Waste Orange Peel Polyphenols as Enhancers of Seed Oil Oxidative Resilience: Stirred-Tank Versus Ultrasonication Enrichment Mode Using Corn Oil as a Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Waste Orange Peel (WOP) Collection and Handling
2.3. Corn Oil Procurement
2.4. Stirred-Tank Mode of Enrichment
2.5. Ultrasound-Assisted Mode of Enrichment
2.6. Ultrasound-Assisted Enrichment Optimization
2.7. Total Polyphenol Analysis
2.8. Determination of Peroxide Value (PV)
2.9. Determination of p-Anisidine Value (p-AV)
2.10. High-Performance Liquid Chromatography (HPLC)
2.11. Data Processing and Statistics
3. Results and Discussion
3.1. Stirred-Tank Enrichment Mode
3.2. Ultrasound-Assisted Enrichment (UAE) Mode
3.3. Optimization of the Ultrasound-Assisted Enrichment
3.4. Effect on Polyphenolic Composition
3.5. Effect on Oxidative Resilience
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chemat, F.; Vian, M.A.; Ravi, H.K. Toward petroleum-free with plant-based chemistry. Cur. Opin. Green Sustain. Chem. 2021, 28, 100450. [Google Scholar] [CrossRef]
- Ouro-Salim, O.; Guarnieri, P. Circular economy of food waste: A literature review. Environ. Qual. Manag. 2022, 32, 225–242. [Google Scholar] [CrossRef]
- Mohd Basri, M.S.; Abdul Karim Shah, N.N.; Sulaiman, A.; Mohamed Amin Tawakkal, I.S.; Mohd Nor, M.Z.; Ariffin, S.H.; Abdul Ghani, N.H.; Mohd Salleh, F.S. Progress in the valorization of fruit and vegetable wastes: Active packaging, biocomposites, by-products, and innovative technologies used for bioactive compound extraction. Polymers 2021, 13, 3503. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Bai, H.; Osman, A.I.; Eltohamy, K.M.; Chen, Z.; Younis, H.A.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.-S. Recycling food and agriculture by-products to mitigate climate change: A review. Environ. Chem. Lett. 2023, 21, 3351–3375. [Google Scholar] [CrossRef]
- Osorio, L.L.D.R.; Flórez-López, E.; Grande-Tovar, C.D. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 2021, 26, 515. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M. Application of agri-food by-products in the food industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Boateng, N.A.S.; Ma, H. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends Food Sci. Technol. 2020, 99, 375–388. [Google Scholar] [CrossRef]
- Dassoff, E.S.; Guo, J.X.; Liu, Y.; Wang, S.C.; Li, Y.O. Potential development of non-synthetic food additives from orange processing by-products—A review. Food Qual. Saf. 2021, 5, fyaa035. [Google Scholar] [CrossRef]
- Medina-Herrera, N.; Martínez-Ávila, G.C.G.; Robledo-Jiménez, C.L.; Rojas, R.; Orozco-Zamora, B.S. From citrus waste to valuable resources: A biorefinery approach. Biomass 2024, 4, 784–808. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Cardona Alzate, C.A.; Solarte-Toro, J.C. Orange peel waste as a source of bioactive compounds and valuable products: Insights based on chemical composition and biorefining. Biomass 2024, 4, 107–131. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Recent advances in valorization of citrus fruits processing waste: A way forward towards environmental sustainability. Food Sci. Biotech. 2021, 30, 1601–1626. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.P.; Boskou, D. Plant-derived antioxidants as food additives. Plants A Source Nat. Antioxid. 2014, 398, 169–190. [Google Scholar]
- Blasi, F.; Cossignani, L. An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes 2020, 8, 956. [Google Scholar] [CrossRef]
