Negative Impact of a Disproportionally Elevated Level of Dietary 25-Hydroxycholecalciferol on the Performance and Meat Yield of Ross 708 Broilers †
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatment Layout
2.2. Performance, Meat Yield, and Serum 25OHD3 Concentration
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Matos, R. Calcium metabolism in birds. Vet. Clin. N Am. Exot. Anim. Pract. 2008, 11, 59–82. [Google Scholar] [CrossRef]
- Shojadoost, B.; Behboudi, S.; Villanueva, A.I.; Brisbin, J.T.; Ashkar, A.A.; Sharif, S. Vitamin D3 modulates the function of chicken macrophages. Res. Vet. Sci. 2015, 100, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Macklin, K.S.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently challenged with coccidiosis: II. Immunological and inflammatory responses and small intestine histomorphology. Animals 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Mousstaaid, A.; Williams, C.J.; Deines, J.; Poudel, S.; Poudel, I.; Elliott, K.E.C.; Walters, E.R.; Forcier, N.; Peebles, E.D. In ovo administration of the Marek’s Disease vaccine in conjunction with 25-hydroxyvitamin D3 and its subsequent effects on the performance and immunity-related characteristics of Ross 708 broiler hatchlings. Poult. Sci. 2024, 103, 103199. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Levy, A.W.; Peebles, E.D. Enhancements in the expressions of genes associated with the immunity, muscle growth, and antioxidant activity of 14 d broilers in response to the in ovo injection of the Marek’s Disease vaccine alone or in conjunction with the in ovo and dietary supplemental administration of 25-hydroxycholecalciferol. Poult. Sci. 2024, 103, 104372. [Google Scholar]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently fed commercial or calcium and phosphorous-restricted diets: II. Immunity and small intestine morphology. Poult. Sci. 2021, 100, 101240. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Macklin, K.S.; Zhang, L.; Mousstaaid, A.; Poudel, S.; Poudel, I.; Peebles, E.D. Improvement in the immunity- and vitamin D3 activity-related gene expression of coccidiosis-challenged Ross 708 broilers in response to the in ovo injection of 25-hydroxyvitamin D3. Animals 2022, 12, 2517. [Google Scholar] [CrossRef]
- Morris, A.; Shanmugasundaram, R.; Lilburn, M.S.; Selvaraj, R.K. 25-Hydroxycholecalciferol supplementation improves growth performance and decreases inflammation during an experimental lipopolysaccharide injection. Poult. Sci. 2014, 93, 1951–1956. [Google Scholar] [CrossRef]
- Morris, A.; Selvaraj, R.K. In vitro 25-hydroxycholecalciferol treatment of lipopolysaccharide-stimulated chicken macrophages increases nitric oxide production and mRNA of interleukin-1 beta and 10. Vet. Immunol. Immunopathol. 2014, 161, 265–270. [Google Scholar] [CrossRef]
- Morris, A.; Shanmugasundaram, R.; McDonald, J.; Selvaraj, R.K. Effect of in vitro and in vivo 25-hydroxyvitamin D treatment on macrophages, T cells, and layer chickens. J. Anim. Sci. 2015, 93, 2894–2903. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Morris, A.; Selvaraj, R.K. Effect of 25-hydroxycholecalciferol supplementation on turkey performance and immune cell parameters in a coccidial infection model. Poult. Sci. 2019, 98, 1127–1133. [Google Scholar] [CrossRef]
- Gómez-Verduzco, G.; Morales-López, R.; Avila-Gozàlez, E. Use of 25-hydroxycholecalciferol in diets of broiler chickens: Effects on growth performance, immunity and bone calcification. J. Poult. Sci. 2013, 50, 60–64. [Google Scholar] [CrossRef]
