The Forecasting of Aluminum Prices: A True Challenge for Econometric Models †
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Transformations
2.3. Models
2.4. Methods
3. Results
3.1. Main Results
3.2. Robustness Checks
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alquist, R.; Kilian, L. What do we learn from the price of crude oil futures? J. Appl. Econom. 2010, 25, 539–573. [Google Scholar] [CrossRef]
- Buncic, D.; Moretto, C. Forecasting copper prices with dynamic averaging and selection models. N. Am. J. Econ. Financ. 2015, 33, 1–38. [Google Scholar] [CrossRef]
- Reynolds, D.B.; Umekwe, M.P. Shale-oil development prospects: The role of shale-gas in developing shale-oil. Energies 2019, 12, 3331. [Google Scholar] [CrossRef]
- Kahraman, E.; Akay, O. Comparison of exponential smoothing methods in forecasting global prices of main metals. Miner. Econ. 2023, 36, 427–435. [Google Scholar] [CrossRef]
- Kwas, M.; Paccagnini, A.; Rubaszek, M. Common factors and the dynamics of industrial metal prices: A forecasting perspective. Resour. Policy 2021, 74, 102319. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, M.; Zhou, H.; Yan, F. A multi-model fusion based non-ferrous metal price forecasting. Resour. Policy 2022, 77, 102714. [Google Scholar] [CrossRef]
- Alquist, R.; Kilian, L.; Vigfusson, R.J. Forecasting the price of oil. In Handbook of Economic Forecasting; Elliott, G., Timmermann, A., Eds.; Elsevier: Amsterdam, Netherlands, 2013; Volume 2, Part A, pp. 427–507. [Google Scholar] [CrossRef]
- Gargano, A.; Timmermann, A. Forecasting commodity price indexes using macroeconomic and financial predictors. Int. J. Forecast. 2014, 30, 825–843. [Google Scholar] [CrossRef]
- He, Z.; Huang, J. A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction. Resour. Policy 2023, 86, 104189. [Google Scholar] [CrossRef]
- Ma, F.; Wahab, M.I.; Huang, D.; Xu, W. Forecasting the realized volatility of the oil futures market: A regime switching approach. Energy Econ. 2017, 67, 136–145. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Walther, T. Modeling and forecasting commodity market volatility with long-term economic and financial variables. J. Forecast. 2020, 39, 126–142. [Google Scholar] [CrossRef]
- Pincheira, P.; Hardy, N. Forecasting aluminum prices with commodity currencies. Resour. Policy 2021, 73, 102066. [Google Scholar] [CrossRef]
- Croushore, D. Frontiers of real-time data analysis. J. Econ. Lit. 2011, 49, 72–100. [Google Scholar] [CrossRef]
- Nagy, I.; Suzdaleva, E. Mixture estimation with state-space components and Markov model of switching. Appl. Math. Model. 2013, 37, 9970–9984. [Google Scholar] [CrossRef]
- Nagy, I.; Suzdaleva, E.; Karny, M.; Mlynarova, T. Bayesian estimation of dynamic finite mixtures. Int. J. Adapt. Control Signal Process. 2011, 25, 765–787. [Google Scholar] [CrossRef]
- World Bank. Commodity Markets. 2025. Available online: https://www.worldbank.org/en/research/commodity-markets (accessed on 3 February 2025).
- Menzie, W.D.; Barry, J.J.; Bleiwas, D.I.; Bray, E.L.; Goonan, T.G.; Matos, G. The Global Flow of Aluminum from 2006 Through 2025: Open-File Report 2010–1256; U.S. Geological Survey: Reston, VA, USA, 2010. Available online: https://pubs.usgs.gov/of/2010/1256 (accessed on 3 February 2025).
- OECD. OECD Data Explorer. 2025. Available online: https://data-explorer.oecd.org (accessed on 3 February 2025).
- Westmetall. Market Data. 2025. Available online: https://www.westmetall.com/en/markdaten.php (accessed on 3 February 2025).
- International Aluminium Institute. Statistics. 2025. Available online: https://international-aluminium.org (accessed on 3 February 2025).
