Parallel WSAR for Solving Permutation Flow Shop Scheduling Problem †
Abstract
:1. Introduction
2. Parallel Computing
3. p-WSAR Algorithm
4. Permutation Flow Shop Scheduling Problem and Experimental Results
4.1. Permutation Flow Shop Scheduling Problem (PFSP)
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Precup, R.-E.; David, R.-C.; Roman, R.-C.; Petriu, E.M.; Szedlak-Stinean, A.-I. Slime Mould Algorithm-Based Tuning of Cost-Effective Fuzzy Controllers for Servo Systems. Int. J. Comput. Intell. Syst. 2021, 14, 1042–1052. [Google Scholar] [CrossRef]
- Ang, K.M.; Lim, W.H.; Isa, N.A.M.; Tiang, S.S.; Wong, C.H. A constrained multi-swarm particle swarm op-timization without velocity for constrained optimization problems. Exp. Syst. Appl. 2020, 140, 112882. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Dudaklı, N.; Subulan, K.; Taşan, A.S. An integrated fleet planning model with empty vehicle repositioning for an intermodal transportation system. Oper. Res. 2021, 1–36. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Malek, R. Collaboration of metaheuristic algorithms through a multi-agent system. In Proceedings of the International Conference on Industrial Applications of Holonic and Multi-Agent Systems, Linz, Austria, 31 August 2009–2 September 2009. [Google Scholar]
- Baykasoğlu, A.; Hamzadayi, A.; Akpınar, S. Single Seekers Society (SSS): Bringing together heuristic optimization algorithms for solving complex problems. Knowl.-Based Syst. 2019, 165, 53–76. [Google Scholar] [CrossRef]
- Parallel Metaheuristics. In Parallel Metaheuristics; Wiley: Hoboken, NJ, USA, 2005.
- Alba, E.; Troya, J.M. Improving flexibility and efficiency by adding parallelism to genetic algorithms. Stat. Comput. 2002, 12, 91–114. [Google Scholar] [CrossRef]
- Almasi, G.S.; Gottlieb, A. Highly Parallel Computing Benjamin; Cummings: Redwood City, CA, USA, 1994. [Google Scholar]
- Kohli, R.; Krishnamurti, R. Optimal product design using conjoint analysis: Computational complexity and al-gorithms. Eur. J. Operat. Res. 1989, 40, 186–195. [Google Scholar] [CrossRef]
- Rogers, D. Random Search and Insect Population Models. J. Anim. Ecol. 1972, 41, 369. [Google Scholar] [CrossRef]
- Dueck, G.; Scheuer, T. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 1990, 90, 161–175. [Google Scholar] [CrossRef]
- Dueck, G. New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel. J. Comput. Phys. 1993, 104, 86–92. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Feo, T.A.; Resende, M.G.C. Greedy Randomized Adaptive Search Procedures. J. Glob. Optim. 1995, 6, 109–133. [Google Scholar] [CrossRef] [Green Version]
- Baykasoğlu, A. Optimising cutting conditions for minimising cutting time in multi-pass milling via weighted superposition attraction-repulsion (WSAR) algorithm. Int. J. Prod. Res. 2020, 59, 4633–4648. [Google Scholar] [CrossRef]
- Onwubolu, G.; Davendra, D. Scheduling flow shops using differential evolution algorithm. Eur. J. Oper. Res. 2006, 171, 674–692. [Google Scholar] [CrossRef]
- Taillard, E. Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 1990, 47, 65–74. [Google Scholar] [CrossRef]
- Baykasoglu, A.; Hamzadayi, A.; Köse, S.Y. Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases. Inf. Sci. 2014, 276, 204–218. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Horng, S.-J.; Kao, T.-W.; Huang, D.-K.; Fahn, C.-S.; Lai, J.-L.; Chen, R.-J.; Kuo, I.-H. An efficient bi-objective personnel assignment algorithm based on a hybrid particle swarm optimization model. Expert Syst. Appl. 2010, 37, 7825–7830. [Google Scholar] [CrossRef]