- Fritts, C.A.; Erf, G.F.; Bersi, T.K.; Waldroup, P.W. Effect of source and level of vitamin D on immune function in growing broilers. J. Appl. Poult. Res. 2004, 13, 263–273. [Google Scholar] [CrossRef]
- Fritts, C.A.; Waldroup, P.W. Effect of source and level of vitamin D on live performance and bone development in growing broilers. J. Appl. Poult. Res. 2003, 12, 45–52. [Google Scholar] [CrossRef]
- Fritts, C.A.; Waldroup, P.W. Comparison of cholecalciferol and 25-hydroxycholecalciferol in broiler diets designed to minimize phosphorus excretion. J. Appl. Poult. Res. 2005, 14, 156–166. [Google Scholar] [CrossRef]
- Xu, H.; Hu, Z.; Lu, Y.; Jiang, Y.; Li, D.; Lei, B.; Du, R.; Yang, C.; Zhang, Z.; Qiu, M.; et al. Improvement in the early growth, immune system and tibia development of broilers in response to the in ovo injection of 25-hydroxyvitamin D3. J. Appl. Anim. Res. 2023, 51, 265–275. [Google Scholar] [CrossRef]
- Chen, C.; White, D.L.; Marshall, B.; Kim, W.K. Role of 25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 in chicken embryo osteogenesis, adipogenesis, myogenesis, and vitamin D3 metabolism. Front. Physiol. 2021, 12, 637629. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Mousstaaid, A.; Williams, C.J.; Deines, J.; Poudel, S.; Poudel, I.; Walters, E.R.; Levy, A.W.; Peebles, E.D. Effects of the in ovo administration of the Marek’s Disease Vaccine alone or in combination with the supplemental in ovo and dietary administration of 25-hydroxyvitamin D3 on the performance, meat yield, and incidence of woody breast myopathy in Ross 708 broilers. Animals 2024, 14, 1308. [Google Scholar]
- Fatemi, S.A.; Levy, A.W.; Peebles, E.D. The expressions of the immunity- and muscle development-related genes of 40-day-old broilers are promoted in response to the in ovo and dietary supplemental administration of calcidiol in conjunction with the in ovo administration of Marek’s Disease vaccine. Animals 2024, 15, 10. [Google Scholar]
- Yarger, J.G.; Quarles, C.L.; Hollis, B.W.; Gray, R.W. Safety of 25-hydroxycholecalciferol as a source of cholecalciferol in poultry rations. Poult. Sci. 1995, 74, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.H.; Kerr, J.M.; Gray, R.W. 25-hydroxycholecalciferol in poultry nutrition. Poult. Sci. 1995, 74, 1919–1934. [Google Scholar] [CrossRef]
- Vignale, K.; Greene, E.S.; Caldas, J.V.; England, J.; Boonsinchai, N.; Sodsee, P.; Pollock, E.D.; Dridi, S.; Coon, C.N. 25-Hydroxycholecalciferol enhances male broiler breast meat yield through the mTOR pathway. J. Nutr. 2015, 145, 855–863. [Google Scholar] [CrossRef]
- Hutton, K.C.; Vaughn, M.A.; Litta, G.; Turner, B.J.; Starkey, J.D. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens. J. Anim. Sci. 2014, 92, 3291–3299. [Google Scholar] [CrossRef]
- Booth, B.E.; Tsai, H.C.; Morris Jr, R.C. Vitamin D status regulates 25-hydroxyvitamin D3-1 alpha-hydroxylase and its responsiveness to parathyroid hormone in the chick. J. Clin. Investig. 1985, 75, 155–161. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Selvaraj, R.K. Vitamin D-1alpha-hydroxylase and vitamin D-24-hydroxylase mRNA studies in chickens. Poult. Sci. 2012, 91, 1819–1824. [Google Scholar] [CrossRef]
- Omdahl, J.L.; Morris, H.A.; May, B.K. Hydroxylase enzymes of the vitamin D pathway: Expression, function, and regulation. Annu. Rev. Nutr. 2002, 22, 139–166. [Google Scholar] [CrossRef]
