Community Surveillance of MRSA and Staphylococcus aureus in Rural Portugal: The BI-STAPH Project—Phase 1: Sertã
Abstract
1. Introduction
- Analyze the geographic distribution of S. aureus within the Sertã municipality;
- Identify sociodemographic and environmental factors associated with colonization and potential dissemination of the bacterium;
- Characterize the main sources and contexts of MRSA dissemination in the community.
2. Materials and Methods
2.1. Inclusion Criteria
- Age ≥ 18 years;
- Permanent residence in one of the selected parishes.
2.2. Exclusion Criteria
- Individuals younger than 18 years;
- temporary residents;
- refusal to provide informed consent;
- acute upper respiratory infection at the time of sampling
2.3. Recruitment and Informed Consent Procedures
2.4. Variable Classification
- Age groups: 18–34 years, 35–59 years, ≥60 years (based on prior studies and the local population distribution).
- Occupational risk exposure: grouped into three categories according to potential occupational risk for S. aureus transmission, as described in the literature [20,21,22]. For example, healthcare workers and abattoir staff were considered high risk, teachers and farmers moderate risk, and office-based professions low risk.
- Antibiotic use: recent antibiotic use was defined as use within the past 12 months, consistent with previous surveillance studies. We recognize that shorter intervals (e.g., 3–6 months) may better capture selective pressure.
- Animal contact: classified as contact with domestic animals, non-domestic animals, or both.
2.5. Sample Collection Procedures
2.6. Laboratory Processing and Identification of S. aureus and MRSA
2.7. Statistical Analysis
2.8. Ethical Considerations
3. Results
3.1. Sample Characterization
3.2. Prevalence of Staphylococcus aureus and MRSA
3.3. Sociodemographic Analysis
- Despite a predominance of females in the overall sample, S. aureus colonization showed a similar distribution between sexes (51.7% in females vs. 48.3% in males).
- MRSA colonization was also evenly distributed between sexes (50% in each).
- The majority of S. aureus carriers (51.7%) belonged to the 35–59 years age group.
- MRSA cases were more frequently observed among individuals aged ≥ 60 years (64.3%).
3.4. Associated Factors
- Reported by 30.8% of the total sample.
- A slightly higher proportion of carriers was observed among smokers (40.3%), though this did not reach statistical significance (p > 0.05).
- Most S. aureus cases (72.4%) occurred in individuals employed in occupations classified as moderate occupational risk.
- MRSA cases were distributed as follows: 14.2% in low-risk professions, 28.6% in moderate-risk, and 57.2% in high-risk occupations.
- Daily contact with animals was reported by 75.8% of S. aureus carriers.
- All MRSA cases (100%) were found among individuals with daily contact with animals, predominantly domestic animals (89.3%).
- 57% of individuals colonized with MRSA reported recent antibiotic use (within the previous 12 months).
3.5. Statistical Analysis
3.6. Summary of Main Findings
- Overall prevalence of S. aureus: 19.9%
- Overall prevalence of MRSA: 4.8%
- Factors frequently associated with colonization:
- ○
- Daily contact with animals
- ○
- Moderate occupational risk
- ○
- Recent antibiotic use (for MRSA cases)
- ○
- Age ≥ 60 years (for MRSA cases)
- No statistically significant associations were identified.
4. Discussion
- The overall sample size, particularly the small number of MRSA carriers (n = 14), limited the statistical power to detect associations. This limitation must be considered when interpreting the findings. Future research should prioritize larger cohorts and multi-center collaborations to achieve greater statistical robustness.
- Another important limitation was the absence of molecular characterization of isolates (e.g., spa typing, SCCmec analysis). This precluded discrimination between healthcare-associated, community-associated, and livestock-associated MRSA. Future studies should prioritize genetic characterization to clarify strain origin and transmission dynamics.
