Financial Distress Analysis of Technology Companies Using Grover Model †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hallo, L.; Nguyen, T.; Gorod, A.; Tran, P. Effectiveness of leadership decision-making in complex systems. Systems 2020, 8, 5. [Google Scholar] [CrossRef]
- Marchisotti, G.G.; Domingos, M.D.L.; Almeida, R.L. Decision-making at the first management level: The interference of the organizational culture. Rev. Adm. Mackenzie 2018, 19, 1–26. [Google Scholar] [CrossRef]
- Panpatte, S.; Takale, V.D. To study the decision making process in an organization for its effectiveness. Int. J. Bus. Manag. Technol. 2019, 3, 73–78. [Google Scholar]
- Andreis, F. A theoretical approach to the effective decision-making process. Open J. Appl. Sci. 2020, 10, 287–304. [Google Scholar] [CrossRef]
- Husein, M.F.; Pambekti, G.T. Precision of the models of Altman, Springate, Zmijewski, and Grover for predicting the financial distress. J. Econ. Bus. Account. Ventur. 2014, 17, 405–416. [Google Scholar] [CrossRef]
- Sugiyarti, L.; Murwaningsari, E. Comparison of bankruptcy and sustainability prediction: Altman Z score versus Grover model. Selangor Bus. Rev. 2020, 5, 56–72. [Google Scholar]
- Indriyanti, N.D.; Gustyana, T.T. Analysis of bankruptcy prediction using Altman Z-Score, Springate Grover, Zmijewski and Zavgren in retail trade sub sectors registered in Indonesia stock exchange period 2015–2019. Int. J. Adv. Res. Econ. Financ. 2021, 3, 21–31. [Google Scholar]
- Hantono, H. Predicting financial distress using Altman score, Grover score, Springate score, Zmijewski score (case study on consumer goods company). Accountability 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Hertina, D.; Kusmayadi, D. Comparative analysis of the Altman, Springate, Grover and Zmijewski models as predicting financial distress. PalArch’s J. Archaeol. Egypt Egyptol. 2020, 17, 552–561. [Google Scholar]
- Dewi, A.; Hadri, M. Financial distress prediction in Indonesia companies: Finding an alternative model. Russ. J. Agric. Socio-Econ. Sci. 2017, 61, 29–38. [Google Scholar]
- Primasari, N.S. Analysis Altman Z-score, Grover score, Springate and Zmijewski as financial distress signaling (empirical study of consumer goods industry in Indonesia). Account. Manag. J. 2017, 1, 23–42. [Google Scholar]
- Aminian, A.; Mousazade, H.; Khoshkho, O.I. Investigate the ability of bankruptcy prediction models of Altman and Springate and Zmijewski and Grover in Tehran Stock Exchange. Mediterr. J. Soc. Sci. 2016, 7, 208–214. [Google Scholar] [CrossRef]
- Lam, W.S.; Lam, W.H.; Jaaman, S.H.; Liew, K.F. Performance evaluation of construction companies using integrated entropy-fuzzy VIKOR model. Entropy 2021, 23, 320. [Google Scholar] [CrossRef] [PubMed]
- Verlekar, R.P.; Kamat, M.S. Recalibration and application of Springate, Zmijewski and Grover bankruptcy models in Indian banking sector. Int. J. Bus. Anal. Intell. 2019, 7, 19–27. [Google Scholar]
