Assessment of the Effects of Stocking Density on Laying Hens Raised in Colony Cages: Part II—Egg Production, Egg Quality, and Welfare Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production Parameters
2.2. Egg Quality Parameters
2.3. Blood Parameters
2.4. Bone Parameters
2.5. Welfare Assessments
2.6. Histology and Gut Health
2.7. Gene Expression
2.8. Statistical Analysis
3. Results
3.1. Production Data
3.2. USDA Egg Size and Quality
3.3. Physical Egg Quality
3.4. Stress Parameters
3.5. Fearfulness
3.6. Bone and Intestinal Health
3.7. Welfare Parameters
4. Discussion
4.1. Production and Egg Quality
4.2. Hen Welfare
4.3. Hen Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miranda-de la Lama, G.C.; Sepúlveda, W.S.; Villarroel, M.; María, G.A. Attitudes of Meat Retailers to Animal Welfare in Spain. Meat Sci. 2013, 95, 569–575. [Google Scholar] [CrossRef] [PubMed]
- De Backer, C.J.S.; Hudders, L. Meat Morals: Relationship between Meat Consumption Consumer Attitudes towards Human and Animal Welfare and Moral Behavior. Meat Sci. 2015, 99, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.; Butterworth, A.; Jones, P.; Kehlbacher, A.; Tranter, R. Valuation of Animal Welfare Benefits; University of Reading: Reading, UK, 2012. [Google Scholar]
- Nocella, G.; Hubbard, L.; Scarpa, R. Farm Animal Welfare, Consumer Willingness to Pay, and Trust: Results of a Cross-National Survey. Appl. Econ. Perspect. Policy 2010, 32, 275–297. [Google Scholar] [CrossRef]
- Clark, B.; Stewart, G.B.; Panzone, L.A.; Kyriazakis, I.; Frewer, L.J. Citizens, Consumers and Farm Animal Welfare: A Meta-Analysis of Willingness-to-Pay Studies. Food Policy 2017, 68, 112–127. [Google Scholar] [CrossRef]
- Benyi, K.; Norris, D.; Tsatsinyane, P. Effects of Stocking Density and Group Size on the Performance of White and Brown Hyline Layers in Semi-Arid Conditions. Trop. Anim. Health Prod. 2006, 38, 619–624. [Google Scholar] [CrossRef]
- Akbari Moghaddam Kakhki, R.; Bakhshalinejad, R.; Anderson, K.; Golian, A. Effect of High and Low Stocking Density on Age of Maturity, Egg Production, Egg Size Distribution in White and Brown Layer Hens: A Meta-Analysis. Poult. Sci. J. 2018, 6, 71–87. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, T.; Zhang, N.; Li, J.; Wang, Y.; Kulyar, M.F.-A.; Han, Z.; Li, Y. Effect of Stocking Density and Age on Physiological Performance and Dynamic Gut Bacterial and Fungal Communities in Langya Hens. Microb. Cell Factories 2021, 20, 218. [Google Scholar] [CrossRef]
- De Haas, E.N.; Kemp, B.; Bolhuis, J.E.; Groothuis, T.; Rodenburg, T.B. Fear, Stress, and Feather Pecking in Commercial White and Brown Laying Hen Parent-Stock Flocks and Their Relationships with Production Parameters. Poult. Sci. 2013, 92, 2259–2269. [Google Scholar] [CrossRef]
- United Egg Producers. Animal Husbandry Guidelines for U.S. Egg-Laying Flocks. 2017. Available online: https://uepcertified.com/wp-content/uploads/2019/09/CF-UEP-Guidelines_17-3.pdf (accessed on 22 August 2022).
- Marks, H.L.; Tindell, L.D.; Lowe, R.H. Performance of Egg Production Stocks Under Three Cage Densities1. Poult. Sci. 1970, 49, 1094–1100. [Google Scholar] [CrossRef]
- Adams, A.W.; Jackson, M.E. Effect of Cage Size and Bird Density on Performance of Six Commercial Strains of Layers1. Poult. Sci. 1970, 49, 1712–1719. [Google Scholar] [CrossRef]
- European Union. Council Directive 1999/74/EC of 19 July 1999 Laying Down Minimum Standards for the Protection of Laying Hens. Off. J. L. 1999, 203, 53–57. [Google Scholar]
- Kang, H.K.; Park, S.B.; Kim, S.H.; Kim, C.H. Effects of Stock Density on the Laying Performance, Blood Parameter, Corticosterone, Litter Quality, Gas Emission and Bone Mineral Density of Laying Hens in Floor Pens. Poult. Sci. 2016, 95, 2764–2770. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S.; Hardie, S. Space Needs of Laying Hens. Br. Poult. Sci. 1989, 30, 413–416. [Google Scholar] [CrossRef]
- Mench, J.A.; Blatchford, R.A. Determination of Space Use by Laying Hens Using Kinematic Analysis. Poult. Sci. 2014, 93, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Riddle, E.R.; Ali, A.B.A.; Campbell, D.L.M.; Siegford, J.M. Space Use by 4 Strains of Laying Hens to Perch, Wing Flap, Dust Bathe, Stand and Lie Down. PLoS ONE 2018, 13, e0190532. [Google Scholar] [CrossRef]
- Regmi, P.; Weimer, S.L.; Erasmus, M.; Jacobs, L. Poultry Extension Collaborative Newsletter. 2020. Available online: https://drive.google.com/file/d/1k1ZX1V7rsG54J5UYmSb7Uz9vWRxImhXC/view (accessed on 19 March 2023).
