | 3D 2-point Dixon VIBE | TR (ms) = 6.5 TE1 & TE2 (ms) = 1.225 & 2.4 Thickness (mm) = 2.5 Flip Angle (o) = 10 Matrix (pixel) = 128 ×128 FOV (mm) = 196 TA (min:s) = 2:30 | SFat/(SWater + SFat) = SFat/SIn |
Matsumura 2017 [12] | 40 (20/20) | 3D 2-point Dixon | TR (ms) = 4.2 TE (ms) = 1.7 Thickness (mm) = 2.0 Flip Angle (o) = 12 Matrix (pixel) = 288 × 224 FOV (mm) = 260 TA (min:s) = 2:20 | SFat/(SWater + SFat) |
Kalin 2018 [13] | 76 (37/39) | 3-point Dixon | TR (ms) = 9.4 TE1–TE3 (ms) = 3.6, 5.3, 7.0 Thickness (mm) = unspecified Flip Angle (o) = 10 Matrix (pixel) = 744 FOV (mm) = 560 × 300 TA (min:s) = 5:39 | SFat/(SWater + SFat) |
Khanna 2019 [14] | 13 (5/8) | 3D Multi-echo 2-point Dixon | TR (ms) = 9.4 TE1 & TE2 (ms) = 1.29 & 2.52 Thickness (mm) = 2.0 Flip Angle (o) = 9 Matrix (pixel) = 320 × 320 FOV (mm) = 380 TA (min:s) = unspecified | SFat/(SWater + SFat) × 100 |
Kalin 2019 [25] | 40 (28/12) | 3D Multi-echo Dixon | TR (ms) = 13.22 TE1–TE6 (ms) = 1.07, 3.14, 5.21, 7.28, 9.35, 11.42 Thickness (mm) = 2.5 Flip Angle (o) = 5 Matrix (pixel) = 160 × 160 FOV (mm) = 200 TA (min:s) = unspecified | Not specified |
Hahn 2021 [15] | 57 (30/27) | T1W mDixon TSE MRA | TR (ms) = 498–608 TE1–TE6 (ms) = 10–30 and automatically calculated shorted TE Thickness (mm) = 3.0 Flip Angle (o) = unspecified Matrix (pixel) = 320 × 256 FOV (mm) = 140 TA (min:s) = 4:20–25 | SFat/(SWater + SFat) × 100 |
Xu 2023 [26] | 46 (15/31) | 6-point Dixon | TR (ms) = 4.32 TE (ms) = 1.35, 2.58 Thickness (mm) = 2.0 Flip Angle (o) = 9 Matrix (pixel) = 288 × 320, 227 × 320 FOV (mm) = 346 × 346 TA (min:s) = 2:36, 2:35 | SFat/(SWater + SFat) × 100 |
2.5. Assessment of Methodological Quality
2.6. Summary of Results
2.6.1. Quantification of Fat Fraction
2.6.2. Dixon Sequencing Reliability and Accuracy
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Eligibility Criteria
4.3. Data Extraction
4.4. Assessments of Study Quality and Risk of Bias
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lucas, J.; van Doorn, P.; Hegedus, E.; Lewis, J.; van der Windt, D. A systematic review of the global prevalence and incidence of shoulder pain. BMC Musculoskelet. Disord. 2022, 23, 1073. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.B.; Higgins, L.D.; Losina, E.; Collins, J.; Blazar, P.E.; Katz, J.N. Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States. BMC Musculoskelet. Disord. 2014, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Colvin, A.C.; Egorova, N.; Harrison, A.K.; Moskowitz, A.; Flatow, E.L. National trends in rotator cuff repair. J. Bone Joint Surg. Am. 2012, 94, 227–233. [Google Scholar] [CrossRef]
- Melis, B.; Nemoz, C.; Walch, G. Muscle fatty infiltration in rotator cuff tears: Descriptive analysis of 1688 cases. Orthop. Traumatol. Surg. Res. 2009, 95, 319–324. [Google Scholar] [CrossRef]
- Keener, J.D.; Patterson, B.M.; Orvets, N.; Chamberlain, A.M. Degenerative Rotator Cuff Tears: Refining Surgical Indications Based on Natural History Data. J. Am. Acad. Orthop. Surg. 2019, 27, 156–165. [Google Scholar] [CrossRef]