- Geng, Y.; Ma, Q.; Wang, Z.; Guo, Y. Dietary vitamin D3 supplementation protects laying hens against lipopolysaccharide-induced immunological stress. Nutr. Metab. 2018, 15, 58. [Google Scholar] [CrossRef]
- Aslam, S.M.; Garlich, J.D.; Qureshi, M.A. Vitamin D deficiency alters the immune responses of broiler chicks. Poult Sci. 1998, 77, 842–849. [Google Scholar] [CrossRef]
- Saunders-Blades, J.; Korver, D.R. The effect of maternal vitamin D source on broiler hatching egg quality, hatchability, and progeny bone mineral density and performance. Poult Sci. 2014, 23, 773–783. [Google Scholar] [CrossRef]
- Morrissey, R.L.; Cohn, R.M.; Empson Jr, R.; Greene, H.L.; Taunton, O.D.; Ziporin, Z.Z. Relative Toxicity and Metabolic Effects of Cholecalciferol and 25-Hydroxycholecalciferol in Chicks. J. Nutr. 1977, 107, 1027–1034. [Google Scholar] [CrossRef]
- Terry, T.; Lanenga, M.; McNaughton, J.L.; Stark, L.E. Safety of 25-Hydroxyvitamin D3 as a source of vitamin D3 in Layer poultry feed. Vet. Hum. Toxicol. 1999, 41, 312–316. [Google Scholar] [PubMed]
- Pesti, G.M.; Shivaprasad, H.L. The influence of excessive levels of 1α-hydroxycholecalciferol on the growth and tissue appearance of market weight chickens. J. Appl. Poult. Res. 2010, 19, 349–353. [Google Scholar] [CrossRef]
- Bar, A.; Sharvit, M.; Noff, D.; Edelstein, S.; Hurwitz, S. Absorption and excretion of cholecalciferol and of 25-hydroxycholecalciferol and metabolites in birds. J. Nutr. 1980, 110, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
- Yarger, J.G.; Saunders, C.A.; McNaughton, J.L.; Quarles, C.L.; Hollis, B.W.; Gray, R.W. Comparison of dietary 25-hydroxycholecalciferol and cholecalciferolin broiler chickens. Poult. Sci. 1995, 74, 1159–1167. [Google Scholar] [CrossRef]
- Chou, S.H.; Chung, T.K.; Yu, B. Effects of supplemental 25-hydroxycholecalciferol on growth performance, small intestinal morphology, and immune response of broiler chickens. Poult. Sci. 2009, 88, 2333–2341. [Google Scholar] [CrossRef]
- Smith, J.E.; Goodman, D.S. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J. Clin. Investig. 1971, 50, 2159–2167. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L. The role of the parent compound vitamin D with respect to metabolism and function: Why clinical dose intervals can affect clinical outcomes. J. Clin. Endocrinol. Metab. 2013, 98, 4619–4628. [Google Scholar] [CrossRef]
- Haddad, J.G.; Matsuoka, L.Y.; Hollis, B.W.; Hu, Y.Z.; Wortsman, J. Human plasma transport of vitamin D after its endogenous synthesis. J. Clin. Investig. 1993, 91, 2552–2555. [Google Scholar] [CrossRef]
- Burild, A.; Lauridsen, C.; Faqir, N.; Sommer, H.M.; Jakobsen, J. Vitamin D3 and 25-hydroxyvitamin D3 in pork and their relationship to vitamin D status in pigs. J. Nutr. Sci. 2015, 5, e3–e9. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Ceylan, N.; Koca, S.; Yavaş, İ.; Çenesiz, A.; Kahraman, N.; Özlü, Ş. Response of modern broiler chickens to dietary calcium and phosphorus levels below recommendations. Ital. J. Anim. Sci. 2020, 19, 1244–1252. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Alqhtani, A.H.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Levy, A.W.; Peebles, E.D. Improvement in the performance and inflammatory reaction of Ross 708 broilers in response to the in ovo injection of 25-hydroxyvitamin D3. Poult. Sci. 2021, 100, 138–146. [Google Scholar] [CrossRef]
- Aviagen. Ross 708 Pocket Guide; Aviagen Ltd.: Newbridge, UK, 2015; Available online: http://en.aviagen.com/assets/Tech_Center/BB_Resources_Tools/Pocket_Guides/Ross-Broiler-Pocket-Guide-2015-EN.pdf (accessed on 31 May 2025).
