Genetic Characterization of Salmonella and Analysis of Ciprofloxacin Resistance Using Sanger Technique in Romania, 2024
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Serotyping by Agglutination
2.3. Serogroup Clustering Through Proteomic Fingerprinting
2.4. Antimicrobial Susceptibility Testing
2.5. MLST and gyrA Sanger Sequencing
3. Results
4. Discussion
5. Study Limitations
6. Challenges and Solutions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MLST | Multi-Locus Sequence Typing |
WGS | Whole-Genome Sequencing |
LNS | Laboratoire National de Santé |
EU | European Union |
ESBL | Extended-Spectrum β-lactamases |
NTS | Non-Typhoid Salmonella |
iNTS | Invasive Non-Typhoid Infections |
FTIR | Fourier Transform Infrared Spectroscopy |
NIPH | National Institute of Public Health Romania |
AMR | Antimicrobial Resistance |
PANDOMIC | Plan using Integrated Genomic Surveillance Programs |
ST | Sequence Type |
RCPH Iasi | Regional Public Health Center Iasi |
TSA | Tryptone Soy Agar |
NIPHL | National Public Health Laboratory Bucharest |
HTS | High-Throughput Sequencing |
IRBT | IR Biotyper |
PFGE | Pulsed-Field Gel Electrophoresis |
OMA | Official Methods of Analysis |
References
- Ayuti, S.R.; Khairullah, A.R.; Al-Arif, M.A.; Lamid, M.; Warsito, S.H.; Moses, I.B.; Hermawan, I.P.; Silaen, O.S.M.; Lokapirnasari, W.P.; Aryaloka, S.; et al. Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Vet. J. 2024, 14, 1313–1329. [Google Scholar] [CrossRef]
- Fàbrega, A.; Vila, J. Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, e07666. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Salmonellosis. In ECDC. Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2024; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/SALM_AER_2022_Report.pdf (accessed on 10 January 2025).
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Marchello, C.S.; Birkhold, M.; Crump, J.A. Vacc-iNTS consortium collaborators. Complications and mortality of non-typhoidal salmonella invasive disease: A global systematic review and meta-analysis. Lancet Infect Dis. 2022, 22, 692–705. [Google Scholar] [CrossRef]
- Aung, K.T.; Khor, W.C.; Ong, K.H.; Tan, W.L.; Wong, Z.N.; Oh, J.Q.; Wong, W.K.; Tan, B.Z.Y.; Maiwald, M.; Tee, N.W.S.; et al. Characterisation of Salmonella Enteritidis ST11 and ST1925 Associated with Human Intestinal and Extra-Intestinal Infections in Singapore. Int. J. Environ. Res. Public Health 2022, 19, 5671. [Google Scholar] [CrossRef]
- Luo, L.; Payne, M.; Wang, Q.; Kaur, S.; Rathnayake, I.U.; Graham, R.; Gall, M.; Draper, J.; Martinez, E.; Octavia, S.; et al. Genomic Epidemiology and Multilevel Genome Typing of Australian Salmonella enterica Serovar Enteritidis. Microbiol. Spectr. 2023, 11, e0301422. [Google Scholar] [CrossRef]
- Pagani, G.; Parenti, M.; Franzetti, M.; Pezzati, L.; Bassani, F.; Osnaghi, B.; Vismara, L.; Pavia, C.; Mirri, P.; Rusconi, S. Invasive and Non-Invasive Human Salmonellosis Cases Admitted between 2015 and 2021 in Four Suburban Hospitals in the Metropolitan Area of Milan (Italy): A Multi-Center Retrospective Study. Pathogens 2023, 12, 1298. [Google Scholar] [CrossRef]
- Lamichhane, B.; Mawad, A.M.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H.; et al. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Akiba, M.; Kusumoto, M.; Iwata, T. Rapid identification of Salmonella enterica serovars, Typhimurium, Choleraesuis, Infantis, Hadar, Enteritidis, Dublin and Gallinarum, by multiplex PCR. J. Microbiol. Methods. 2011, 85, 9–15. [Google Scholar] [CrossRef]