- Fadda, A.; Sanna, D.; Sakar, E.H.; Gharby, S.; Mulas, M.; Medda, S.; Yesilcubuk, N.S.; Karaca, A.C.; Gozukirmizi, C.K.; Lucarini, M. Innovative and sustainable technologies to enhance the oxidative stability of vegetable oils. Sustainability 2022, 14, 849. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Cho, M.H. Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. J. Funct. Foods 2018, 40, 307–316. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Chatzimitakos, T.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Sustainable exploitation of waste orange peels: Enrichment of commercial seed oils and the effect on their oxidative stability. Waste 2023, 1, 761–774. [Google Scholar] [CrossRef]
- Kalompatsios, D.; Athanasiadis, V.; Palaiogiannis, D.; Lalas, S.I.; Makris, D.P. Valorization of waste orange peels: Aqueous antioxidant polyphenol extraction as affected by organic acid addition. Beverages 2022, 8, 71. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, C.; Ma, Y.; Jia, M. Degradation behavior of polyphenols in model aqueous extraction system based on mechanical and sonochemical effects induced by ultrasound. Sep. Purif. Technol. 2020, 247, 116967. [Google Scholar] [CrossRef]
- Coupland, J.N.; McClements, D.J. Physical properties of liquid edible oils. J. Am. Oil Chem. Soc. 1997, 74, 1559–1564. [Google Scholar] [CrossRef]
- Kimura, T.; Sakamoto, T.; Leveque, J.-M.; Sohmiya, H.; Fujita, M.; Ikeda, S.; Ando, T. Standardization of ultrasonic power for sonochemical reaction. Ultrason. Sonochem. 1996, 3, S157–S161. [Google Scholar] [CrossRef]
- Reyes-García, F.; Iglesias-Silva, G.A. Densities and viscosities of corn oil+ n-alkanes blends from (288.15 to 343.15) K at 0.1 MPa. J. Chem. Eng. Data 2017, 62, 2726–2739. [Google Scholar] [CrossRef]
- Mota, I.; Pinto, P.C.R.; Novo, C.; Sousa, G.; Guerreiro, O.; Guerra, Â.R.; Duarte, M.F.; Rodrigues, A.E. Extraction of polyphenolic compounds from Eucalyptus globulus bark: Process optimization and screening for biological activity. Ind. Eng. Chem. Res. 2012, 51, 6991–7000. [Google Scholar] [CrossRef]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and radical-scavenging activity of heated olive oil and other vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- International Dairy Federation. FIL-IDF 74A Method: Anhydrous Milkfat, Determination of Peroxide Value; International Dairy Federation: Brussels, Belgium, 1991. [Google Scholar]
- ISO 6885:2016; Animal and Vegetable Fats and Oils—Determination of Anisidine Value. International Organization for Standardization: Geneva, Switzerland, 2016.
- Lakka, A.; Lalas, S.; Makris, D.P. Hydroxypropyl-β-cyclodextrin as a green co-solvent in the aqueous extraction of polyphenols from waste orange peels. Beverages 2020, 6, 50. [Google Scholar] [CrossRef]
- Abdoun, R.; Grigorakis, S.; Kellil, A.; Loupassaki, S.; Makris, D.P. Process optimization and stability of waste orange peel polyphenols in extracts obtained with organosolv thermal treatment using glycerol-based solvents. ChemEngineering 2022, 6, 35. [Google Scholar] [CrossRef]
- Dalmau, E.; Rosselló, C.; Eim, V.; Ratti, C.; Simal, S. Ultrasound-assisted aqueous extraction of biocompounds from orange byproduct: Experimental kinetics and modeling. Antioxidants 2020, 9, 352. [Google Scholar] [CrossRef]