- Lian, Z.; Gu, X.; Jiao, B. A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos Solitons Fractals 2008, 35, 851–861. [Google Scholar] [CrossRef]
Problems | Algorithm | TLBO [20] | HPSO [21] | NPSO [22] | WSAR | p-WSAR |
---|---|---|---|---|---|---|
ta001 PS:(20 × 5) WKS:1278 | Best | 1278 | 1278 | 1278 | 1278 | 1278 |
Worst | 1297 | 1278 | 1297 | 1297 | 1278 | |
Average | 1287.2 | 1278 | 1279.9 | 1278.6 | 1278 | |
ta011 PS:(20 × 10) WKS:1582 | Best | 1586 | 1582 | 1582 | 1586 | 1582 |
Worst | 1618 | 1596 | 1639 | 1618 | 1582 | |
Average | 1606 | 1587.3 | 1605.8 | 1592.2 | 1582 | |
ta031 PS:(50 × 5) WKS:2724 | Best | 2724 | 2724 | 2724 | 2724 | 2724 |
Worst | 2741 | 2724 | 2729 | 2729 | 2724 | |
Average | 2729.4 | 2724 | 2725 | 2724.6 | 2724 | |
ta051 PS:(50 × 20) WKS:3771 | Best | 3986 | 3923 | 3938 | 3969 | 3902 |
Worst | 4095 | 3963 | 3989 | 4063 | 3923 | |
Average | 4029.7 | 3944.6 | 3964.3 | 4015.9 | 3916 | |
ta061 PS:(100 × 5) WKS:5493 | Best | 5493 | 5493 | 5493 | 5493 | 5493 |
Worst | 5527 | 5493 | 5495 | 5495 | 5493 | |
Average | 5499.4 | 5493 | 5493.2 | 5493.2 | 5493 |
Friedman Test Average Rankings | Wilcoxon Signed-Rank Test between p-WSAR and State-of-the-Art Algorithms | ||
---|---|---|---|
Algorithms | Sum of Ranks | p-WSAR vs. | p-value |
TLBO | 5.0 (5) | TLBO | 0.0625 |
HPSO | 1.7 (2) | HPSO | 0.5 |
NPSO | 3.7 (4) | NPSO | 0.0625 |
WSAR | 3.3 (3) | WSAR | 0.0625 |
p-WSAR | 1.3 (1) |
Problems | Algorithm | SA | RS | GD | TA | GS | p-WSAR |
---|---|---|---|---|---|---|---|
ta001 PS:(20 × 5) WKS:1278 | Best | 1286 | 1294 | 1278 | 1278 | 1284 | 1278 |
Worst | 1297 | 1302 | 1297 | 1284 | 1292 | 1278 | |
Average | 1292.2 | 1296.5 | 1279.9 | 1280.6 | 1287.8 | 1278 | |
ta011 PS:(20 × 10) WKS:1582 | Best | 1606 | 1616 | 1596 | 1592 | 1608 | 1582 |
Worst | 1620 | 1650 | 1616 | 1618 | 1642 | 1582 | |
Average | 1610 | 1632.4 | 1610.7 | 1608 | 1624 | 1582 | |
ta031 PS:(50 × 5) WKS:2724 | Best | 2804 | 2942 | 2806 | 2864 | 2916 | 2724 |
Worst | 2908 | 3026 | 2846 | 2938 | 3002 | 2724 | |
Average | 2856 | 2978 | 2824.6 | 2886 | 2984 | 2724 | |
ta051 PS:(50 × 20) WKS:3771 | Best | 4206 | 4807 | 4402 | 4622 | 4424 | 3902 |
Worst | 4240 | 6240 | 4803 | 5162 | 6024 | 3923 | |
Average | 4222.4 | 5465.8 | 4627 | 4838.6 | 5146 | 3916 | |
ta061 PS:(100 × 5) WKS:5493 | Best | 6122 | 8640 | 6248 | 6125 | 7426 | 5493 |
Worst | 6378 | 9026 | 6414 | 6642 | 8424 | 5493 | |
Average | 6564.3 | 8924.7 | 6344.9 | 6348.4 | 8012.6 | 5493 |
Friedman Test Average Rankings | Wilcoxon Signed-Rank Test between p-WSAR and State-of-the-Art Algorithms | ||
---|---|---|---|
Algorithms | Sum of Ranks | p-WSAR vs. | p-value |
SA | 3.4 (4) | SA | 0.0625 |
RS | 5.8 (6) | RS | 0.0625 |
GD | 2.6 (2) | GD | 0.0625 |
TA | 3.2 (3) | TA | 0.0625 |
GS | 5.0 (5) | GS | 0.0625 |
p-WSAR | 1.0 (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baykasoğlu, A.; Şenol, M.E. Parallel WSAR for Solving Permutation Flow Shop Scheduling Problem. Comput. Sci. Math. Forum 2022, 2, 10. https://doi.org/10.3390/IOCA2021-10901
Baykasoğlu A, Şenol ME. Parallel WSAR for Solving Permutation Flow Shop Scheduling Problem. Computer Sciences & Mathematics Forum. 2022; 2(1):10. https://doi.org/10.3390/IOCA2021-10901
Chicago/Turabian StyleBaykasoğlu, Adil, and Mümin Emre Şenol. 2022. "Parallel WSAR for Solving Permutation Flow Shop Scheduling Problem" Computer Sciences & Mathematics Forum 2, no. 1: 10. https://doi.org/10.3390/IOCA2021-10901
APA StyleBaykasoğlu, A., & Şenol, M. E. (2022). Parallel WSAR for Solving Permutation Flow Shop Scheduling Problem. Computer Sciences & Mathematics Forum, 2(1), 10. https://doi.org/10.3390/IOCA2021-10901