- Han, M.; Chae, M.; Lee, S.; No, K.; Han, S. Strain typing and antimicrobial susceptibility of Salmonella enterica Albany isolates from duck farms in South Korea. Heliyon 2024, 10, e27402. [Google Scholar] [CrossRef]
- Rakovitsky, N.; Frenk, S.; Kon, H.; Schwartz, D.; Temkin, E.; Solter, E.; Paikin, S.; Cohen, R.; Schwaber, M.J.; Carmeli, Y.; et al. Fourier Transform Infrared Spectroscopy Is a New Option for Outbreak Investigation: A Retrospective Analysis of an Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae Outbreak in a Neonatal Intensive Care Unit. J. Clin. Microbiol. 2020, 58, e00098-20. [Google Scholar] [CrossRef]
- Cordovana, M.; Mauder, N.; Join-Lambert, O.; Gravey, F.; LeHello, S.; Auzou, M.; Pitti, M.; Zoppi, S.; Buhl, M.; Steinmann, J.; et al. Machine learning-based typing of Salmonella enterica O-serogroups by the Fourier-Transform Infrared (FTIR) Spectroscopy-based IR Biotyper system. J. Microbiol. Methods 2022, 201, 106564. [Google Scholar] [CrossRef]
- Dinkelacker, A.G.; Vogt, S.; Oberhettinger, P.; Mauder, N.; Rau, J.; Kostrzewa, M.; Rossen, J.W.A.; Autenrieth, I.B.; Peter, S.; Liese, J. Typing and Species Identification of Clinical Klebsiella Isolates by Fourier Transform Infrared Spectroscopy and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2018, 56, e00843-18. [Google Scholar] [CrossRef]
- Park, S.; Ryoo, N. Comparative analysis of IR-Biotyper, MLST, cgMLST, and WGS for clustering of vancomycin-resistant Enterococcus faecium in a neonatal intensive care unit. Microbiol. Spectr. 2024, 12, e0411923. [Google Scholar] [CrossRef] [PubMed]
- Preisner, O.; Guiomar, R.; Machado, J.; Menezes, J.C.; Lopes, J.A. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types. Appl. Environ. Microbiol. 2010, 76, 3538–3544. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, R.; Elhaghi, P.; Shokoohizadeh, L. Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals. Iran. J. Med. Sci. 2017, 42, 443–448. [Google Scholar] [PubMed]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, W.; Li, C.; Liu, X.; Zhu, L.; Chen, L.; Yang, B. Serotyping, MLST, and Core Genome MLST Analysis of Salmonella enterica From Different Sources in China During 2004–2019. Front. Microbiol. 2021, 12, 688614. [Google Scholar] [CrossRef]
- Lee, K.-M.; Runyon, M.; Herrman, T.J.; Phillips, R.; Hsieh, J. Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control 2015, 47, 264–276. [Google Scholar] [CrossRef]
- MALDI-TOF/TOF. The Smarter Way to Protein Characterization, Glycoprotein Analysis, QC Applications, Polymer Analysis, Ultra-High Throughput Screening and MS Imaging. Available online: https://www.bruker.com/en/products-and-solutions/mass-spectrometry/maldi-tof.html (accessed on 6 November 2024).
- MALDI Biotyper® for Microbial Research. Changing Microbiology By Faciliating Research. Available online: https://www.bruker.com/en/applications/microbiology-and-diagnostics/microbiological-research/maldi-biotyper-for-microbial-research.html (accessed on 6 November 2024).
- EUCAST (European Committee on Antimicrobial Susceptibility Testing). Available online: www.sfm-microbiologie.org (accessed on 6 November 2024).
