New Aspects in the Theory of Complete Hypergroups †
Abstract
:1. Introduction and Preliminaries
- is an arbitrary group.
- For any , the subsets and are disjoint.
- The hyperoperation on H is defined by the rule: if , then
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | |
a0 | a0 | a1,a2 | a1,a2 | a3,a4 | a3,a4 | a5,a6 | a5,a6 | a7 | a8 |
a1 | a1,a2 | a0 | a0 | a7 | a7 | a8 | a8 | a3,a4 | a5,a6 |
a2 | a1,a2 | a0 | a0 | a7 | a7 | a8 | a8 | a3,a4 | a5,a6 |
a3 | a3,a4 | a8 | a8 | a0 | a0 | a7 | a7 | a5,a6 | a1,a2 |
a4 | a3,a4 | a8 | a8 | a0 | a0 | a7 | a7 | a5,a6 | a1,a2 |
a5 | a5,a6 | a7 | a7 | a8 | a8 | a0 | a0 | a1,a2 | a3,a4 |
a6 | a5,a6 | a7 | a7 | a8 | a8 | a0 | a0 | a1,a2 | a3,a4 |
a7 | a7 | a5,a6 | a5,a6 | a1,a2 | a1,a2 | a3,a4 | a3,a4 | a8 | a0 |
a8 | a8 | a3,a4 | a3,a4 | a5,a6 | a5,a6 | a1,a2 | a1,a2 | a0 | a7 |
a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | |
a0 | a0,a1 | a0,a1 | a2 | a3 | a4 | a5,a6 | a5,a6 | a7,a8 | a7,a8 |
a1 | a0,a1 | a0,a1 | a2 | a3 | a4 | a5,a6 | a5,a6 | a7,a8 | a7,a8 |
a2 | a2 | a2 | a0,a1 | a5,a6 | a7,a8 | a3 | a3 | a4 | a4 |
a3 | a3 | a3 | a7,a8 | a0,a1 | a5,a6 | a4 | a4 | a2 | a2 |
a4 | a4 | a4 | a5,a6 | a7,a8 | a0,a1 | a2 | a2 | a3 | a3 |
a5 | a5,a6 | a5,a6 | a4 | a2 | a3 | a7,a8 | a7,a8 | a0,a1 | a0,a1 |
a6 | a5,a6 | a5,a6 | a4 | a2 | a3 | a7,a8 | a7,a8 | a0,a1 | a0,a1 |
a7 | a7,a8 | a7,a8 | a3 | a4 | a2 | a0,a1 | a0,a1 | a5,a6 | a5,a6 |
a8 | a7,a8 | a7,a8 | a3 | a4 | a2 | a0,a1 | a0,a1 | a5,a6 | a5,a6 |
2. Properties of Complete Hypergroups
2.1. Reversibility, Regularity and Reducibility Properties
- Operationally equivalent, denoted , if and for any ;
- Inseparable, denoted , if if and only if for ;
- Essentially indistinguishable, denoted , if and .
2.2. The Class Equation
2.3. The Commutativity Degree
2.4. The Euler’s Totient Function
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jun, J. Algebraic geometry over hyperrings. Adv. Math. 2018, 323, 142–192. [Google Scholar] [CrossRef]
- Connes, A.; Consani, C. The hyperring of adele classes. J. Number Theory 2011, 131, 159–194. [Google Scholar] [CrossRef]
- Křehlik, Š.; Novak, M.; Vyroubalova, J. From Automata to Multiautomata via Theory of Hypercompositional Structures. Mathematics 2021, 10, 1. [Google Scholar] [CrossRef]
- Kalampakas, A.; Spartalis, S.; Tsigkas, A. The Path Hyperoperation. An. St. Univ. “Ovidius” Constanta Ser. Mat. 2014, 22, 141–153. [Google Scholar] [CrossRef]
- Baker, M.; Bowler, N. Matroids over partial hyperstructures. Adv. Math. 2019, 343, 821–863. [Google Scholar] [CrossRef]
- Jun, J. Association schemes and hypergroups. Commun. Alg. 2018, 46, 942–960. [Google Scholar] [CrossRef]
- Koskas, M. Groupoides, demi-hypergroupes et hypergroupes. J. Math. Pure Appl. 1970, 49, 155–192. [Google Scholar]
- Corsini, P. Prolegomena of Hypergroup Theory; Aviani Editore: Tricesimo, Italy, 1993. [Google Scholar]
- Corsini, P.; Leoreanu, V. Applications of Hyperstructures Theory; Kluwer Academic Publishers: Dodrecht, The Netherlands; Boston, MA, USA; London, UK, 2003. [Google Scholar]
- Massouros, C.; Massouros, G. An overview of the foundations of the hypergroup theory. Mathematics 2021, 9, 1014. [Google Scholar] [CrossRef]
- Massouros, G.; Massouros, C. Hypercompositional algebra, computer science and geometry. Mathematics 2020, 8, 1338. [Google Scholar] [CrossRef]
- Jantosciak, J. Reduced hypergroups. In Proceedings of the 4th International Congress, Xanthi, Greece, 27–30 June 1990; World Scientific: Singapore, 1991; pp. 119–122. [Google Scholar]
- Kankaras, M.; Cristea, I. Fuzzy reduced hypergroups. Mathematics 2020, 8, 263. [Google Scholar] [CrossRef]
- Sonea, A.; Cristea, I. The class equation and the commutativity degree for complete hypergroups. Mathematics 2020, 8, 2253. [Google Scholar] [CrossRef]
- Sonea, A.; Cristea, I. Euler’s totient function applied to complete hypergroups. AIMS Math. 2023, 8, 7731–7746. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristea, I. New Aspects in the Theory of Complete Hypergroups. Comput. Sci. Math. Forum 2023, 7, 26. https://doi.org/10.3390/IOCMA2023-14408
Cristea I. New Aspects in the Theory of Complete Hypergroups. Computer Sciences & Mathematics Forum. 2023; 7(1):26. https://doi.org/10.3390/IOCMA2023-14408
Chicago/Turabian StyleCristea, Irina. 2023. "New Aspects in the Theory of Complete Hypergroups" Computer Sciences & Mathematics Forum 7, no. 1: 26. https://doi.org/10.3390/IOCMA2023-14408
APA StyleCristea, I. (2023). New Aspects in the Theory of Complete Hypergroups. Computer Sciences & Mathematics Forum, 7(1), 26. https://doi.org/10.3390/IOCMA2023-14408