- ALFRED. Archival FRED. 2025. Available online: https://alfred.stlouisfed.org (accessed on 3 February 2025).
- FRED. Economic Data. 2025. Available online: https://fred.stlouisfed.org (accessed on 3 February 2025).
- Stooq. Stooq. 2025. Available online: https://stooq.pl/index.html (accessed on 3 February 2025).
- Kilian, L. Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market. Am. Econ. Rev. 2009, 99, 1053–1069. [Google Scholar] [CrossRef]
- Chicago Board Options Exchange. Historical Data. 2025. Available online: https://www.cboe.com/tradable_products/vix/vix_historical_data (accessed on 3 February 2025).
- Yahoo. Yahoo!finance. 2025. Available online: https://finance.yahoo.com (accessed on 3 February 2025).
- Shrivastava, P.; Vidhi, R. Pathway to sustainability in the mining industry: A case study of Alcoa and Rio Tinto. Resources 2020, 9, 70. [Google Scholar] [CrossRef]
- Barry, J.J.; Matos, G.R.; Menzie, W.D.U.S. Mineral Dependence—Statistical Compilation of U.S. and World Mineral Production, Consumption, and Trade, 1990–2010, Open-File Report 2013-1184; U.S. Geological Survey: Reston, VA, USA, 2013. Available online: https://pubs.usgs.gov/of/2013/1184 (accessed on 3 February 2025).
- Idoine, N.E.; Raycraft, E.R.; Hobbs, S.F.; Everett, P.; Evans, E.J.; Mills, A.J.; Currie, D.; Horn, S.; Shaw, R.A. World Mineral Production 2018–22; British Geological Survey: Keyworth, Nottingham, UK, 2024. Available online: https://nora.nerc.ac.uk/id/eprint/537241/1/World%20Mineral%20Production%202018%20to%202022.pdf (accessed on 3 February 2025).
- Koop, G.; Korobilis, D. Large time-varying parameter VARs. J. Econom. 2013, 177, 185–198. [Google Scholar] [CrossRef]
- Drachal, K. Determining time-varying drivers of spot oil price in a Dynamic Model Averaging framework. Energies 2018, 11, 1207. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Trapletti, A.; Hornik, K. Tseries: Time Series Analysis and Computational Finance. 2024. Available online: https://CRAN.R-project.org/package=tseries (accessed on 3 February 2025).
- Barbieri, M.M.; Berger, J.O. Optimal predictive model selection. Ann. Stat. 2004, 32, 870–897. [Google Scholar] [CrossRef]
- Drachal, K. “Dynmix”: An R package for the estimation of dynamic finite mixtures. SoftwareX 2023, 22, 101388. [Google Scholar] [CrossRef]
- Raftery, A.E.; Karny, M.; Ettler, P. Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill. Technometrics 2010, 52, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Drachal, K. Dynamic Model Averaging in economics and finance with fDMA: A package for R. Signals 2020, 1, 47–99. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Gramacy, R.B. Monomvn: Estimation for MVN and Student-t Data with Monotone Missingness. 2019. Available online: https://CRAN.R-project.org/package=monomvn (accessed on 3 February 2025).
- Hastie, T.; Efron, B. lars: Least Angle Regression, Lasso and Forward Stagewise. 2013. Available online: https://CRAN.R-project.org/package=lars (accessed on 3 February 2025).
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar] [CrossRef]
- Ellwanger, R.; Snudden, S. Futures prices are useful predictors of the spot price of crude Oil. Energy J. 2023, 44, 65–82. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org (accessed on 3 February 2025).
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. Available online: https://www.jstor.org/stable/1392155 (accessed on 3 February 2025). [CrossRef]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Hansen, P.R.; Lunde, A.; Nason, J. The model confidence set. Econometrica 2011, 79, 453–497. [Google Scholar] [CrossRef]
- Bernardi, M.; Catania, L. The model confidence set package for R. Int. J. Comput. Econ. Econom. 2018, 8, 144–158. [Google Scholar] [CrossRef]
- Giacomini, R.; Rossi, B. Forecast comparisons in unstable environments. J. Appl. Econom. 2010, 25, 595–620. [Google Scholar] [CrossRef]
- Jordan, A.; Krueger, F. Murphydiagram: Murphy Diagrams for Forecast Comparisons. 2019. Available online: https://CRAN.R-project.org/package=murphydiagram (accessed on 3 February 2025).