- Campo, J.L.; Gil, M.G.; Dávila, S.G. Effects of Specific Noise and Music Stimuli on Stress and Fear Levels of Laying Hens of Several Breeds. Appl. Anim. Behav. Sci. 2005, 91, 75–84. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, L.; Gong, H.; Celi, P.; Yan, L.; Ding, X.; Bai, S.; Zeng, Q.; Mao, X.; Xu, S.; et al. Effect of Dietary 25-Hydroxycholecalciferol Supplementation and High Stocking Density on Performance, Egg Quality, and Tibia Quality in Laying Hens. Poult. Sci. 2020, 99, 2608–2615. [Google Scholar] [CrossRef]
- Rokavec, N.; Zupan Šemrov, M. Psychological and Physiological Stress in Hens with Bone Damage. Front. Vet. Sci. 2020, 7, 589274. [Google Scholar] [CrossRef]
- Star, L.; Decuypere, E.; Parmentier, H.K.; Kemp, B. Effect of Single or Combined Climatic and Hygienic Stress in Four Layer Lines: 2. Endocrine and Oxidative Stress Responses. Poult. Sci. 2008, 87, 1031–1038. [Google Scholar] [CrossRef]
- Fraser, D. Assessing Animal Welfare at the Farm and Group Level: The Interplay of Science and Values. Anim. Welf. 2003, 12, 433–443. [Google Scholar] [CrossRef]
- Blatchford, R. Poultry Welfare Assessments: Where Do We Go from Here. J. Anim. Sci. 2016, 94, 44. [Google Scholar] [CrossRef]
- Roy, P.; Kadam, M.M.; Bhanja, S.K.; Kurkure, N.; Bhaisare, D.B.; Rokade, J.J.; Khose, K.K. Welfare and Performance of Commercial Laying Hens in Conventional California Cages at Different Stocking Densities. Indian J. Anim. Sci. 2020, 90, 1300–1304. [Google Scholar] [CrossRef]
- Sarica, M.; Boga, S.; Yamak, U.S. The Effects of Space Allowance on Egg Yield, Egg Quality and Plumage Condition of Laying Hens in Battery Cages. Czech J. Anim. Sci. 2008, 53, 345–353. [Google Scholar] [CrossRef]
- Weimer, S.L.; Robison, C.I.; Tempelman, R.J.; Jones, D.R.; Karcher, D.M. Laying Hen Production and Welfare in Enriched Colony Cages at Different Stocking Densities. Poult. Sci. 2019, 98, 3578–3586. [Google Scholar] [CrossRef] [PubMed]
- Geng, A.L.; Liu, H.G.; Zhang, Y.; Zhang, J.; Wang, H.H.; Chu, Q.; Yan, Z.X. Effects of Indoor Stocking Density on Performance, Egg Quality, and Welfare Status of a Native Chicken during 22 to 38 Weeks. Poult. Sci. 2019, 99, 163–171. [Google Scholar] [CrossRef]
- Erensoy, K.; Sarıca, M.; Noubandiguim, M.; Dur, M.; Aslan, R. Effect of Light Intensity and Stocking Density on the Performance, Egg Quality, and Feather Condition of Laying Hens Reared in a Battery Cage System over the First Laying Period. Trop. Anim. Health Prod. 2021, 53, 320. [Google Scholar] [CrossRef]
- Khumput, S.; Thiengtham, J. Behavior, Egg Production, and Bone Strength of Commercial Laying Hens at Various Cage Densities and Different Cage Types. Songklanakarin J. Sci. Technol. 2020, 42, 1113–1116. [Google Scholar]
- United States Department of Agriculture. Egg Grading Manual; United States Department of Agriculture: Washington, DC, USA, 2000. [Google Scholar]
- Haugh, R.R. The Haugh Unit for Measuring Egg Quality. U. S. Egg Poult. Mag. 1937, 43, 552–555. [Google Scholar]
- Vuilleumier, J.P. The ‘Roche Yolk Colour Fan’—An Instrument for Measuring Yolk Colour. Poult. Sci. 1969, 48, 767–779. [Google Scholar] [CrossRef]
- Hansen, R.S. Nervousness and Hysteria of Mature Female Chickens. Poult. Sci. 1976, 55, 531–543. [Google Scholar] [CrossRef]
- Jin, L.; Craig, J.V. Some Effects of Cage and Floor Rearing on Commercial White Leghorn Pullets During Growth and the First Year of Egg Production. Poult. Sci. 1988, 67, 1400–1406. [Google Scholar] [CrossRef]
- Anderson, K.E.; Davis, G.S.; Jenkins, P.K.; Carroll, A.S. Effects of Bird Age, Density, and Molt on Behavioral Profiles of Two Commercial Layer Strains in Cages. Poult. Sci. 2004, 83, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Wickman, H. Reshaping Data with the {reshape} Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar]
- De Mendiburu, F.; Yaseen, M. Agricolae: Statistical Procedures for Agriculture Research. 2020. Available online: https://cran.r-project.org/web/packages/agricolae/agricolae.pdf (accessed on 27 February 2023).