- Seto, A.A. Altman Z-Score model, Springate, Grover, Ohlson and Zmijweski to assess the financial distress potential of PT. Garuda Indonesia Tbk during and after the COVID-19 pandemic. Enrich. J. Manag. 2022, 12, 3819–3826. [Google Scholar]
- Fauziah, S.N.; Mudzakar, M.K. Analysis of company bankruptcy using the Grover model and the Springate model (case study of food and beverage listed on the Indonesia Stock Exchange in 2019–2021). J. Ekon. 2022, 11, 966–977. [Google Scholar]
- Putri, D.P.S. Comparison of bankruptcy prediction models analysis (Altman, Springate, Grover, Ohlson and Zmijewski) on PT. Asuransi Harta Aman Pratama, Tbk. Econ. Account. J. 2018, 1, 156–165. [Google Scholar]
Company | X1 | X2 | X3 | G-Score | Zone |
---|---|---|---|---|---|
ARBB | 0.3620 | 0.1810 | 0.1702 | 1.2677 | Safe |
CENSOF | 0.2405 | −0.6412 | −0.6502 | −1.7186 | Distress |
CUSCAPI | 0.2760 | −0.1704 | −0.1931 | −0.0648 | Distress |
D&O | 0.2425 | 0.0871 | 0.0645 | 0.7527 | Safe |
DATAPRP | 0.5810 | −0.2257 | −0.2301 | 0.2512 | Safe |
DIGISTA | 0.0700 | 0.0511 | −0.0077 | 0.3467 | Safe |
DSONIC | 0.3008 | 0.1762 | 0.1554 | 1.1506 | Safe |
EDARAN | 0.0528 | 0.0660 | −0.0648 | 0.3697 | Safe |
EFORCE | 0.4422 | 0.1384 | 0.1051 | 1.2560 | Safe |
ELSOFT | 0.6496 | 0.0413 | 0.0060 | 1.2692 | Safe |
FRONTKN | 0.4925 | 0.1830 | 0.1326 | 1.4906 | Safe |
GHLSYS | 0.3394 | 0.0461 | 0.0197 | 0.7735 | Safe |
GTRONIC | 0.5318 | 0.1465 | 0.1522 | 1.4308 | Safe |
HTPADU | 0.1259 | 0.0476 | 0.0291 | 0.4263 | Safe |
INARI | 0.4991 | 0.1092 | 0.1064 | 1.2504 | Safe |
ITRONIC | 0.0345 | −0.0247 | −0.0259 | 0.0303 | Safe |
JCY | 0.5099 | 0.0097 | 0.0226 | 0.9309 | Safe |
JHM | 0.3715 | 0.0945 | 0.0638 | 0.9905 | Safe |
KESM | 0.5660 | 0.0340 | 0.0002 | 1.1067 | Safe |
MMSV | 0.7710 | 0.0020 | 0.0279 | 1.3355 | Safe |
MPI | 0.4250 | 0.1024 | 0.0761 | 1.1056 | Safe |
MSNIAGA | 0.3665 | −0.0582 | −0.0514 | 0.4646 | Safe |
MYEG | 0.2836 | 0.1969 | 0.1896 | 1.1922 | Safe |
NOTION | 0.2546 | −0.0122 | 0.0112 | 0.4352 | Safe |
OMESTI | −0.0629 | 0.0817 | 0.0574 | 0.2304 | Safe |
PENTA | 0.6117 | 0.1279 | 0.0851 | 1.5004 | Safe |
THETA | 0.8060 | −0.0513 | −0.0942 | 1.2138 | Safe |
TURIYA | −0.0222 | 0.0254 | 0.0029 | 0.1068 | Safe |
UNISEM | 0.3132 | 0.0773 | 0.0629 | 0.8360 | Safe |
VITROX | 0.5618 | 0.1447 | 0.1390 | 1.4745 | Safe |
VSTECS | 0.5219 | 0.0763 | 0.0658 | 1.1769 | Safe |
WILLOW | 0.6389 | 0.0705 | 0.0846 | 1.3498 | Safe |
Company | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
ARBB | −1.3306 | −0.0767 | 1.4200 | 1.9092 | 1.2677 |
CENSOF | 0.7785 | 0.0556 | 0.0094 | 0.1204 | −1.7186 |
CUSCAPI | −1.4839 | −0.9921 | 0.1854 | 0.3682 | −0.0648 |
D&O | 0.6465 | 0.7650 | 0.7650 | 0.7084 | 0.7527 |
DATAPRP | 0.9546 | 0.8456 | 0.6485 | −0.6526 | 0.2512 |
DIGISTA | 0.8332 | 0.6696 | 0.7002 | 0.5451 | 0.3467 |
DSONIC | 1.2231 | 1.1538 | 1.1684 | 0.8880 | 1.1506 |
EDARAN | 0.0594 | −0.0023 | 0.4991 | 0.2082 | 0.3697 |
EFORCE | 1.2188 | 1.6242 | 1.1765 | 1.1309 | 1.2560 |