- Kidgell, C.; Reichard, U.; Wain, J.; Linz, B.; Torpdahl, M.; Dougan, G.; Achtman, M. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect. Genet. Evol. 2002, 2, 39–45. [Google Scholar] [CrossRef]
- Weigel, L.M.; Steward, C.D.; Tenover, F.C. gyrA mutations associated with fluoroquinolone resistance in eight species of Enterobacteriaceae. Antimicrob. Agents Chemother. 1998, 42, 2661–2667. [Google Scholar] [CrossRef]
- Crossley, B.M.; Bai, J.; Glaser, A.; Maes, R.; Porter, E.; Killian, M.L.; Clement, T.; Toohey-Kurth, K. Guidelines for Sanger sequencing and molecular assay monitoring. J. Veter-Diagn. Investig. 2020, 32, 767–775. [Google Scholar] [CrossRef]
- Gao, A.; Fischer-Jenssen, J.; Slavic, D.; Rutherford, K.; Lippert, S.; Wilson, E.; Chen, S.; Leon-Velarde, C.G.; Martos, P. Rapid identification of Salmonella serovars Enteritidis and Typhimurium using whole cell matrix assisted laser desorption ionization -Time of flight mass spectrometry (MALDI-TOF MS) coupled with multivariate analysis and artificial intelligence. J. Microbiol. Methods 2023, 213, 106827. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; He, Q.; Tang, Y.; Wen, W.; Chen, L.; Li, Y.; Yi, C.; Fu, B. Multi-locus sequence and drug resistance analysis of Salmonella infection in children with diarrhea in Guangdong to identify the dominant ST and cause of antibiotic-resistance. Exp. Ther. Med. 2022, 24, 678. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, C.; Ye, J.; Octavia, S.; Wang, H.; Dunbar, S.A.; Jin, D.; Tang, Y.W.; Lan, R. Comparison of xMAP Salmonella Serotyping Assay With Traditional Serotyping and Discordance Resolution by Whole Genome Sequencing. Front. Cell. Infect. Microbiol. 2020, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Popa, G.L.; Papa, M.I. Salmonella spp. infection—A continuous threat worldwide. Germs 2021, 11, 88–96. [Google Scholar] [CrossRef]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Napoleoni, M.; Ceschia, S.; Mitri, E.; Beneitez, E.E.; Silenzi, V.; Staffolani, M.; Rocchegiani, E.; Blasi, G.; Gurian, E. Identification of Salmonella Serogroups and Distinction Between Typhoidal and Non-Typhoidal Salmonella Based on ATR-FTIR Spectroscopy. Microorganisms 2024, 12, 2318. [Google Scholar] [CrossRef]
- Chen, J.; Ed-Dra, A.; Zhou, H.; Wu, B.; Zhang, Y.; Yue, M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front. Public Health 2022, 10, 988317. [Google Scholar] [CrossRef]
- Tewolde, R.; Dallman, T.; Schaefer, U.; Sheppard, C.L.; Ashton, P.; Pichon, B.; Ellington, M.; Swift, C.; Green, J.; Underwood, A. MOST: A modified MLST typing tool based on short read sequencing. PeerJ 2016, 4, e2308. [Google Scholar] [CrossRef] [PubMed]
- Sima, C.M.; Buzilă, E.R.; Trofin, F.; Păduraru, D.; Luncă, C.; Duhaniuc, A.; Dorneanu, O.S.; Nastase, E.V. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr. Issues Mol. Biol. 2024, 4, 7447–7472. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Simon, S.; Tille, A.; Fruth, A.; Flieger, A. Genome-based Salmonella serotyping as the new gold standard. Sci. Rep. 2020, 10, 4333. [Google Scholar] [CrossRef] [PubMed]
- Gray, V.L.; O’Reilly, M.; Müller, C.T.; Watkins, I.D.; Lloyd, D. Low tyrosine content of growth media yields a flagellate Salmonella enterica serovar Typhimurium. Microbiology 2006, 152, 23–28. [Google Scholar] [CrossRef]