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). 2020. Available online: https://cran.r-project.org/web/packages/AICcmodavg/AICcmodavg.pdf (accessed on 27 February 2023).
- Firke, S. Janitor: Simple Tools for Examining and Cleaning Dirty Data. 2021. Available online: https://cran.r-project.org/web/packages/janitor/index.html (accessed on 27 February 2023).
- R Core Team R: A Language and Environment for Statistical Computing. 2022. Available online: https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf (accessed on 27 February 2023).
- Roy, P.; Kadam, M.M.; Patil, A.R.; Rokade, J.J.; Bhanja, S.K.; Bhaisare, D.; Pawar, S.B. Modulation of Stocking Densities in California Cages to Enhance the Production and Welfare of Commercial Laying Hens. J. Anim. Res. 2021, 11, 213–215. [Google Scholar] [CrossRef]
- Asghar Saki, A.; Zamani, P.; Rahmati, M.; Mahmoudi, H. The Effect of Cage Density on Laying Hen Performance, Egg Quality, and Excreta Minerals. J. Appl. Poult. Res. 2012, 21, 467–475. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Fahimi, E.; Taherkhani, R. Effects of Different Feed Forms and Cage Densities on Laying Hen Performance and Stress Status. Eur. Poult. Sci. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Jalal, M.A.; Scheideler, S.E.; Marx, D. Effect of Bird Cage Space and Dietary Metabolizable Energy Level on Production Parameters in Laying Hens. Poult. Sci. 2006, 85, 306–311. [Google Scholar] [CrossRef]
- Anderson, K.E. Final Report of the Fortieth North Carolina Layer Performance and Management Test; North Carolina State University: Raleigh, NC, USA, 2019. [Google Scholar]
- Jahanian, R.; Mirfendereski, E. Effect of High Stocking Density on Performance, Egg Quality, and Plasma and Yolk Antioxidant Capacity in Laying Hens Supplemented with Organic Chromium and Vitamin C. Livest. Sci. 2015, 177, 117–124. [Google Scholar] [CrossRef]
- Franco-Jimenez, D.J.; Scheideler, S.; Kittok, R.J.; Brown-Brandl, T.; Robeson, L.R.; Taira, H.; Beck, M. Differential Effects of Heat Stress in Three Strains of Laying Hens. J. Appl. Poult. Res. 2007, 16, 628–634. [Google Scholar] [CrossRef]
- Hammouche, D.; Mouss, A.K.; Meziane, R.; Ikhlef, H. Study of the Physiological Responses of Two Strains of Laying Hens under Thermal Challenge. Biol. Life Sci. Forum 2024, 36, 3. [Google Scholar] [CrossRef]
- Gross, W.B.; Siegel, H.S. Evaluation of the Heterophil/Lymphocyte Ratio as a Measure of Stress in Chickens. Avian Dis. 1983, 27, 972–979. [Google Scholar] [CrossRef]
- Scanes, C.G. (Ed.) Sturkie’s Avian Physiology, 6th ed.; Department of Biological Sciences, University of Wisconsin: Milwaukee, WI, USA, 2015. [Google Scholar]
- Tavaria, M.; Gabriele, T.; Kola, I.; Anderson, R.L. A Hitchhiker’s Guide to the Human Hsp70 Family. Cell Stress Chaperones 1996, 1, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.G. Heat Shock Factors and the Control of the Stress Response. Biochem. Pharmacol. 2000, 59, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Morano, K.A. New Tricks for an Old Dog: The evolving world of Hsp70. Ann. N. Y. Acad. Sci. 2007, 1113, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bracher, A.; Verghese, J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG Domain Proteins: Nucleotide Exchange Factors for Hsp70 Molecular Chaperones. In The Networking of Chaperones by Co-Chaperones: Control of Cellular Protein Homeostasis; Blatch, G.L., Edkins, A.L., Eds.; Subcellular Biochemistry; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–33. ISBN 978-3-319-11731-7. [Google Scholar]