- Hollis, B.W.; Kamerud, J.Q.; Selvaag, S.R.; Lorenz, J.D.; Napoli, J.L. Determination of vitamin D status by radioimmunoassay with a 1251-labeled tracer. Clin. Chem. 1993, 39, 529–533. [Google Scholar] [CrossRef]
- SAS Institute. SAS Proprietary Software Release 9.4; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Baker, D.H.; Biehl, R.R.; Emmert, J.L. Vitamin D3 requirement of young chicks receiving diets varying in calcium and available phosphorus. B. Poult. Sci. 1998, 39, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.L.; Austic, R.E.; Cries, C.L. Hypervitaminosis D. In Diseases of Poultry, 6th ed.; Hofsted, M.S., Calnek, B.W., Helmboldt, C.F., Reid, W.M., Yoder, H.W., Jr., Eds.; Iowa State University Press: Ames, IA, USA, 1978; p. 58. [Google Scholar]
- National Research Council. Vitamin Tolerance of Animals; National Academy Press: Washington, DC, USA, 1987. [Google Scholar]
- Hoorn, E.J.; Zietse, R. Disorders of calcium and magnesium balance: A physiology-based approach. Pediatr. Nephrol. 2013, 28, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Nain, S.; Laarveld, B.; Wojnarowicz, C.; Olkowski, A.A. Excessive dietary vitamin D supplementation as a risk factor for sudden death syndrome in fast growing commercial broilers. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2007, 148, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D toxicity-a clinical perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef]
- Galior, K.; Grebe, S.; Singh, R. Development of Vitamin D toxicity from overcorrection of vitamin D deficiency: A review of case reports. Nutrients 2018, 10, 953. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Durojaye, O.; Zhang, H.; Turner, B.; Peebles, E.D. Effects of source and level of in ovo-injected vitamin D3 on the hatchability and serum 25-hydroxycholecalciferol concentrations of Ross 708 broilers. Poult. Sci. 2020, 99, 3877–3884. [Google Scholar] [CrossRef]
- Beasley, V.R. Veterinary Toxicology; International Veterinary Information Service: Ithaca, NY, USA, 1999. [Google Scholar]
- Price, P.A.; Buckley, J.R.; William, M.K. The amino bisphosphonate ibandronate prevents vitamin D induced calcification of arteries, cartilage, lungs and kidneys in rats. J. Nutr. 2001, 131, 2910–2915. [Google Scholar] [CrossRef]
- Morrow, C. Cholecalciferol poisoning. J. Vet. Med. 2001, 12, 905–911. [Google Scholar]
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Brar, R.S.; Banga, H.S. Hypervitaminosis D3 in broiler chicks: Histopathological, immunomodulatory and immunohistochemical approach. Iran. J. Vet. Res. 2017, 18, 170–176. [Google Scholar] [PubMed]
- Kumar, R.; Singh Banga, H.; Singh Brar, R. Effects of dietary vitamin D3 over-supplementation on broiler chickens’ health; clinicopathological and immunohistochemical characteristics. J. Vet. Physiol. Pathol. 2023, 2, 20–31. [Google Scholar] [CrossRef]
Commercial Diet | Hy-D diet | ||
---|---|---|---|
Starter (0 to 14 doa poh) | |||
Item | |||