- FXTOP. Historical Rates. 2025. Available online: https://fxtop.com/en/historical-exchange-rates.php (accessed on 3 February 2025).
- Drachal, K. Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures. Energy Econ. 2021, 99, 105283. [Google Scholar] [CrossRef]
- Drachal, K. Forecasting prices of selected metals with Bayesian data-rich models. Resour. Policy 2019, 64, 101528. [Google Scholar] [CrossRef]
- Farag, M.; Snudden, S.; Upton, G. Can futures prices predict the real price of primary commodities? USAEE Work. Pap. 2024, 24, 629. [Google Scholar] [CrossRef]
- Kwas, M.; Rubaszek, M. Forecasting commodity prices: Looking for a benchmark. Forecasting 2021, 3, 447–459. [Google Scholar] [CrossRef]
Min | Max | Mean | Median | Standard Deviation | Coefficient of Variation | Skewness | |
---|---|---|---|---|---|---|---|
p_aluminum | −3.3049 | 2.7834 | 0.0661 | 0.0778 | 0.8876 | 13.4292 | −0.3039 |
d_aluminum | −2.8146 | 3.3251 | −0.0370 | 0.0080 | 0.9809 | −26.4973 | 0.0032 |
stocks_aluminum | −2.0897 | 3.6537 | −0.1230 | −0.2754 | 0.9149 | −7.4362 | 1.2928 |
cy_aluminum | −0.5798 | 11.9777 | 2.0681 | −0.0919 | 3.7896 | 1.8324 | 1.5975 |
ind_prod | −7.5606 | 3.4581 | 0.0337 | 0.1668 | 1.0862 | 32.2483 | −3.8626 |
ec_act | −2.0417 | 2.6619 | −0.0249 | −0.0866 | 0.8256 | −33.1113 | 0.6761 |
term_spread | −5.6916 | 1.7419 | −1.5855 | −1.4015 | 1.9364 | −1.2213 | −0.1627 |
VIX | −1.1556 | 4.1777 | −0.1539 | −0.3918 | 0.8850 | −5.7491 | 2.2702 |
SP500 | −3.7403 | 2.6016 | 0.0629 | 0.2084 | 0.9855 | 15.6561 | −0.6114 |
SSE | −2.8843 | 2.4156 | 0.0153 | 0.0240 | 0.7945 | 51.8841 | −0.3745 |
p_metals | −3.8620 | 2.8732 | 0.0765 | 0.0927 | 0.8618 | 11.2699 | −0.6471 |
fx_CNY | −2.8497 | 4.0257 | 0.0650 | −0.0421 | 1.1871 | 18.2563 | 0.5568 |
fx_RUB | −2.6425 | 3.8429 | −0.0584 | −0.1498 | 0.9966 | −17.0747 | 0.9778 |
Rio_Tinto | −3.9567 | 2.7423 | 0.0754 | 0.0461 | 0.8487 | 11.2503 | −0.4827 |
Alcoa | −4.5478 | 4.4837 | 0.1053 | 0.0472 | 1.2297 | 11.6781 | −0.0903 |
ADF Statistic | ADF p-Value | PP Statistic | PP p-Value | KPSS Statistic | KPSS p-Value | |
---|---|---|---|---|---|---|
p_aluminum | −5.5373 | <0.01 | −137.4591 | <0.01 | 0.1050 | >0.1 |
d_aluminum | −6.5077 | <0.01 | −238.4936 | <0.01 | 0.1053 | >0.1 |
stocks_aluminum | −3.8686 | 0.0168 | −66.5018 | <0.01 | 0.6401 | 0.0190 |