- Oh, L.S.; Wolf, B.R.; Hall, M.P.; Levy, B.A.; Marx, R.G. Indications for rotator cuff repair: A systematic review. Clin. Orthop. Relat. Res. 2007, 455, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Goutallier, D.; Postel, J.M.; Bernageau, J.; Lavau, L.; Voisin, M.C. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin. Orthop. Relat. Res. 1994, 304, 78–83. [Google Scholar] [CrossRef]
- Fuchs, B.; Weishaupt, D.; Zanetti, M.; Hodler, J.; Gerber, C. Fatty degeneration of the muscles of the rotator cuff: Assessment by computed tomography versus magnetic resonance imaging. J. Shoulder Elbow Surg. 1999, 8, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Freeman, T.H.; Kim, P.; Kuhn, J.E.; Garriga, G.A.; Khazzam, M.; Higgins, L.D.; Matzkin, E.; Baumgarten, K.M.; Bishop, J.Y.; et al. Obesity and sex influence fatty infiltration of the rotator cuff: The Rotator Cuff Outcomes Workgroup (ROW) and Multicenter Orthopaedic Outcomes Network (MOON) cohorts. J. Shoulder Elbow Surg. 2022, 31, 726–735. [Google Scholar] [CrossRef]
- Eggers, H.; Brendel, B.; Duijndam, A.; Herigault, G. Dual-echo Dixon imaging with flexible choice of echo times. Magn. Reson. Med. 2011, 65, 96–107. [Google Scholar] [CrossRef]
- Ma, J. Dixon techniques for water and fat imaging. J. Magn. Reson. Imaging 2008, 28, 543–558. [Google Scholar] [CrossRef]
- Matsumura, N.; Oguro, S.; Okuda, S.; Jinzaki, M.; Matsumoto, M.; Nakamura, M.; Nagura, T. Quantitative assessment of fatty infiltration and muscle volume of the rotator cuff muscles using 3-dimensional 2-point Dixon magnetic resonance imaging. J. Shoulder Elbow Surg. 2017, 26, e309–e318. [Google Scholar] [CrossRef] [PubMed]
- Kalin, P.S.; Crawford, R.J.; Marcon, M.; Manoliu, A.; Bouaicha, S.; Fischer, M.A.; Ulbrich, E.J. Shoulder muscle volume and fat content in healthy adult volunteers: Quantification with DIXON MRI to determine the influence of demographics and handedness. Skeletal Radiol. 2018, 47, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Khanna, R.; Saltzman, M.D.; Elliott, J.M.; Hoggarth, M.A.; Marra, G.M.; Omar, I.; Parrish, T.; Seitz, A.L. Development of 3D method to assess intramuscular spatial distribution of fat infiltration in patients with rotator cuff tear: Reliability and concurrent validity. BMC Musculoskelet. Disord. 2019, 20, 295. [Google Scholar] [CrossRef]
- Hahn, S.; Lee, Y.H.; Lee, H.S.; Song, H.-T.; Suh, J.-S. The Utility of Modified Dixon Turbo Spin Echo Shoulder Magnetic Resonance Arthrography in Assessing Rotator Cuff Disorder and Evaluating the Rotator Cuff Muscles. Acad. Radiol. 2021, 28, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, Y.H.; Hahn, S.; Suh, J.S. Fat fraction estimation of morphologically normal lumbar vertebrae using the two-point mDixon turbo spin-echo MRI with flexible echo times and multipeak spectral model of fat: Comparison between cancer and non-cancer patients. Magn. Reson. Imaging 2016, 34, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Pezeshk, P.; Alian, A.; Chhabra, A. Role of chemical shift and Dixon based techniques in musculoskeletal MR imaging. Eur. J. Radiol. 