- Spear, N.; Aust, S.D. Hydroxylation of Deoxyguanosine in DNA by Copper and Thiols. Arch. Biochem. Biophys. 1995, 317, 142–148. [Google Scholar] [CrossRef]
- Gutteridge, J.M. Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef]
- Hall, D.B.; Holmlin, R.E.; Barton, J.K. Oxidative DNA Damage through Long-Range Electron Transfer. Nature 1996, 382, 731–735. [Google Scholar] [CrossRef]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Wang, L.; Muxin, G.; Nishida, H.; Shirakawa, C.; Sato, S.; Konishi, T. Psychological Stress-Induced Oxidative Stress as a Model of Sub-Healthy Condition and the Effect of TCM. Evid. Based Complement. Altern. Med. 2007, 4, 195–202. [Google Scholar] [CrossRef]
- Franco, R.; Sánchez-Olea, R.; Reyes-Reyes, E.M.; Panayiotidis, M.I. Environmental Toxicity, Oxidative Stress and Apoptosis: Ménage à Trois. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 674, 3–22. [Google Scholar] [CrossRef]
- Mutwedu, V.B.; Nyongesa, A.W.; Oduma, J.A.; Kitaa, J.M.; Mbaria, J.M. Thermal Stress Causes Oxidative Stress and Physiological Changes in Female Rabbits. J. Therm. Biol. 2021, 95, 102780. [Google Scholar] [CrossRef]
- Nicholls, P. Classical Catalase: Ancient and Modern. Arch. Biochem. Biophys. 2012, 525, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Margis, R.; Dunand, C.; Teixeira, F.K.; Margis-Pinheiro, M. Glutathione Peroxidase Family—An Evolutionary Overview. FEBS J. 2008, 275, 3959–3970. [Google Scholar] [CrossRef] [PubMed]
- De Haas, E.N.; Kops, M.S.; Bolhuis, J.E.; Groothuis, T.G.G.; Ellen, E.D.; Rodenburg, T.B. The Relation between Fearfulness in Young and Stress-Response in Adult Laying Hens, on Individual and Group Level. Physiol. Behav. 2012, 107, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.M.; Johnson, A.M.; Persia, M.E.; Jacobs, L. Effects of Housing System on Anxiety, Chronic Stress, Fear, and Immune Function in Bovan Brown Laying Hens. Animals 2022, 12, 1803. [Google Scholar] [CrossRef]
- Grams, V.; Bögelein, S.; Grashorn, M.A.; Bessei, W.; Bennewitz, J. Quantitative Genetic Analysis of Traits Related to Fear and Feather Pecking in Laying Hens. Behav. Genet. 2015, 45, 228–235. [Google Scholar] [CrossRef]
- Saraiva, S.; Esteves, A.; Oliveira, I.; Stilwell, G. Assessment of Fear Response and Welfare Indicators in Laying Hens from Barn Systems. Livest. Sci. 2020, 240, 104150. [Google Scholar] [CrossRef]
- Wei, H.; Feng, Y.; Ding, S.; Nian, H.; Yu, H.; Zhao, Q.; Bao, J.; Zhang, R. Keel Bone Damage Affects Behavioral and Physiological Responses Related to Stress and Fear in Two Strains of Laying Hens. J. Anim. Sci. 2022, 100, skac076. [Google Scholar] [CrossRef]
- Ventura, B.A.; Siewerdt, F.; Estevez, I. Effects of Barrier Perches and Density on Broiler Leg Health, Fear, and Performance. Poult. Sci. 2010, 89, 1574–1583. [Google Scholar] [CrossRef]
- Anderson, M.G.; Campbell, A.M.; Crump, A.; Arnott, G.; Newberry, R.C.; Jacobs, L. Effect of Environmental Complexity and Stocking Density on Fear and Anxiety in Broiler Chickens. Animals 2021, 11, 2383. [Google Scholar] [CrossRef]
- Sanotra, G.S.; Lawson, L.G.; Vestergaard, K.S.; Thomsen, M.G. Influence of Stocking Density on Tonic Immobility, Lameness, and Tibial Dyschondroplasia in Broilers. J. Appl. Anim. Welf. Sci. 2001, 4, 71–87. [Google Scholar] [CrossRef]