Ingredient (%) | Pct | Pct | |
Yellow corn | 53.23 | 53.23 | |
Soybean meal | 38.23 | 38.23 | |
Animal fat | 2.6 | 2.6 | |
Dicalcium phosphate | 2.23 | 2.23 | |
Limestone | 1.27 | 1.27 | |
Salt | 0.34 | 0.34 | |
Choline chloride 60% | 0.10 | 0.10 | |
Lysine | 0.28 | 0.28 | |
DL-Methionine | 0.37 | 0.37 | |
L-Threonine | 0.15 | 0.15 | |
Premix 1 | 0.25 | 0.25 | |
Coccidiostat 2 | 0.05 | 0.05 | |
BMD 3 | 0.05 | 0.05 | |
25-hydroxycholecalciferol (25OHD3; ng/mL) 4 | 0 | 552 | |
Total | 100 | 100 | |
Calculated nutrients | |||
Crude protein | 23 | 23 | |
Calcium | 0.96 | 0.96 | |
Available phosphorus | 0.48 | 0.48 | |
Apparent metabolizable energy (AME; Kcal/kg) | 3000 | 3000 | |
Digestible Methionine | 0.51 | 0.51 | |
Digestible Lysine | 1.28 | 1.28 | |
Digestible Threonine | 0.86 | 0.86 | |
Digestible total sulfur amino acid (TSAA) | 0.95 | 0.95 | |
Sodium | 0.16 | 0.16 | |
Choline | 0.16 | 0.16 | |
Grower (15 to 28 doa poh) | |||
Item | |||
Ingredient (%) | Pct | Pct | |
Yellow corn | 57.13 | 57.13 | |
Soybean meal | 34.8 | 34.8 | |
Animal fat | 3.5 | 3.5 | |
Dicalcium phosphate | 2 | 2 | |
Limestone | 1.17 | 1.17 | |
Salt | 0.34 | 0.34 | |
Choline chloride 60% | 0.10 | 0.10 | |
Lysine | 0.21 | 0.21 | |
DL-Methionine | 0.32 | 0.32 | |
L-Threonine | 0.16 | 0.16 | |
Premix | 0.25 | 0.25 | |
Coccidiostat | 0.05 | 0.05 | |
BMD | 0.05 | 0.05 | |
25OHD3 (ng/mL) 5 | 0 | 276 | |
Total | 100 | 100 | |
Calculated nutrients | |||
Crude protein | 21.5 | 21.5 | |
Calcium | 0.87 | 0.87 | |
Available phosphorus | 0.435 | 0.435 | |
AME (Kcal/kg) | 3100 | 3100 | |
Digestible Methionine | 0.47 | 0.47 | |
Digestible Lysine | 1.15 | 1.15 | |
Digestible Threonine | 0.77 | 0.77 | |
Digestible TSAA | 0.87 | 0.87 | |
Sodium | 0.16 | 0.16 | |
Choline | 0.16 | 0.16 | |
Finisher (29 to 42 doa poh) | |||
Item | |||
Ingredient (%) | Pct | Pct | |
Yellow corn | 54.23 | 54.23 | |
Soybean meal | 38.23 | 38.23 | |
Animal fat | 2.5 | 2.5 | |
Dicalcium phosphate | 2.23 | 2.23 | |
Limestone | 1.27 | 1.27 | |
Salt | 0.34 | 0.34 | |
Choline chloride 60% | 0.10 | 0.10 | |
Lysine | 0.28 | 0.28 | |
DL-Methionine | 0.37 | 0.37 | |
L-Threonine | 0.15 | 0.15 | |
Premix | 0.25 | 0.25 | |
Coccidiostat | 0.05 | 0.05 | |
BMD | 0.05 | 0.05 | |
25OHD3 (ng/mL) 6 | 0 | 34.5 | |
Total | 100 | 100 | |
Calculated nutrients | |||
Crude protein | 19.5 | 19.5 | |
Calcium | 0.78 | 0.78 | |
Available phosphorus | 0.39 | 0.39 | |
AME (Kcal/kg) | 3200 | 3200 | |
Digestible Methionine | 0.43 | 0.43 | |
Digestible Lysine | 1.02 | 1.02 | |
Digestible Threonine | 0.68 | 0.68 | |
Digestible TSAA | 0.8 | 0.8 | |
Sodium | 0.16 | 0.16 | |
Choline | 0.16 | 0.16 |
VitD3 Calculated | VitD3 Actual | 25OHD3 Calculated | 25OHD3 Actual | ||
---|---|---|---|---|---|
-------------------------------IU/kg------------------------------ | |||||
Starter | |||||
Control 1 | 250 | 261 | 0 | ND 2 | |
Hy-D 3 | 250 | 281 | 22,080 | 22,520 | |
Grower | |||||
Control | 250 | 290 | 0 | ND | |
Hy-D 4 | 250 | 311 | 11,040 | 10,520 | |
Finisher | |||||