2017, 94, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Guerini, H.; Omoumi, P.; Guichoux, F.; Vuillemin, V.; Morvan, G.; Zins, M.; Thevenin, F.; Drape, J.L. Fat Suppression with Dixon Techniques in Musculoskeletal Magnetic Resonance Imaging: A Pictorial Review. Semin. Musculoskelet. Radiol. 2015, 19, 335–347. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, S.; Lim, D.; Song, H.-T.; Suh, J.-S. MR Quantification of the Fatty Fraction from T2*-corrected Dixon Fat/Water Separation Volume-interpolated Breathhold Examination (VIBE) in the Assessment of Muscle Atrophy in Rotator Cuff Tears. Acad. Radiol. 2015, 22, 909–917. [Google Scholar] [CrossRef]
- Nozaki, T.; Tasaki, A.; Horiuchi, S.; Osakabe, C.; Ohde, S.; Saida, Y.; Yoshioka, H. Quantification of fatty degeneration within the supraspinatus muscle by using a 2-point dixon method on 3-T MRI. Am. J. Roentgenol. 2015, 205, 116–122. [Google Scholar] [CrossRef]
- Agten, C.A.; Rosskopf, A.B.; Gerber, C.; Pfirrmann, C.W.A. Quantification of early fatty infiltration of the rotator cuff muscles: Comparison of multi-echo Dixon with single-voxel MR spectroscopy. Eur. Radiol. 2016, 26, 3719–3727. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, T.; Tasaki, A.; Horiuchi, S.; Ochi, J.; Starkey, J.; Hara, T.; Saida, Y.; Yoshioka, H. Predicting Retear after Repair of Full-Thickness Rotator Cuff Tear: Two-Point Dixon MR Imaging Quantification of Fatty Muscle Degeneration-Initial Experience with 1-year Follow-up. Radiology 2016, 280, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Nozaki, T.; Tasaki, A.; Yamakawa, A.; Kaneko, Y.; Hara, T.; Yoshioka, H. Reliability of MR Quantification of Rotator Cuff Muscle Fatty Degeneration Using a 2-point Dixon Technique in Comparison with the Goutallier Classification: Validation Study by Multiple Readers. Acad. Radiol. 2017, 24, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.A.; Hong, S.-J.; Hong, S.; Kang, C.H.; Kim, B.H.; Kim, I.S. The Association between the Magnetic Resonance Imaging Findings of Adhesive Capsulitis and Shoulder Muscle Fat Quantification Using a Multi-Echo Dixon Method. Korean J. Radiol. 2018, 19, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Kalin, P.S.; Huber, F.A.; Hamie, Q.M.; Issler, L.S.; Farshad-Amacker, N.A.; Ulbrich, E.J.; Guggenberger, R. Quantitative MRI of visually intact rotator cuff muscles by multiecho Dixon-based fat quantification and diffusion tensor imaging. J. Magn. Reson. Imaging 2019, 49, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, B.; Qiao, Y.; Ye, Z.; Su, W.; Zhao, J. The 3-Dimensional Fatty Infiltration in the Overall Supraspinatus Can Be Predicted by Localized Sectional Accumulation Units: A Cross-Sectional Study in Patients with Atraumatic Small-to-Massive Rotator Cuff Tears. J. Bone Joint Surg. Am. 2023, 105, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Nickel, M.D.; Kannengiesser, S.A.; Dale, B.M.; Kiefer, B.; Bashir, M.R. Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn. Reson. Med. 2014, 72, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; the QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Nasr, A.J.; Pierson, C.J.; Tzen, Y.T.; Khazzam, M.; Jain, N.B.; Lin, Y.S. Emerging Role of Quantitative Ultrasound-Based Imaging Techniques for Characterizing Rotator Cuff Tears: A Scoping Review. Diagnostics 2023, 13, 2011. [Google Scholar] [CrossRef]