cy_aluminum | −2.9544 | 0.1764 | −5.4427 | 0.8037 | 1.7829 | <0.01 |
ind_prod | −5.9235 | <0.01 | −158.5210 | <0.01 | 0.1406 | >0.1 |
ec_act | −4.0650 | <0.01 | −23.2835 | 0.0320 | 0.6412 | 0.0189 |
term_spread | −3.4339 | 0.0505 | −14.1665 | 0.3081 | 3.2267 | <0.01 |
VIX | −3.4498 | 0.0488 | −36.3286 | <0.01 | 0.6446 | 0.0186 |
SP500 | −6.1128 | <0.01 | −201.2408 | <0.01 | 0.1750 | >0.1 |
SSE | −5.4294 | <0.01 | −191.9523 | <0.01 | 0.0866 | >0.1 |
p_metals | −6.1435 | <0.01 | −118.8156 | <0.01 | 0.0518 | >0.1 |
fx_CNY | −6.1865 | <0.01 | −182.8249 | <0.01 | 0.1750 | >0.1 |
fx_RUB | −5.9000 | <0.01 | −151.7995 | <0.01 | 0.0399 | >0.1 |
Rio_Tinto | −6.5383 | <0.01 | −185.9790 | <0.01 | 0.0488 | >0.1 |
Alcoa | −5.1368 | <0.01 | −206.0026 | <0.01 | 0.1573 | >0.1 |
RMSE | MAE | N-RMSE | MASE | |
---|---|---|---|---|
BDMM-SS | 146.0506 | 98.3988 | 0.0681 | 1.2168 |
BDMM-SS-A | 110.6545 | 74.8306 | 0.0516 | 0.9254 |
BDMM-SS-H | 120.5796 | 77.9083 | 0.0562 | 0.9634 |
BDMM-SS-M | 122.4366 | 79.9203 | 0.0571 | 0.9883 |
BDMM-NR | 113.8516 | 81.6585 | 0.0531 | 1.0098 |
BDMM-NR-H | 115.3268 | 83.6339 | 0.0538 | 1.0343 |
BDMM-NR-M | 115.5588 | 83.0397 | 0.0539 | 1.0269 |
DMA | 103.0514 | 73.9686 | 0.0480 | 0.9147 |
DMS | 105.1728 | 75.8029 | 0.0490 | 0.9374 |
DMP | 103.6592 | 76.0264 | 0.0483 | 0.9402 |
DMA-1VAR | 104.5979 | 76.1900 | 0.0488 | 0.9422 |
DMS-1VAR | 105.6150 | 77.7138 | 0.0492 | 0.9610 |
BMA | 103.3669 | 75.3922 | 0.0482 | 0.9323 |
BMS | 103.1626 | 75.3931 | 0.0481 | 0.9323 |
BMP | 104.6967 | 77.2049 | 0.0488 | 0.9548 |
BMA-1VAR | 110.1101 | 78.8818 | 0.0513 | 0.9755 |
BMS-1VAR | 112.8305 | 80.7467 | 0.0526 | 0.9986 |
LASSO | 106.5336 | 75.3249 | 0.0497 | 0.9315 |
RIDGE | 105.1423 | 75.1496 | 0.0490 | 0.9293 |
EL-NET | 106.6874 | 75.8148 | 0.0497 | 0.9376 |
B-LASSO | 103.2737 | 74.5742 | 0.0481 | 0.9222 |
B-RIDGE | 103.2769 | 74.7000 | 0.0481 | 0.9238 |
LARS | 105.9409 | 75.1329 | 0.0494 | 0.9291 |
TVP | 116.5330 | 89.4348 | 0.0543 | 1.1060 |
TVP-FOR | 112.9689 | 84.2938 | 0.0527 | 1.0424 |
ARIMA | 109.1411 | 76.9269 | 0.0509 | 0.9513 |
NAIVE | 113.4765 | 80.8639 | 0.0529 | |
FUT-SIMPLE | 89.3698 | 62.7108 | 0.0417 | 0.7755 |
FUT-SPREAD | 88.9340 | 62.1025 | 0.0415 | 0.7680 |
HA | 412.0597 | 306.5365 | 0.1921 | 3.7908 |