- Dujmić, F.; Kovačević Ganić, K.; Ćurić, D.; Karlović, S.; Bosiljkov, T.; Ježek, D.; Vidrih, R.; Hribar, J.; Zlatić, E.; Prusina, T. Non-thermal ultrasonic extraction of polyphenolic compounds from red wine lees. Foods 2020, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Belsi, K.; Vogiatzi, X.; Palaiogiannis, D.; Chatzimitakos, T.; Lalas, S.I.; Makris, D.P. Ultrasonication-assisted aqueous extraction of waste orange peel polyphenols: Optimization of process variables and effect on extract composition. Compounds 2024, 4, 301–314. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Sousa, G.; Alves, M.I.; Neves, M.; Tecelão, C.; Ferreira-Dias, S. Enrichment of sunflower oil with ultrasound-assisted extracted bioactive compounds from Crithmum maritimum L. Foods 2022, 11, 439. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Biosci. 2018, 21, 20–26. [Google Scholar] [CrossRef]
- M’hiri, N.; Ioannou, I.; Boudhrioua, N.M.; Ghoul, M. Effect of different operating conditions on the extraction of phenolic compounds in orange peel. Food Bioprod. Proc. 2015, 96, 161–170. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Pan, Z.; Qu, W. Sonochemical effect of flat sweep frequency and pulsed ultrasound (FSFP) treatment on stability of phenolic acids in a model system. Ultrason. Sonochem. 2017, 39, 707–715. [Google Scholar] [CrossRef]
- Nipornram, S.; Tochampa, W.; Rattanatraiwong, P.; Singanusong, R. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem. 2018, 241, 338–345. [Google Scholar] [CrossRef]
- Ma, Y.-Q.; Chen, J.-C.; Liu, D.-H.; Ye, X.-Q. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason. Sonochem. 2009, 16, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulou, M.A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A.N.; Papageorgiou, V.P. Analysis of antioxidant compounds in sweet orange peel by HPLC–diode array detection–electrospray ionization mass spectrometry. Biomed. Chrom. 2005, 19, 138–148. [Google Scholar] [CrossRef]
- Peñalvo, G.C.; Robledo, V.R.; Callado, C.S.C.; Santander-Ortega, M.J.; Castro-Vázquez, L.; Lozano, M.V.; Arroyo-Jiménez, M.M. Improving green enrichment of virgin olive oil by oregano. Effects on antioxidants. Food Chem. 2016, 197, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Japon-Lujan, R.; Janeiro, P.; Luque de Castro, M.a.D. Solid− liquid transfer of biophenols from olive leaves for the enrichment of edible oils by a dynamic ultrasound-assisted approach. J. Agric. Food Chem. 2008, 56, 7231–7235. [Google Scholar] [CrossRef]
- Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat, F. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason. Sonochem. 2012, 19, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Girón, M.V.; Ruiz-Jimenez, J.; Luque de Castro, M.D. Dependence of fatty-acid composition of edible oils on their enrichment in olive phenols. J. Agric. Food Chem. 2009, 57, 2797–2802. [Google Scholar] [CrossRef]
- Rubilar, M.; Morales, E.; Sáez, R.; Acevedo, F.; Palma, B.; Villarroel, M.; Shene, C. Polyphenolic fractions improve the oxidative stability of microencapsulated linseed oil. Eur. J. Lipid Sci. Technol. 2012, 114, 760–771. [Google Scholar] [CrossRef]
- Trajkovska, M.; Derwiche, F.; Grigorakis, S.; Makris, D.P. Natural phenolic acids as effective bulk oil antioxidants: Oxidative stability modeling using olive kernel oil as a case study. Appl. Sci. 2024, 14, 6508. [Google Scholar] [CrossRef]
- Chemat, F.; Grondin, I.; Costes, P.; Moutoussamy, L.; Sing, A.S.C.; Smadja, J. High power ultrasound effects on lipid oxidation of refined sunflower oil. Ultrason. Sonochem. 2004, 11, 281–285. [Google Scholar] [CrossRef]