- Enright, M.C.; Spratt, B.G. Multilocus sequence typing. Trends Microbiol. 1999, 7, 482–487. [Google Scholar] [CrossRef]
- Ferrari Rafaela, G.; Panzenhagen Pedro, H.N.; Conte-Junior Carlos, A. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front. Microbiol. 2017, 8, 2587. [Google Scholar] [CrossRef]
- Sabat, A.J.; Budimir, A.; Nashev, D.; Sá-Leão, R.; van Dijl, J.M.; Laurent, F.; Grundmann, H.; Friedrich, A.W. ESCMID Study Group of Epidemiological Markers (ESGEM). Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro. Surveill. 2013, 18, 20380. [Google Scholar] [CrossRef]
- Pearce, M.E.; Alikhan, N.F.; Dallman, T.J.; Zhou, Z.; Grant, K.; Maiden, M.C.J. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int. J. Food Microbiol. 2018, 274, 1–11. [Google Scholar] [CrossRef]
- Uribe, G.; Salipante, S.J.; Curtis, L.; Lieberman, J.A.; Kurosawa, K.; Cookson, B.T.; Hoogestraat, D.; Stewart, M.K.; Olmstead, T.; Bourassa, L. Evaluation of Fourier transform-infrared spectroscopy (FT-IR) as a control measure for nosocomial outbreak investigations. J. Clin. Microbiol. 2023, 61, e00347-23. [Google Scholar] [CrossRef]
- Martak, D.; Valot, B.; Sauget, M.; Cholley, P.; Thouverez, M.; Bertrand, X.; Hocquet, D. Fourier-transform infrared spectroscopy can quickly type Gram-negative bacilli responsible for hospital outbreaks. Front. Microbiol. 2019, 10, 1440. [Google Scholar] [CrossRef]
- Vogt, S.; Löffler, K.; Dinkelacker, A.G.; Bader, B.; Autenrieth, I.B.; Peter, S.; Liese, J. Fourier-transform infrared (FTIR) spectroscopy for typing of clinical Enterobacter cloacae complex isolates. Front. Microbiol. 2019, 10, 2582. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Zhao, J.; Gan, X.; Wang, J.; Zhang, X.; Cui, S.; Xia, S.; Hu, Y.; Yan, S.; Wang, J.; et al. Emergence and Diversity of Salmonella enterica Serovar Indiana Isolates with Concurrent Resistance to Ciprofloxacin and Cefotaxime from Patients and Food-Producing Animals in China. Antimicrob. Agents Chemother. 2016, 60, 3365–3371. [Google Scholar] [CrossRef]
- Vidovic, S.; An, R.; Rendahl, A. Molecular and Physiological Characterization of Fluoroquinolone-Highly Resistant Salmonella Enteritidis Strains. Front. Microbiol. 2019, 10, 729. [Google Scholar] [CrossRef]
- Chen, K.; Yang, C.; Dong, N.; Xie, M.; Ye, L.; Chan, E.W.C.; Chen, S. Evolution of Ciprofloxacin Resistance-Encoding Genetic Elements in Salmonella. mSystems 2022, 7, e0044922. [Google Scholar] [CrossRef]
- Vakili, S.; Haeili, M.; Feizi, A.; Moghaddasi, K.; Omrani, M.; Ghodousi, A.; Cirillo, D.M. Whole-genome sequencing-based characterization of Salmonella enterica Serovar Enteritidis and Kentucky isolated from laying hens in northwest of Iran, 2022–2023. Gut Pathog. 2025, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Xu, Z.; Gao, H.; Zhang, D. Overview of the development of quinolone resistance in Salmonella species in China, 2005–2016. Infect. Drug Resist. 2018, 11, 267–274. [Google Scholar] [CrossRef] [PubMed]
Crt. | Sample ID | Antigenic Formula by Screening | Presumptive Classification | Biotyper Result | MLST Ridom Profile aroC/snaN/hemD/hisD/purE/sucA/thrA | Ridom and Enterobase ST | Enterobase Serotype | Kauffman White O Antigenic Formula |