- von Eugen, K.; Nordquist, R.E.; Zeinstra, E.; van der Staay, F.J. Stocking Density Affects Stress and Anxious Behavior in the Laying Hen Chick During Rearing. Animals 2019, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.S.; Anderson, K.E.; Jones, D.R. The Effects of Different Beak Trimming Techniques on Plasma Corticosterone and Performance Criteria in Single Comb White Leghorn Hens. Poult. Sci. 2004, 83, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Thøfner, I.C.N.; Dahl, J.; Christensen, J.P. Keel Bone Fractures in Danish Laying Hens: Prevalence and Risk Factors. PLoS ONE 2021, 16, e0256105. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.C.; Teng, X.Q.; Xu, D.L.; Chi, X.; Ge, M.; Xu, S.W. Influences of Low Level of Dietary Calcium on Bone Characters in Laying Hens. Poult. Sci. 2020, 99, 7084–7091. [Google Scholar] [CrossRef]
- Freeman, N.; Tuyttens, F.A.M.; Johnson, A.; Marshall, V.; Garmyn, A.; Jacobs, L. Remedying Contact Dermatitis in Broiler Chickens with Novel Flooring Treatments. Animals 2020, 10, 1761. [Google Scholar] [CrossRef]
- Bilcik, B.; Keeling, L.J. Changes in Feather Condition in Relation to Feather Pecking and Aggressive Behaviour in Laying Hens. Br. Poult. Sci. 1999, 40, 444–451. [Google Scholar] [CrossRef]
- Gernand, E.; Ahlers, C.; Huchler, M.; Donat, K. Plumage Damage and Back Skin Lesions in Laying Hens with Untrimmed Beak Depend on Rearing of Pullets and Genetics. Br. Poult. Sci. 2022, 63, 274–282. [Google Scholar] [CrossRef]
- Iqbal, Z.; Drake, K.; Swick, R.A.; Taylor, P.S.; Perez-Maldonado, R.A.; Ruhnke, I. Effect of Pecking Stones and Age on Feather Cover, Hen Mortality, and Performance in Free-Range Laying Hens. Poult. Sci. 2020, 99, 2307–2314. [Google Scholar] [CrossRef]
- Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.B.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen Welfare in Different Housing Systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef]
- Regmi, P.; Nelson, N.; Haut, R.C.; Orth, M.W.; Karcher, D.M. Influence of Age and Housing Systems on Properties of Tibia and Humerus of Lohmann White Hens1 1Research Supported in Part by a Grant from the Coalition for a Sustainable Egg Supply (Kansas City, MO).: Bone Properties of Laying Hens in Commercial Housing Systems. Poult. Sci. 2017, 96, 3755–3762. [Google Scholar] [CrossRef]
- Pluske, J.; Thompson, M.; Atwood, C.; Bird, P.; Williams, I.; Hartmann, P. Maintenance of Villus Height and Crypt Depth, and Enhancement of Disaccharide Digestion and Monosaccharide Absorption, in Piglets Fed on Cows’ Whole Milk after Weaning. Br. J. Nutr. 1996, 76, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best. Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Nari, N.; Ghasemi, H.A.; Hajkhodadadi, I.; Farahani, A.H.K. Intestinal Microbial Ecology, Immune Response, Stress Indicators, and Gut Morphology of Male Broiler Chickens Fed Low-Phosphorus Diets Supplemented with Phytase, Butyric Acid, or Saccharomyces Boulardii. Livest. Sci. 2020, 234, 103975. [Google Scholar] [CrossRef]
- Berenjian, A.; Sharifi, S.D.; Mohammadi-Sangcheshmeh, A.; Bakhtiarizadeh, M.R. Omega-3 Fatty Acids Reduce the Negative Effects of Dexamethasone-Induced Physiological Stress in Laying Hens by Acting through the Nutrient Digestibility and Gut Morphometry. Poult. Sci. 2020, 100, 100889. [Google Scholar] [CrossRef]
- Ayo, J.O.; Ogbuagu, N.E. Heat Stress, Haematology and Small Intestinal Morphology in Broiler Chickens: Insight into Impact and Antioxidant-Induced Amelioration. World’s Poult. Sci. J. 2021, 77, 949–968. [Google Scholar] [CrossRef]