- Ogawa, M.; Lester, R.; Akima, H.; Gorgey, A.S. Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders. Neural. Regen. Res. 2017, 12, 2100–2105. [Google Scholar] [CrossRef]
- Lippe, J.; Spang, J.T.; Leger, R.R.; Arciero, R.A.; Mazzocca, A.D.; Shea, K.P. Inter-rater agreement of the Goutallier, Patte, and Warner classification scores using preoperative magnetic resonance imaging in patients with rotator cuff tears. Arthroscopy 2012, 28, 154–159. [Google Scholar] [CrossRef]
- Yoon, H.; Shin, H.J.; Kim, M.J.; Lee, M.J. Quantitative Imaging in Pediatric Hepatobiliary Disease. Korean J. Radiol. 2019, 20, 1342–1357. [Google Scholar] [CrossRef]
- Tang, A.; Tan, J.; Sun, M.; Hamilton, G.; Bydder, M.; Wolfson, T.; Gamst, A.C.; Middleton, M.; Brunt, E.M.; Loomba, R.; et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013, 267, 422–431. [Google Scholar] [CrossRef]
- Gilbert, F.; Klein, D.; Weng, A.M.; Kostler, H.; Schmitz, B.; Schmalzl, J.; Bohm, D. Supraspinatus muscle elasticity measured with real time shear wave ultrasound elastography correlates with MRI spectroscopic measured amount of fatty degeneration. BMC Musculoskelet. Disord. 2017, 18, 549. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Hong, S.H.; Jeong, W.K. Effectiveness of Ultrasound in Evaluation of Fatty Infiltration in Rotator Cuff Muscles. Clin. Orthop. Surg. 2020, 12, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.B.; Yoo, J.S.; Ryu, J.W. The accuracy of sonoelastography in fatty degeneration of the supraspinatus: A comparison of magnetic resonance imaging and conventional ultrasonography. J. Ultrasound 2014, 17, 279–285. [Google Scholar] [CrossRef]
- Watanabe, T.; Terabayashi, N.; Fukuoka, D.; Murakami, H.; Ito, H.; Matsuoka, T.; Seishima, M. A pilot study to assess Fatty infiltration of the supraspinatus in patients with rotator cuff tears: Comparison with magnetic resonance imaging. Ultrasound Med. Biol. 2015, 41, 1779–1783. [Google Scholar] [CrossRef]
- Serai, S.D.; Dillman, J.R.; Trout, A.T. Proton Density Fat Fraction Measurements at 1.5- and 3-T Hepatic MR Imaging: Same-Day Agreement among Readers and across Two Imager Manufacturers. Radiology 2017, 284, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Nie, P.; Zhao, X.; Wang, H.X.; Wan, G.Y.; Zhou, R.Z.; Zhong, X.; Zhang, Y.; Yu, T.B.; Hao, D.P. Proton density fat fraction measurements of rotator cuff muscles: Accuracy, repeatability, and reproducibility across readers and scanners. Magn. Reson. Imaging 2022, 92, 260–267. [Google Scholar] [CrossRef]
- Gordon, J.A., III. Role of Fat Content on The Structure and Function of Human Skeletal Muscle. Doctoral Dissertations. Available online: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=3920&context=dissertations_2 (accessed on 18 March 2024).