- Chemat, F.; Grondin, I.; Sing, A.S.C.; Smadja, J. Deterioration of edible oils during food processing by ultrasound. Ultrason. Sonochem. 2004, 11, 13–15. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.-S.; Le Bourvellec, C.; Renard, C.M.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Hosseini, S.; Gharachorloo, M.; Tarzi, B.G.; Ghavami, M.; Bakhoda, H. Effects of ultrasound amplitude on the physicochemical properties of some edible oils. J. Am. Oil Chem. Soc. 2015, 92, 1717–1724. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Asi, M.R.; Chatha, S.A.S. Antioxidant potential of extracts from different agro wastes: Stabilization of corn oil. Grasas Aceites 2008, 59, 205–217. [Google Scholar] [CrossRef]
- Yalcin, H.; Karaman, S.; Ozturk, I. Evaluation of antioxidant efficiency of potato and orange peel and apple pomace extract in sunflower oil. Ital. J. Food Sci. 2011, 23, 55–61. [Google Scholar]
- Wedamulla, N.E.; Fan, M.; Choi, Y.-J.; Kim, E.-K. Citrus peel as a renewable bioresource: Transforming waste to food additives. J. Funct. Foods 2022, 95, 105163. [Google Scholar] [CrossRef]
- Anagnostopoulou, M.A.; Kefalas, P.; Papageorgiou, V.P.; Assimopoulou, A.N.; Boskou, D. Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 2006, 94, 19–25. [Google Scholar] [CrossRef]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An overview of bioactive flavonoids from citrus fruits. Appl. Sci. 2021, 12, 29. [Google Scholar] [CrossRef]
- Islam, A.-A.; Mohamed, R.; Abdelrahman, S.; Dalia, M.; Ahmed, E.-B. Oxidative stability of edible oils via addition of pomegranate and orange peel extracts. Foods Raw Mater. 2018, 6, 413–420. [Google Scholar]
Variable | Code | Levels | ||||
---|---|---|---|---|---|---|
−1 | 0 | 1 | ||||
Ampl (%) | X1 | 45 | 60 | 75 | ||
t (min) | X2 | 5 | 7.5 | 10 |
Design Point | Process Variables | Response | ||
---|---|---|---|---|
CTP (mg GAE kg−1 Oil) | ||||
X1 (tUS, min) | X2 (%Ampl) | Measured | Predicted | |
1 | −1 (5) | −1 (45%) | 21.8 | 21.9 |
2 | −1 (5) | 1 (75%) | 41.1 | 39.6 |
3 | 1 (10) | −1 (45%) | 21.6 | 22.5 |
4 | 1 (10) | 1 (75%) | 42.4 | 41.7 |
5 | −1 (5) | 0 (60%) | 31.1 | 32.5 |
6 | 1 (10) | 0 (60%) | 34.1 | 33.9 |
7 | 0 (7.5) | −1 (45%) | 24.0 | 23.0 |
8 | 0 (7.5) | 1 (75%) | 39.1 | 41.4 |
9 | 0 (7.5) | 0 (60%) | 34.9 | 33.9 |
10 | 0 (7.5) | 0 (60%) | 34.1 | 33.9 |
11 | 0 (7.5) | 0 (60%) | 34.0 | 33.9 |
# | Compound | Yield (mg kg−1 Oil) | |
---|---|---|---|
Ultrasonication | Stirred-Tank | ||
1 | Ferulic acid | 1.08 ± 0.06 | 3.03 ± 0.09 |
2 | Hesperidin | 2.31 ± 0.11 | 19.54 ± 1.01 |
3 | Didymin | 12.28 ± 0.82 | 24.06 ± 1.09 |
4 | Sinensetin | 5.78 ± 0.24 | 9.63 ± 0.73 |
5 | Nobiletin | 20.94 ± 1.52 | 35.05 ± 2.20 |
6 | Demethylnobiletin | 12.14 ± 0.85 | 17.83 ± 0.79 |
Total | 54.52 | 109.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalompatsios, D.; Mantiniotou, M.; Makris, D.P. Waste Orange Peel Polyphenols as Enhancers of Seed Oil Oxidative Resilience: Stirred-Tank Versus Ultrasonication Enrichment Mode Using Corn Oil as a Model. Waste 2025, 3, 16. https://doi.org/10.3390/waste3020016
Kalompatsios D, Mantiniotou M, Makris DP. Waste Orange Peel Polyphenols as Enhancers of Seed Oil Oxidative Resilience: Stirred-Tank Versus Ultrasonication Enrichment Mode Using Corn Oil as a Model. Waste. 2025; 3(2):16. https://doi.org/10.3390/waste3020016
Chicago/Turabian StyleKalompatsios, Dimitrios, Martha Mantiniotou, and Dimitris P. Makris. 2025. "Waste Orange Peel Polyphenols as Enhancers of Seed Oil Oxidative Resilience: Stirred-Tank Versus Ultrasonication Enrichment Mode Using Corn Oil as a Model" Waste 3, no. 2: 16. https://doi.org/10.3390/waste3020016
APA StyleKalompatsios, D., Mantiniotou, M., & Makris, D. P. (2025). Waste Orange Peel Polyphenols as Enhancers of Seed Oil Oxidative Resilience: Stirred-Tank Versus Ultrasonication Enrichment Mode Using Corn Oil as a Model. Waste, 3(2), 16. https://doi.org/10.3390/waste3020016