- Liu, W.-C.; Pan, Z.-Y.; Zhao, Y.; Guo, Y.; Qiu, S.-J.; Balasubramanian, B.; Jha, R. Effects of Heat Stress on Production Performance, Redox Status, Intestinal Morphology and Barrier-Related Gene Expression, Cecal Microbiome, and Metabolome in Indigenous Broiler Chickens. Front. Physiol. 2022, 13, 890520. [Google Scholar] [CrossRef]
- Allen, A.; Hutton, D.A.; Pearson, J.P. The MUC2 Gene Product: A Human Intestinal Mucin. Int. J. Biochem. Cell Biol. 1998, 30, 797–801. [Google Scholar] [CrossRef]
- Birchenough, G.M.H.; Johansson, M.E.; Gustafsson, J.K.; Bergström, J.H.; Hansson, G.C. New Developments in Goblet Cell Mucus Secretion and Function. Mucosal. Immunol. 2015, 8, 712–719. [Google Scholar] [CrossRef]
- Duangnumsawang, Y.; Zentek, J.; Goodarzi Boroojeni, F. Development and Functional Properties of Intestinal Mucus Layer in Poultry. Front. Immunol. 2021, 12, 745849. [Google Scholar] [CrossRef]
- Tadesse, S.; Corner, G.; Dhima, E.; Houston, M.; Guha, C.; Augenlicht, L.; Velcich, A. MUC2 Mucin Deficiency Alters Inflammatory and Metabolic Pathways in the Mouse Intestinal Mucosa. Oncotarget 2017, 8, 71456–71470. [Google Scholar] [CrossRef]
- Furuse, M.; Hata, M.; Furuse, K.; Yoshida, Y.; Haratake, A.; Sugitani, Y.; Noda, T.; Kubo, A.; Tsukita, S. Claudin-Based Tight Junctions Are Crucial for the Mammalian Epidermal Barrier: A Lesson from Claudin-1-Deficient Mice. J. Cell. Biol. 2002, 156, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernandez, V.; Quiros, M.; Nusrat, A. Intestinal Epithelial Claudins: Expression and Regulation in Homeostasis and Inflammation. Ann. N. Y. Acad. Sci. 2017, 1397, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Fan, Q.; Zhao, N.; Zhang, W.; Wei, J.; Chen, F.; Huang, S.; Guo, W. Supplemental Magnolol Improves the Antioxidant Capacity and Intestinal Health of Broiler Chickens. Anim. Sci. J. 2021, 92, e13665. [Google Scholar] [CrossRef] [PubMed]
- Villela, C.; Manuel, V. The Interplay between Occludin and ZO-1 Is Redox Sensitive. Ph.D. Thesis, Freie Universität, Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Blasig, I.E.; Bellmann, C.; Cording, J.; del Vecchio, G.; Zwanziger, D.; Huber, O.; Haseloff, R.F. Occludin Protein Family: Oxidative Stress and Reducing Conditions. Antioxid. Redox Signal. 2011, 15, 1195–1219. [Google Scholar] [CrossRef]
- Saitou, M.; Furuse, M.; Sasaki, H.; Schulzke, J.-D.; Fromm, M.; Takano, H.; Noda, T.; Tsukita, S. Complex Phenotype of Mice Lacking Occludin, a Component of Tight Junction Strands. Mol. Biol. Cell 2000, 11, 4131–4142. [Google Scholar] [CrossRef]
- Saito, A.C.; Higashi, T.; Fukazawa, Y.; Otani, T.; Tauchi, M.; Higashi, A.Y.; Furuse, M.; Chiba, H. Occludin and Tricellulin Facilitate Formation of Anastomosing Tight-Junction Strand Network to Improve Barrier Function. Mol. Biol. Cell 2021, 32, 722–738. [Google Scholar] [CrossRef]
- Stevenson, B.R.; Siliciano, J.D.; Mooseker, M.S.; Goodenough, D.A. Identification of ZO-1: A High Molecular Weight Polypeptide Associated with the Tight Junction (Zonula Occludens) in a Variety of Epithelia. J. Cell. Biol. 1986, 103, 755–766. [Google Scholar] [CrossRef]
- Tornavaca, O.; Chia, M.; Dufton, N.; Almagro, L.O.; Conway, D.E.; Randi, A.M.; Schwartz, M.A.; Matter, K.; Balda, M.S. ZO-1 Controls Endothelial Adherens Junctions, Cell–Cell Tension, Angiogenesis, and Barrier Formation. J. Cell Biol. 2015, 208, 821–838. [Google Scholar] [CrossRef]