- We did not collect information on participants’ comorbidities (e.g., diabetes, immunosuppression) or household size, both of which may influence colonization risk. These variables should be integrated into future community-based studies.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, J.B.; Barroso, A.P.D. Etiology and bacterial susceptibility to urinary tract infections|Etiologia e sensibilidade bacteriana em infecções do trato urinário. Rev. Port. Saúde Pública 2011, 29, 123–131. [Google Scholar] [CrossRef]
- McGuire, E.; Boyd, A.; Woods, K. Staphylococcus aureus Bacteremia. Clin. Infect. Dis. 2020, 71, 2765–2766. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Ghssein, G.; Ezzeddine, Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review. Biology 2022, 11, 1525. [Google Scholar] [CrossRef]
- Branco, M.C.; Coelho, P.; Rodrigues, F. Urinary tract infections in a single hospital in central Portugal, a 5-year analysis. Microbiol. Res. 2024, 15, 850–863. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, J.; Fu, P.; Wang, Y.X.; Fan, P.P.; Zhou, J.L.; Xiang, X.Q.; Shen, H.L.; Liu, T.Y.; Zhang, Y.Y.; et al. Epidemiological profile and antimicrobial resistance trends of Staphylococcus aureus in Chinese pediatric intensive care units from 2016 to 2022: A multi-center retrospective study. BMC Infect. Dis. 2025, 25, 298. [Google Scholar] [CrossRef]
- Rodrigues, F.; Coelho, P.; Mateus, S.; Caseiro, A.; Eideh, H.; Gonçalves, T.; Branco, M.C. Decoding Urinary Tract Infection Trends: A 5-Year Snapshot from Central Portugal. Clin. Pract. 2025, 15, 14. [Google Scholar] [CrossRef]
- Kaushik, A.; Kest, H.; Sood, M.; Steussy, B.W.; Thieman, C.; Gupta, S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024, 13, 76. [Google Scholar] [CrossRef]
- Khairullah, A.R.; Widodo, A.; Riwu, K.H.P.; Yanestria, S.M.; Moses, I.B.; Effendi, M.H.; Fauzia, K.A.; Fauziah, I.; Hasib, A.; Kusala, M.K.J.; et al. Spread of livestock-associated methicillin-resistant Staphylococcus aureus in poultry and its risks to public health: A comprehensive review. Open Vet. J. 2024, 14, 2116–2128. [Google Scholar] [CrossRef]
- van Duin, D.; Paterson, D.L. Multidrug-Resistant Bacteria in the Community: An Update. Infect. Dis. Clin. N. Am. 2020, 34, 709–722. [Google Scholar] [CrossRef]
- Tasneem, U.; Mehmood, K.; Majid, M.; Ullah, S.R.; Andleeb, S. Methicillin resistant Staphylococcus aureus: A brief review of virulence and resistance. JPMA J. Pak. Med. Assoc. 2022, 72, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Easton, P.M.; Marwick, C.A.; Williams, F.L.R.; Stringer, K.; McCowan, C.; Davey, P.; Nathwani, D. A survey on public knowledge and perceptions of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2009, 63, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Edwin Erayil, S.; Palzer, E.; Kline, S. An evaluation of risk factors for Staphylococcus aureus colonization in a pre-surgical population. Access Microbiol. 2022, 4, 000316. [Google Scholar] [CrossRef]
- Hu, X.; Hu, K.; Liu, Y.; Zeng, L.; Hu, N.; Chen, X.; Zhang, W. Risk factors for methicillin-resistant Staphylococcus aureus colonization and infection in patients with human immunodeficiency virus infection: A systematic review and meta-analysis. J. Int. Med. Res. 2022, 50, 3000605211063019. [Google Scholar] [CrossRef]
- Dai, C.; Ji, W.; Zhang, Y.; Huang, W.; Wang, H.; Wang, X. Molecular characteristics, risk factors, and clinical outcomes of methicillin-resistant Staphylococcus aureus infections among critically ill pediatric patients in Shanghai, 2016–2021. Front. Pediatr. 2024, 12, 1457645. [Google Scholar] [CrossRef]
- Ferreira, C.; Costa, S.S.; Serrano, M.; Oliveira, K.; Trigueiro, G.; Pomba, C.; Couto, I. Clonal Lineages, Antimicrobial Resistance, and PVL Carriage of Staphylococcus aureus Associated to Skin and Soft-Tissue Infections from Ambulatory Patients in Portugal. Antibiotics 2021, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.T.; Paulo, A.C.; de Lencastre, H.; Sá-Leão, R. Evaluation of Methicillin-Resistant Staphylococcus aureus Carriage in the Elderly in Portugal Using Selective Enrichment Followed by Quantitative Real-Time PCR. Microb. Drug Resist. 2022, 28, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Monteiro, A.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Poeta, P. MRSA in Humans, Pets and Livestock in Portugal: Where We Came from and Where We Are Going. Pathogens 2022, 11, 1110. [Google Scholar] [CrossRef]
- Instituto Nacional de Estatística. Censos 2021–Resultados Definitivos. Available online: https://censos.ine.pt/xportal/xmain?xpgid=censos21_main&xpid=CENSOS21&xlang=pt (accessed on 6 May 2025).