---|---|---|---|---|---|---|---|---|
1 | 232166 | OMA | Salmonella enterica OMA | 0:4 | ?/63/?/16/?/15/? | NA | NA | NA |
2 | 232143 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
3 | 232126 | OMB:0:6,7,8:r | Salmonella Infantis | 0:7 | 117/135/21/12/76/162/38 | ST1941 | Livingstone | 6,7,14 |
4 | 232193 | OMB:0:6,7,8:r | Salmonella Infantis | 0:7 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
5 | 232190 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
6 | 232189 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
7 | 232090 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
8 | 232181 | OMB:0:6,7,8:r | Salmonella Infantis | 0:7 | 17/18/22/17/5/21/19 | ST32 | Infantis | 6,7,14 |
9 | 232147 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
10 | 232144 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
11 | 232097 | OMA:09:m | Salmonella Enteritidis | 0:4 | 10/7/12/9/5/9/2 | ST19 | Typhimurium | 1,4, [5],12 |
12 | 232120 | OMA:04:i | Salmonella Typhimurium | 0:4 | 10/7/12/9/5/9/2 | ST19 | Typhimurium | 1,4, [5],12 |
13 | 232187 | OMA:09:m | Salmonella Enteritidis | 0:9 | 5/2/3/7/6/6/11 | ST11 | Enteritidis | 1,9,12 |
14 | 232194 | OMA:04:i | Salmonella Typhimurium | 0:4 | 10/7/12/9/5/9/2 | ST19 | Typhimurium | 1,4, [5],12 |
15 | 232128 | OMB:0:6,7,8:r | Salmonella Infantis | 0.7 | 117/135/21/12/76/162/38 | ST1941 | Livingstone | 6,7,14 |
16 | 232191 | OMB:0:6,7,8:r | Salmonella Infantis | 0:7 | 43/41/16/13/12/13/4 | ST195 | Montevideo | 6,7,14 |
17 | 232086 | OMB:0:6,7,8:r | Salmonella Infantis | 0:7 | 17/18/22/17/5/21/19 | ST32 | Infantis | 6,7,14 |
18 | 232168 | OMB | Salmonella spp. OMB | 0:8 | 2/59/23/64/38/61/12 | ST142 | Bovismorbificans | 6,8,20 |
19 | 232107 | OMA:04:i | Salmonella Typhimurium | 0:4 | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzilă, E.R.; Gatej, R.; Trifan, C.; Vremera, T.; Leustean, M.; David, A.; Bosogea, D.C.; Barbu, G.; Gatea, A.; Ilie, C.; et al. Genetic Characterization of Salmonella and Analysis of Ciprofloxacin Resistance Using Sanger Technique in Romania, 2024. Bacteria 2025, 4, 43. https://doi.org/10.3390/bacteria4030043
Buzilă ER, Gatej R, Trifan C, Vremera T, Leustean M, David A, Bosogea DC, Barbu G, Gatea A, Ilie C, et al. Genetic Characterization of Salmonella and Analysis of Ciprofloxacin Resistance Using Sanger Technique in Romania, 2024. Bacteria. 2025; 4(3):43. https://doi.org/10.3390/bacteria4030043
Chicago/Turabian StyleBuzilă, Elena Roxana, Raluca Gatej, Cristina Trifan, Teodora Vremera, Mihaela Leustean, Adina David, Daniela Cosmina Bosogea, Georgiana Barbu, Adina Gatea, Ciprian Ilie, and et al. 2025. "Genetic Characterization of Salmonella and Analysis of Ciprofloxacin Resistance Using Sanger Technique in Romania, 2024" Bacteria 4, no. 3: 43. https://doi.org/10.3390/bacteria4030043
APA StyleBuzilă, E. R., Gatej, R., Trifan, C., Vremera, T., Leustean, M., David, A., Bosogea, D. C., Barbu, G., Gatea, A., Ilie, C., & Iancu, L. S. (2025). Genetic Characterization of Salmonella and Analysis of Ciprofloxacin Resistance Using Sanger Technique in Romania, 2024. Bacteria, 4(3), 43. https://doi.org/10.3390/bacteria4030043