Control 1 | 250 | 276 | 0 | ND | |
Hy-D 5 | 250 | 294 | 1380 | 1320 |
Treatment | BW0 1 (g) | BW 1 (g) | FI 1 (g) | ADFI 1 (g) | BWG 1 (g) | ADG 1 (g) | FCR 1 (g/g) | Mortality 1 (%) |
---|---|---|---|---|---|---|---|---|
-------------------------------------------------------Days 0 to 14---------------------------------------------------------- | ||||||||
Control | 42.80 | 447 a | 501 a | 35.7 a | 405 a | 28.9 a | 1.23 b | 1.7 |
HyD (×8) 2 | 42.75 | 225 b | 263 b | 18.5 b | 183 b | 13.1 b | 1.42 a | 3.1 |
Pooled SEM | 0.421 | 5.5 | 6 | 0.31 | 4.8 | 0.34 | 0.018 | 1.5 |
p-Value | 0.923 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.185 |
-------------------------------------------Days 15 to 28--------------------------------------------------------- | ||||||||
Control | 1537 a | 1562 a | 111 a | 1133 a | 80.9 a | 1.36 b | 1.1 b | |
HyD (×4) 3 | 513 b | 537 b | 38 b | 331 b | 23.6 b | 1.64 a | 4.0 a | |
Pooled SEM | 20.5 | 20.9 | 1.4 | 18.2 | 1.3 | 0.032 | 1.82 | |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.031 | |
-----------------------------------------Days 29 to 39------------------------------------------------------ | ||||||||
Control | 3059 a | 2525 a | 210 a | 1519 a | 109 a | 1.95 b | 0.9 b | |
HyD (1/2) 4 | 931 b | 1114 b | 93 b | 416 b | 30 b | 3.35 a | 11.6 a | |
Pooled SEM | 40.2 | 57.7 | 4.8 | 42.4 | 3 | 0.232 | 0.08 | |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | BW (g) | P-Major (%) | P-Minor (%) | Breast (%) |
---|---|---|---|---|
--------------------Day 14--------------------- | ||||
Control | 454.7 a | 13.3 a | 2.85 a | 16.1 a |
HyD (×8) 1 | 261.4 b | 10.3 b | 2.35b | 12.6 b |
Pooled SEM | 14.6 | 0.47 | 0.114 | 0.58 |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
--------------------Day 39--------------------- | ||||
Control | 2882 a | 21.1 a | 3.95 a | 25 a |
HyD (1/2) 2 | 1134 b | 13.6 b | 3.14 b | 16.7 b |
Pooled SEM | 97.7 | 0.52 | 0.14 | 0.57 |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatemi, S.A.; Peebles, E.D. Negative Impact of a Disproportionally Elevated Level of Dietary 25-Hydroxycholecalciferol on the Performance and Meat Yield of Ross 708 Broilers. Poultry 2025, 4, 37. https://doi.org/10.3390/poultry4030037
Fatemi SA, Peebles ED. Negative Impact of a Disproportionally Elevated Level of Dietary 25-Hydroxycholecalciferol on the Performance and Meat Yield of Ross 708 Broilers. Poultry. 2025; 4(3):37. https://doi.org/10.3390/poultry4030037
Chicago/Turabian StyleFatemi, Seyed Abolghasem, and Edgar David Peebles. 2025. "Negative Impact of a Disproportionally Elevated Level of Dietary 25-Hydroxycholecalciferol on the Performance and Meat Yield of Ross 708 Broilers" Poultry 4, no. 3: 37. https://doi.org/10.3390/poultry4030037
APA StyleFatemi, S. A., & Peebles, E. D. (2025). Negative Impact of a Disproportionally Elevated Level of Dietary 25-Hydroxycholecalciferol on the Performance and Meat Yield of Ross 708 Broilers. Poultry, 4(3), 37. https://doi.org/10.3390/poultry4030037