- Knight, A.E.; Trutna, C.A.; Rouze, N.C.; Hobson-Webb, L.D.; Caenen, A.; Jin, F.Q.; Palmeri, M.L.; Nightingale, K.R. Full Characterization of in vivo Muscle as an Elastic, Incompressible, Transversely Isotropic Material Using Ultrasonic Rotational 3D Shear Wave Elasticity Imaging. IEEE Trans. Med. Imaging 2022, 41, 133–144. [Google Scholar] [CrossRef]
- Paley, C.T.; Knight, A.E.; Jin, F.Q.; Moavenzadeh, S.R.; Pietrosimone, L.S.; Hobson-Webb, L.D.; Rouze, N.C.; Palmeri, M.L.; Nightingale, K.R. Repeatability of Rotational 3-D Shear Wave Elasticity Imaging Measurements in Skeletal Muscle. Ultrasound Med. Biol. 2023, 49, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Bible, J.E.; Bohan, M.; Simpson, A.K.; Whang, P.G.; Grauer, J.N. Radiation exposure from musculoskeletal computerized tomographic scans. J. Bone Joint Surg. Am. 2009, 91, 1882–1889. [Google Scholar] [CrossRef]
- Haas, R.; Gorelik, A.; Busija, L.; O‘Connor, D.; Pearce, C.; Mazza, D.; Buchbinder, R. Prevalence and characteristics of musculoskeletal complaints in primary care: An analysis from the population level and analysis reporting (POLAR) database. BMC Prim. Care 2023, 24, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Luo, M.; Liang, G.; Pan, J.; Han, Y.; Zeng, L.; Yang, W.; Liu, J. What Factors Are Associated with Symptomatic Rotator Cuff Tears: A Meta-analysis. Clin. Orthop. Relat. Res. 2022, 480, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Tenbrunsel, T.N.; Whaley, J.D.; Golchian, D.; Malone, D.L.; Lima, D.J.L.; Sabesan, V.J. Efficacy of Imaging Modalities Assessing Fatty Infiltration in Rotator Cuff Tears. JBJS Rev. 2019, 7, e3. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Taivassalo, T.; Berru, M.G.; Saavedra, A.; Rasmussen, H.C.; Batra, A.; Arora, H.; Roetzheim, A.M.; Walter, G.A.; Vandenborne, K.; et al. Postcontractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy. J. Appl. Physiol. 2021, 131, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Suo, S.; Tang, H.; Lu, Q.; Zhang, L.; Ni, Q.; Cao, M.; Chen, Z.; Zhao, H.; Sun, B.; Xu, J. Blood oxygenation level-dependent cardiovascular magnetic resonance of the skeletal muscle in healthy adults: Different paradigms for provoking signal alterations. Magn. Reson. Med. 2021, 85, 1590–1601. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H.J.; Group, G.W. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
Study | (1) Inconsistency | (2) Indirectness | (3) Imprecision | (4) Publication Bias | (5) Risk of Bias | Overall Quality Score (0–5) |
---|---|---|---|---|---|---|
Lee 2015 [19] | No | No | Yes | No | Yes | 3 |
Nozaki 2015 [20] | No | No | Yes | No | No | 4 |
Agten 2016 [21] | No | No | Yes | No | No | 4 |
Nozaki 2016 [22] | No | No | Yes | No | No | 4 |
Horiuchi 2017 [23] | No | No | Yes | No | No | 4 |
Matsumura 2017 [12] | No | No | No | No | No | 5 |
Kalin 2018 [13] | No | No | No | No | No | 5 |
Yoon 2018 [24] | No | No | Yes | No | Yes | 3 |
Khanna 2019 [14] | No | No | Yes | No | No | 4 |
Kalin 2019 [25] | No | No | Yes | No | No | 4 |
Hahn 2021 [15] | No | No | Yes | No | No | 4 |
Xu 2023 [26] | No | No | No | No | No | 5 |
Risk of Bias Rating of Included Articles | Applicability Concerns | ||||||
---|---|---|---|---|---|---|---|
Study | Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Text | Reference Standard |
Lee 2015 [19] | High | Low | Low | Low | Low | High | High |
Nozaki 2015 [20] | High | Low | Low | High | Low | High | Low |
Agten 2016 [21] | High | Low | Low | Low | High | Low | High |
Nozaki 2016 [22] | High | Low | Low | Low | High | High | High |
Horiuchi 2017 [23] | Low | Low | Low | Low | High | High | High |
Matsumura 2017 [12] | High | Low | Low | Low | Low | Low | Low |
Kalin 2018 [13] | Unclear | Low | Low | Low | High | Low | Low |