- Kuo, W.-T.; Zuo, L.; Odenwald, M.A.; Madha, S.; Singh, G.; Gurniak, C.B.; Abraham, C.; Turner, J.R. The Tight Junction Protein ZO-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology 2021, 161, 1924–1939. [Google Scholar] [CrossRef]
- Ren, K.; Torres, R. Role of Interleukin-1β during Pain and Inflammation. Brain Res. Rev. 2009, 60, 57–64. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.R. TNF-Mediated Inflammatory Disease. J. Pathol. 2008, 214, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, T.; Mitoma, H.; Harashima, S.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-Alpha: Structure, Function and Interaction with Anti-TNF Agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
Ingredient | Diet (%) |
---|---|
Corn | 51.84 |
Soybean Meal | 32.24 |
Calcium Carbonate | 9.42 |
Dicalcium Phosphate | 1.81 |
Salt | 0.38 |
DL-Methionine | 0.18 |
Soybean Oil | 3.73 |
Santoquin | 0.05 |
Choline Chloride | 0.05 |
NCSU Trace Mineral Premix 1 | 0.20 |
NCSU Vitamin Premix 2 | 0.05 |
NCSU Selenium Premix 3 | 0.05 |
Calculated Values | |
Crude Protein % | 19.50 |
Metabolizable Energy kcal/kg | 1328.0 |
Calcium % | 4.14 |
Available Phosphorus % | 0.45 |
Total Lysine % | 1.10 |
Total Sulfur Amino Acids % | 0.825 |
Gene | Primer | Directional Sequence | Sequence |
---|---|---|---|
Beta Actin | b-Actin | Forward | GTCCACCTTCCAGCAGATGT |
Reverse | ATAAAGCCATGCCAATCTCG | ||
Claudin | Claudin1 | Forward | CACACCCGTTAACACCAGATTT |
Reverse | GAGGGGGCATTTTTGGGGTA | ||
Occludin | OCLN | Forward | GCTCCCGGCTGCCATTTTAAG |
Reverse | GGAGCGTCGTCCACGTAGTA | ||
Zona Occludin | TJPI | Forward | GCAGTCGTTCACGATCTCCT |
Reverse | TCTCTGCTTCGAAGACTGCC | ||
Heat Shock Protein | HSP70 | Forward | GCGGAGCGAGTGGCTGACTG |
Reverse | CGGTTCCCCTGGTCGTTGGC | ||
Interleukin 1beta | IL-1b | Forward | CTGCCTGCAGAAGAAGCCT |
Reverse | TGTCAGCAAAGTCCCTGCTC | ||
Interleukin 10 | IL10 | Forward | AGGAGACGTTCGAGAAGATGGA |
Reverse | TCAGCAGGTACTCCTCGATGT | ||
TNF-alpha | LITAF | Forward | CTGTGGGGCGTGCAGTG |
Reverse | ATGAAGGTGGTGCAGATGGG | ||
Mucin | MUC2 | Forward | GTGAATGGCACTACGAGCCT |
Reverse | CTGGGGTAGCAACCTTCCAG | ||
Superoxide Dismutase | SOD1 | Forward | AAATGGGTGTACCAGCGCA |
Reverse | ACTCCTCCCTTTGCAGTCAC | ||
Catalase | CAT | Forward | TCAGGAGATGTGCAGCGTTT |
Reverse | GTGCGCCATAGTCAGGATGA | ||
Glutathione Peroxidase | GPX3 | Forward | ACCCTGCAGTACCTCGAACT |
Reverse | CCCAAATTGGTTGGAGGGGA |
Hen-Day Prod. (%) | Hen-Housed Prod. (%) | Feed Consumption (g/bird/day) | Feed Efficiency (egg g/feed g) | Egg Weight (g) | Mortality (%) | |
---|---|---|---|---|---|---|
Density (cm2) | ||||||
1342 | 92.1 A | 91.1 A | 103.9 | 0.510 | 57.48 AB | 2.78 |
897 | 91.2 AB | 90.7 AB | 100.7 | 0.522 | 57.52 AB | 0.93 |
671 | 90.6 B | 89.3 BC | 101.1 | 0.514 | 57.60 AB | 2.78 |
535 | 91.4 AB | 90.2 AB | 102.0 | 0.514 | 57.21 B | 2.22 |
445 | 90.3 B | 88.3 C | 102.6 | 0.512 | 57.96 A | 4.63 |
SEM | 2.06 | 2.04 | 1.32 | 0.012 | 0.516 | 1.31 |
p-value | <0.001 | < 0.001 | 0.096 | 0.156 | 0.003 | 0.533 |
Age (weeks) | ||||||
17–20 | 34.6 F | 34.6 E | 77.9 E | 0.203 H | 45.67 F | |
21–24 | 92.8 E | 92.7 CD | 99.1 D | 0.496 G | 52.94 E | |
25–28 | 100.5 A | 100.3 A | 106.3 BC | 0.526 EF | 55.60 D | |
29–32 | 95.7 BCD | 95.3 BC | 106.7 B | 0.520 FG | 58.29 C | |
33–36 | 99.8 A | 99.2 A | 115.2 A | 0.519 FG | 59.62 C | |
37–40 | 96.5 BC | 95.5 BC | 104.4 BCD | 0.545 CDEF | 58.98 BC | |
41–44 | 97.5 B | 96.0 B | 104.2 BCD | 0.553 BCDE | 59.05 BC | |