ELSOFT | 1.8521 | 1.9120 | 2.1109 | 1.3970 | 1.2692 |
FRONTKN | 0.8930 | 0.9134 | 1.2776 | 1.4234 | 1.4906 |
GHLSYS | 0.7037 | 0.7105 | 0.7003 | 0.7317 | 0.7735 |
GTRONIC | 1.3425 | 1.0953 | 1.3944 | 1.3028 | 1.4308 |
HTPADU | 0.4954 | 0.2917 | −0.0605 | 0.4930 | 0.4263 |
INARI | 1.3705 | 1.4374 | 1.5981 | 1.4022 | 1.2504 |
ITRONIC | −0.5846 | −0.6386 | −0.2661 | 0.0376 | 0.0303 |
JCY | 0.7821 | 0.8206 | 0.6810 | 0.7206 | 0.9309 |
JHM | 1.1431 | 1.6939 | 1.3090 | 1.1964 | 0.9905 |
KESM | 0.9574 | 0.8263 | 1.0194 | 0.9276 | 1.1067 |
MMSV | 1.6917 | 2.2131 | 1.7395 | 1.7319 | 1.3355 |
MPI | 1.1800 | 1.2222 | 1.1036 | 1.1864 | 1.1056 |
MSNIAGA | 0.7426 | 0.8594 | 0.5643 | 0.4910 | 0.4646 |
MYEG | 1.1825 | 1.3556 | 1.0087 | 0.9500 | 1.1922 |
NOTION | 0.7053 | 0.7568 | 1.1096 | 0.6059 | 0.4352 |
OMESTI | 0.1569 | 0.1264 | −1.3098 | −0.0681 | 0.2304 |
PENTA | 1.5652 | 1.2951 | 1.5424 | 1.6734 | 1.5004 |
THETA | 1.0277 | 1.1431 | 1.2046 | 1.2749 | 1.2138 |
TURIYA | 0.1741 | 0.1802 | 0.1811 | 0.1837 | 0.1068 |
UNISEM | 0.6766 | 0.7634 | 0.6077 | 0.5055 | 0.8360 |
VITROX | 1.4849 | 1.5227 | 1.5906 | 1.4284 | 1.4745 |
VSTECS | 1.1260 | 1.1698 | 1.1569 | 1.0434 | 1.1769 |
WILLOW | 1.6118 | 1.4879 | 1.3787 | 1.4106 | 1.3498 |
Company | Average G-Score | Zone |
---|---|---|
ARBB | 0.6379 | Safe |
CENSOF | −0.1510 | Distress |
CUSCAPI | −0.3974 | Distress |
D&O | 0.7275 | Safe |
DATAPRP | 0.4095 | Safe |
DIGISTA | 0.6190 | Safe |
DSONIC | 1.1168 | Safe |
EDARAN | 0.2268 | Safe |
EFORCE | 1.2813 | Safe |
ELSOFT | 1.7082 | Safe |
FRONTKN | 1.1996 | Safe |
GHLSYS | 0.7239 | Safe |
GTRONIC | 1.3132 | Safe |
HTPADU | 0.3292 | Safe |
INARI | 1.4117 | Safe |
ITRONIC | −0.2843 | Distress |
JCY | 0.7870 | Safe |
JHM | 1.2666 | Safe |
KESM | 0.9675 | Safe |
MMSV | 1.7423 | Safe |
MPI | 1.1596 | Safe |
MSNIAGA | 0.6244 | Safe |
MYEG | 1.1378 | Safe |
NOTION | 0.7225 | Safe |
OMESTI | −0.1728 | Distress |
PENTA | 1.5153 | Safe |
THETA | 1.1728 | Safe |
TURIYA | 0.1652 | Safe |
UNISEM | 0.6778 | Safe |
VITROX | 1.5002 | Safe |
VSTECS | 1.1346 | Safe |
WILLOW | 1.4478 | Safe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liew, K.F.; Lam, W.S.; Lam, W.H. Financial Distress Analysis of Technology Companies Using Grover Model. Comput. Sci. Math. Forum 2023, 7, 6. https://doi.org/10.3390/IOCMA2023-14405
Liew KF, Lam WS, Lam WH. Financial Distress Analysis of Technology Companies Using Grover Model. Computer Sciences & Mathematics Forum. 2023; 7(1):6. https://doi.org/10.3390/IOCMA2023-14405
Chicago/Turabian StyleLiew, Kah Fai, Weng Siew Lam, and Weng Hoe Lam. 2023. "Financial Distress Analysis of Technology Companies Using Grover Model" Computer Sciences & Mathematics Forum 7, no. 1: 6. https://doi.org/10.3390/IOCMA2023-14405
APA StyleLiew, K. F., Lam, W. S., & Lam, W. H. (2023). Financial Distress Analysis of Technology Companies Using Grover Model. Computer Sciences & Mathematics Forum, 7(1), 6. https://doi.org/10.3390/IOCMA2023-14405