Yoon 2018 [24] | Unclear | Low | Low | Low | High | High | High |
Khanna 2019 [14] | Low | Low | Low | Low | High | High | High |
Kalin 2019 [25] | Low | Low | Low | Low | High | Low | Low |
Hahn 2021 [15] | Low | Low | Low | Low | High | High | Low |
Xu 2023 [26] | High | Low | Low | Low | High | Low | High |
Study | Study Purpose | Stated Hypothesis | Results |
---|---|---|---|
Lee 2015 [19] | To assess usefulness of T2*-corrected FF map from VIBE MR Sequence | Not specified |
|
Nozaki 2015 [20] | Quantify fatty degeneration of supraspinatus muscle using 2-point Dixon to evaluate correlation of atrophy and FF among different severities of rotator cuff tears | Not specified |
|
Agten 2016 [21] | Analyze reliability of T2*-corrected multi-echo 3D Dixon to quantify specifically low-fat content of the supraspinatus | Not specified |
|
Nozaki 2016 [22] | Determine degree of pre-operative FI, longitudinal post-operative FI, and differences in FI of those who re-tear and those who do not |
|
|
Horiuchi 2017 [23] | Determine inter- and intra-rater reliability of 2-point Dixon and compare FF with Goutallier | FF will be more reliable and reproducible compared to Goutallier |
|
Matsumura 2017 [12] | Assess FF and muscle volume of the whole rotator cuff muscles and clarify characteristics of FI and atrophy | Not specified |
|
Kalin 2018 [13] | Provide mean values for FF and muscle volume of bilateral rotator cuff and deltoid muscles in asymptomatic adults and investigate the influence of gender, age, and arm dominance | Not specified |
|
Yoon 2018 [24] | Determine association between MRI findings of adhesive capsulitis and FF | Chronic disuse of shoulder muscles associated with adhesive capsulitis may be accompanied by FI |
|
Khanna 2019 [14] | Establish the reproducibility, minimal clinically important differences, and concurrent validity of 3D whole muscle volume and distribution of FI | Not specified |
|
Kalin 2019 [25] | Establish FF values of rotator cuff muscles and investigate age-associated changes between genders and muscles | Not specified |
|
Hahn 2021 [15] | Compare diagnostic ability of mDixon TSE and evaluate feasibility of mDixon IP images to measure FF and size of rotator cuff muscles | Diagnostic ability of mDixon TSE would be comparable to conventional MRA and would accurately quantify FF and muscle size |
|
Xu 2023 [26] | Determine associations between 3D overall FI and localized FI and assess feasibility of predicting overall FI with SAU | Some SAU-FIs will have high correlations with overall FI |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, A.J.; Harris, J.; Wang, J.; Khazzam, M.; Jain, N.B.; Tzen, Y.-T.; Lin, Y.-S. The Use of Dixon Magnetic Resonance Imaging Methods for the Quantification of Rotator Cuff Fatty Infiltration: A Systematic Review. Muscles 2024, 3, 133-152. https://doi.org/10.3390/muscles3020013
Nasr AJ, Harris J, Wang J, Khazzam M, Jain NB, Tzen Y-T, Lin Y-S. The Use of Dixon Magnetic Resonance Imaging Methods for the Quantification of Rotator Cuff Fatty Infiltration: A Systematic Review. Muscles. 2024; 3(2):133-152. https://doi.org/10.3390/muscles3020013
Chicago/Turabian StyleNasr, Andrew J., Joshua Harris, Jijia Wang, Michael Khazzam, Nitin B. Jain, Yi-Ting Tzen, and Yen-Sheng Lin. 2024. "The Use of Dixon Magnetic Resonance Imaging Methods for the Quantification of Rotator Cuff Fatty Infiltration: A Systematic Review" Muscles 3, no. 2: 133-152. https://doi.org/10.3390/muscles3020013
APA StyleNasr, A. J., Harris, J., Wang, J., Khazzam, M., Jain, N. B., Tzen, Y. -T., & Lin, Y. -S. (2024). The Use of Dixon Magnetic Resonance Imaging Methods for the Quantification of Rotator Cuff Fatty Infiltration: A Systematic Review. Muscles, 3(2), 133-152. https://doi.org/10.3390/muscles3020013