- van Bijnen, E.M.; Paget, J.; de Lange-de Klerk, E.S.; den Heijer, C.D.; Versporten, A.; Stobberingh, E.E.; Goossens, H.; Schellevis, F.G.; collaboration with the APRES Study Team. Antibiotic Exposure and Other Risk Factors for Antimicrobial Resistance in Nasal Commensal Staphylococcus aureus: An Ecological Study in 8 European Countries. PLoS ONE 2015, 10, e0135094. [Google Scholar] [CrossRef] [PubMed]
- Mehraj, J.; Witte, W.; Akmatov, M.K.; Layer, F.; Werner, G.; Krause, G. Epidemiology of Staphylococcus aureus Nasal Carriage Patterns in the Community. Curr. Top. Microbiol. Immunol. 2016, 398, 55–87. [Google Scholar] [CrossRef] [PubMed]
- Boisset, S.; Saadatian-Elahi, M.; Landelle, C.; Bes, M.; Gustave, C.A.; Tristan, A.; Fassier, J.B.; Laurent, F.; Grando, J.; Vandenesch, F.; et al. Unexpected categories at risk of S. aureus nasal carriage among hospital workers. Int. J. Hyg. Environ. Health 2019, 222, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Hasanpour, A.H.; Sepidarkish, M.; Mollalo, A.; Ardekani, A.; Almukhtar, M.; Mechaal, A.; Hosseini, S.R.; Bayani, M.; Javanian, M.; Rostami, A. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023, 12, 4. [Google Scholar] [CrossRef]
- Piewngam, P.; Otto, M. Staphylococcus aureus colonisation and strategies for decolonisation. Lancet Microbe 2024, 5, e606–e618. [Google Scholar] [CrossRef]
- Portais, A.; Gallouche, M.; Pavese, P.; Caspar, Y.; Bosson, J.L.; Astagneau, P.; Pailhé, R.; Tonetti, J.; Duval, B.R.; Landelle, C. Staphylococcus aureus screening and preoperative decolonisation with Mupirocin and Chlorhexidine to reduce the risk of surgical site infections in orthopaedic surgery: A pre-post study. Antimicrob. Resist. Infect. Control 2024, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Vandendriessche, S.; Vanderhaeghen, W.; Soares, F.V.; Hallin, M.; Catry, B.; Hermans, K.; Butaye, P.; Haesebrouck, F.; Struelens, M.J.; Denis, O. Prevalence, risk factors and genetic diversity of methicillin-resistant Staphylococcus aureus carried by humans and animals across livestock production sectors. J. Antimicrob. Chemother. 2013, 68, 1510–1516. [Google Scholar] [CrossRef]
- Crespo-Piazuelo, D.; Lawlor, P.G. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) prevalence in humans in close contact with animals and measures to reduce on-farm colonisation. Ir. Vet. J. 2021, 74, 21. [Google Scholar] [CrossRef]
- Leibler, J.H.; Jordan, J.A.; Brownstein, K.; Lander, L.; Price, L.B.; Perry, M.J. Staphylococcus aureus Nasal Carriage Among Beefpacking Workers in a Midwestern United States Slaughterhouse. PLoS ONE 2016, 11, e0148789. [Google Scholar] [CrossRef]
- Obanda, B.A.; Gibbons, C.L.; Fèvre, E.M.; Bebora, L.; Gitao, G.; Ogara, W.; Wang, S.H.; Gebreyes, W.; Ngetich, R.; Blane, B.; et al. Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics 2022, 11, 1726. [Google Scholar] [CrossRef]