HA-ROLL | 431.3150 | 306.8770 | 0.2011 | 3.7950 |
FUT-SPREAD Statistic | FUT-SPREAD p-Value | BDMM-SS-A Statistic | BDMM-SS-A p-Value | DMA Statistic | DMA p-Value | |
---|---|---|---|---|---|---|
BDMM-SS | 2.8352 | 0.0028 | 2.3765 | 0.0097 | 2.6824 | 0.0043 |
BDMM-SS-A | 1.6532 | 0.0507 | 1.4548 | 0.0745 | ||
BDMM-SS-H | 1.9960 | 0.0244 | 1.0990 | 0.1372 | 1.6107 | 0.0552 |
BDMM-SS-M | 2.1689 | 0.0163 | 1.2686 | 0.1038 | 1.7890 | 0.0384 |
BDMM-NR | 2.5172 | 0.0067 | 0.3245 | 0.3731 | 1.3740 | 0.0863 |
BDMM-NR-H | 2.6589 | 0.0046 | 0.4823 | 0.3153 | 1.5915 | 0.0574 |
BDMM-NR-M | 2.6154 | 0.0052 | 0.4820 | 0.3154 | 1.5204 | 0.0658 |
DMA | 1.5352 | 0.0640 | −1.4548 | 0.9255 | ||
DMS | 2.0453 | 0.0218 | −0.7672 | 0.7776 | 0.7592 | 0.2248 |
DMP | 1.7663 | 0.0402 | −1.0054 | 0.8414 | 0.2222 | 0.4123 |
DMA-1VAR | 2.0490 | 0.0216 | −0.8266 | 0.7948 | 0.5079 | 0.3063 |
DMS-1VAR | 2.1926 | 0.0154 | −0.6778 | 0.7503 | 0.7893 | 0.2159 |
BMA | 1.9797 | 0.0253 | −0.9506 | 0.8279 | 0.1068 | 0.4576 |
BMS | 2.0254 | 0.0228 | −0.9209 | 0.8203 | 0.0306 | 0.4878 |
BMP | 2.2205 | 0.0143 | −0.7355 | 0.7681 | 0.4519 | 0.3262 |
BMA-1VAR | 2.5783 | 0.0057 | −0.0647 | 0.5257 | 1.3109 | 0.0965 |
BMS-1VAR | 2.8562 | 0.0026 | 0.2591 | 0.3981 | 1.7349 | 0.0430 |
LASSO | 1.9072 | 0.0297 | −0.7262 | 0.7653 | 1.4656 | 0.0730 |
RIDGE | 1.7379 | 0.0427 | −0.9509 | 0.8280 | 0.8529 | 0.1979 |
EL-NET | 1.9279 | 0.0284 | −0.7005 | 0.7574 | 1.5423 | 0.0631 |
B-LASSO | 1.9496 | 0.0270 | −0.9554 | 0.8291 | 0.0706 | 0.4719 |
B-RIDGE | 1.8973 | 0.0304 | −0.9817 | 0.8357 | 0.0764 | 0.4696 |
LARS | 1.7662 | 0.0402 | −0.8308 | 0.7959 | 0.9469 | 0.1730 |
TVP | 2.9989 | 0.0017 | 0.6364 | 0.2630 | 1.9820 | 0.0251 |
TVP-FOR | 2.4348 | 0.0084 | 0.2701 | 0.3938 | 1.5100 | 0.0671 |
ARIMA | 1.8677 | 0.0324 | −0.1654 | 0.5655 | 0.8870 | 0.1886 |
NAIVE | 2.4360 | 0.0083 | 0.2945 | 0.3845 | 1.3396 | 0.0917 |
FUT-SIMPLE | 1.2551 | 0.1062 | −1.6325 | 0.9471 | −1.4954 | 0.9310 |
FUT-SPREAD | −1.6532 | 0.9493 | −1.5352 | 0.9360 | ||
HA | 4.6742 | 0.0000 | 4.6447 | 0.0000 | 4.6705 | 0.0000 |
HA-ROLL | 4.5022 | 0.0000 | 4.4755 | 0.0000 | 4.4990 | 0.0000 |
RMSE | MAE | N-RMSE | MASE | |
---|---|---|---|---|
BDMM-SS | 206.8595 | 142.5773 | 0.0957 | 1.4725 |
BDMM-SS-A | 209.1845 | 149.7094 | 0.0968 | 1.5461 |