- Abdullahi, I.N.; Lozano, C.; Saidenberg, A.B.S.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Comparative review of the nasal carriage and genetic characteristics of Staphylococcus aureus in healthy livestock: Insight into zoonotic and anthroponotic clones. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2023, 109, 105408. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Peng, Y.; Bai, C.; Zhang, T.; Zheng, H.; Wang, X.; Ye, J.; Ye, X.; Li, Y.; Yao, Z. Prevalence, Influencing Factors, Antibiotic Resistance, Toxin and Molecular Characteristics of Staphylococcus aureus and MRSA Nasal Carriage among Diabetic Population in the United States, 2001–2004. Pol. J. Microbiol. 2017, 66, 439–448. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.; Lin, S.; Huang, M.; Dong, H. The Association Between Antibiotics and Community-Associated Staphylococcus aureus Colonization in the United States Population: Analysis of the National Health and Nutrition Examination Survey (NHANES). Medicine 2022, 101, e31702. [Google Scholar] [CrossRef] [PubMed]
- Tillotson, G.S. Trojan Horse Antibiotics-A Novel Way to Circumvent Gram-Negative Bacterial Resistance? Infect. Dis. Res. Treat. 2016, 9, 45–52. [Google Scholar] [CrossRef] [PubMed]
Variable | n (%) |
---|---|
Sex (female) | 172 (58.9%) |
Sex (male) | 120 (41.1%) |
Age 18–34 | 70 (23.9%) |
Age 35–59 | 146 (50%) |
Age ≥60 | 76 (26.1%) |
Occupational risk: low | n = 80 (27.4%) |
Occupational risk: moderate | n = 140 (47.9%) |
Occupational risk: high | n = 72 (24.7%) |
Animal contact: domestic | n = 110 (38%) |
Animal contact: livestock | n = 40 (14%) |
Animal contact: both | n = 70 (24%) |
Variable | S. aureus (%) | MRSA (%) | |
---|---|---|---|
Overall prevalence | 19.9% | 4.8% | Total sample |
Female (n = 172) | 17.4% | 4.1% | Prevalence in subgroup |
Male (n = 120) | 23.3% | 5.8% | Prevalence in subgroup |
Age 18–34 | 15.7% | 1.4% | Prevalence in subgroup |
Age 35–59 | 21.9% | 4.1% | Prevalence in subgroup |
Age ≥ 60 | 19.7% | 9.2% | Prevalence in subgroup |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero, A.; Ferreira, F.; Coelho, P.; Belo, J.; Metello, J.; Santos, C.; Mateus, S.; Castelo-Branco, M.; Rodrigues, F.J.B. Community Surveillance of MRSA and Staphylococcus aureus in Rural Portugal: The BI-STAPH Project—Phase 1: Sertã. Bacteria 2025, 4, 54. https://doi.org/10.3390/bacteria4040054
Cordero A, Ferreira F, Coelho P, Belo J, Metello J, Santos C, Mateus S, Castelo-Branco M, Rodrigues FJB. Community Surveillance of MRSA and Staphylococcus aureus in Rural Portugal: The BI-STAPH Project—Phase 1: Sertã. Bacteria. 2025; 4(4):54. https://doi.org/10.3390/bacteria4040054
Chicago/Turabian StyleCordero, Ainhoa, Francisco Ferreira, Patrícia Coelho, João Belo, João Metello, Carina Santos, Sónia Mateus, Miguel Castelo-Branco, and Francisco José Barbas Rodrigues. 2025. "Community Surveillance of MRSA and Staphylococcus aureus in Rural Portugal: The BI-STAPH Project—Phase 1: Sertã" Bacteria 4, no. 4: 54. https://doi.org/10.3390/bacteria4040054
APA StyleCordero, A., Ferreira, F., Coelho, P., Belo, J., Metello, J., Santos, C., Mateus, S., Castelo-Branco, M., & Rodrigues, F. J. B. (2025). Community Surveillance of MRSA and Staphylococcus aureus in Rural Portugal: The BI-STAPH Project—Phase 1: Sertã. Bacteria, 4(4), 54. https://doi.org/10.3390/bacteria4040054