BDMM-SS-H | 219.1199 | 158.5795 | 0.1014 | 1.6377 |
BDMM-SS-M | 217.7943 | 157.7649 | 0.1008 | 1.6293 |
BDMM-NR | 220.4677 | 161.5014 | 0.1020 | 1.6679 |
BDMM-NR-H | 219.0531 | 160.6152 | 0.1014 | 1.6588 |
BDMM-NR-M | 220.8676 | 161.8159 | 0.1022 | 1.6712 |
DMA | 218.9025 | 157.9856 | 0.1013 | 1.6316 |
DMS | 218.0156 | 159.3862 | 0.1009 | 1.6461 |
DMP | 218.8284 | 160.4063 | 0.1013 | 1.6566 |
DMA-1VAR | 219.4383 | 160.4648 | 0.1016 | 1.6572 |
DMS-1VAR | 218.5520 | 159.8007 | 0.1012 | 1.6504 |
BMA | 218.6148 | 159.3702 | 0.1012 | 1.6459 |
BMS | 219.7133 | 161.2518 | 0.1017 | 1.6653 |
BMP | 219.6996 | 161.3329 | 0.1017 | 1.6662 |
BMA-1VAR | 219.7482 | 161.0409 | 0.1017 | 1.6632 |
BMS-1VAR | 219.3107 | 160.6929 | 0.1015 | 1.6596 |
LASSO | 217.7136 | 158.5958 | 0.1008 | 1.6379 |
RIDGE | 217.8733 | 157.8599 | 0.1008 | 1.6303 |
EL-NET | 218.0318 | 158.8263 | 0.1009 | 1.6403 |
B-LASSO | 219.2751 | 160.0091 | 0.1015 | 1.6525 |
B-RIDGE | 218.5653 | 159.3973 | 0.1012 | 1.6462 |
LARS | 217.9196 | 158.2746 | 0.1009 | 1.6346 |
TVP | 226.3519 | 159.9796 | 0.1048 | 1.6522 |
TVP-FOR | 223.6009 | 158.2434 | 0.1035 | 1.6343 |
ARIMA | 134.7167 | 99.3532 | 0.0624 | 1.0261 |
NAIVE | 132.1674 | 96.8283 | 0.0612 | |
FUT-SIMPLE | 205.0920 | 148.4040 | 0.0949 | 1.5327 |
FUT-SPREAD | 204.3735 | 148.3078 | 0.0946 | 1.5317 |
HA | 420.2411 | 311.4823 | 0.1945 | 3.2169 |
HA-ROLL | 436.6985 | 311.4661 | 0.2021 | 3.2167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drachal, K.; Jędrzejewska, J. The Forecasting of Aluminum Prices: A True Challenge for Econometric Models. Comput. Sci. Math. Forum 2025, 11, 13. https://doi.org/10.3390/cmsf2025011013
Drachal K, Jędrzejewska J. The Forecasting of Aluminum Prices: A True Challenge for Econometric Models. Computer Sciences & Mathematics Forum. 2025; 11(1):13. https://doi.org/10.3390/cmsf2025011013
Chicago/Turabian StyleDrachal, Krzysztof, and Joanna Jędrzejewska. 2025. "The Forecasting of Aluminum Prices: A True Challenge for Econometric Models" Computer Sciences & Mathematics Forum 11, no. 1: 13. https://doi.org/10.3390/cmsf2025011013
APA StyleDrachal, K., & Jędrzejewska, J. (2025). The Forecasting of Aluminum Prices: A True Challenge for Econometric Models. Computer Sciences & Mathematics Forum, 11(1), 13. https://doi.org/10.3390/cmsf2025011013