45–48 | 97.1 BC | 95.4 BC | 102.4 BCD | 0.567 ABC | 59.75 B | |
49–52 | 97.2 BC | 95.3 BC | 101.8 BCD | 0.574 AB | 59.69 B | |
53–56 | 95.1 CD | 92.8 CD | 100.2 CD | 0.581 A | 61.05 A | |
57–60 | 92.6 E | 90.2 D | 99.0 D | 0.560 ABCD | 59.77 B | |
61–64 | 93.9 DE | 91.5 D | 107.3 B | 0.537 DEF | 61.25 A | |
SEM | 0.451 | 0.598 | 1.09 | 0.005 | 0.206 | |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Interaction p-value | 0.724 | 0.953 | 0.819 | 0.759 | 0.444 |
Grade A (%) | Grade B (%) | Loss (%) | XL (%) | L (%) | M (%) | S (%) | |
---|---|---|---|---|---|---|---|
Density (cm2) | |||||||
1342 | 92.4 B | 0.35 | 7.27 A | 48.68 | 39.40 | 3.16 | 8.62 |
897 | 94.7 AB | 0.19 | 5.16 AB | 49.78 | 37.66 | 3.36 | 9.21 |
671 | 95.5 A | 0.20 | 4.23 B | 48.62 | 37.83 | 3.92 | 9.62 |
535 | 96.0 A | 0.26 | 3.75 B | 47.23 | 38.73 | 3.72 | 10.2 |
445 | 96.3 A | 0.43 | 3.26 B | 48.34 | 39.19 | 3.57 | 8.68 |
SEM | 0.656 | 0.16 | 0.637 | 4.62 | 4.14 | 0.741 | 3.08 |
p-value | <0.001 | 0.790 | <0.001 | 0.564 | 0.781 | 0.887 | 0.121 |
Age (weeks) | |||||||
17–20 | 99.1 A | 0.17 AB | 0.78 C | 1.34 F | 0.66 G | 4.74 BC | 93.3 A |
21–24 | 97.6 AB | 0.48 AB | 1.94 BC | 1.14 F | 67.83 A | 16.54 A | 14.4 B |
25–28 | 98.8 A | 0.11 B | 1.06 C | 1.77 F | 89.89 A | 6.83 B | 1.50 C |
29–32 | 95.7 ABC | 0.56 AB | 3.73 ABC | 8.24 F | 89.57 A | 2.08 CD | 0.11 C |
33–36 | 94.9 ABCD | 0.11 B | 4.94 ABC | 16.9 E | 81.60 A | 1.44 CD | 0.00 C |
37–40 | 93.1 CD | 0.22 AB | 6.66 A | 49.3 D | 48.42 C | 2.00 CD | 0.28 C |
41–44 | 96.4 ABC | 0.11 B | 1.94 BC | 66.8 C | 30.14 D | 2.90 BCD | 0.29 C |
45–48 | 92.5CD | 0.11 B | 7.36 A | 86.8 A | 11.75 EF | 1.20 D | 0.27 C |
49–52 | 93.1 CD | 0.23 AB | 6.63 A | 78.8 B | 19.24 E | 1.66 CD | 0.33 C |
53–56 | 93.7 BCD | 0.00 B | 6.26 AB | 94.2 A | 4.96 FG | 0.54 D | 0.00 C |
57–60 | 91.1 D | 1.32 A | 7.59 A | 90.4 A | 7.25 FG | 2.02 CD | 0.37 C |
61–64 | 93.7 BCD | 0.00 B | 6.34 A | 87.2 A | 11.42 EF | 0.60 D | 0.37 C |
SEM | 0.957 | 0.191 | 0.934 | 1.44 | 1.64 | 0.734 | 0.48 |
p-Value | <0.001 | 0.016 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Interaction p-value | 0.102 | 0.607 | 0.214 | 0.917 | 0.660 | 0.886 | <0.001 |
VM Strength (N/mm2) | VM Elasticity (mm) | Shell Strength (N/mm2) | Shell Elasticity (mm) | Shell Thickness (mm) | |
---|---|---|---|---|---|
Density (cm2) | |||||
1342 | 2.15 | 1.77 | 5.11 | 0.279 | 0.374 |
897 | 2.19 | 1.81 | 5.19 | 0.294 | 0.377 |
671 | 2.09 | 1.68 | 5.18 | 0.283 | 0.375 |
535 | 2.17 | 1.77 | 5.06 | 0.281 | 0.376 |
445 | 2.19 | 1.79 | 4.98 | 0.280 | 0.371 |
SEM | 0.043 | 0.057 | 0.098 | 0.011 | 0.002 |
p-value | 0.642 | 0.978 | 0.138 | 0.730 | 0.382 |
Age (weeks) | |||||
23 | 2.41 A | 2.12 A | 5.92 A | 0.294 | -- |
31 | 2.05 CD | 1.60 BC | 5.36 B | 0.258 | 0.377 |
39 | 2.16 BC | 1.83 B | 4.46 D | 0.225 | 0.379 |
47 | 2.15 BC | 1.73 B | 5.12 BC | 0.366 | 0.372 |
55 | 2.23 AB | 1.83 B | 4.97 C | 0.340 | 0.373 |
63 | 1.94 D | 1.49 C | 4.80 CD | 0.219 | 0.373 |
SEM | 0.039 | 0.051 | 0.069 | 0.005 | 0.002 |
p-Value | <0.001 | <0.001 | <0.001 | 0.882 | 0.223 |
Interaction p-value | 0.465 | 0.311 | 0.551 | 0.755 | 0.319 |
Shell Reflectivity | Albumen Height (mm) | Egg Weight (g) | Haugh Unit | Yolk Color | |
---|---|---|---|---|---|
Density (cm2) | |||||
1342 | 80.7 | 7.95 | 58.3 | 89.2 | 5.89 |
897 | 80.3 | 8.08 | 58.5 | 89.9 | 5.90 |
671 | 80.5 | 8.14 | 58.5 | 90.2 | 5.87 |
535 | 80.6 | 8.06 | 58.1 | 89.9 | 6.00 |
445 | 80.5 | 8.04 | 58.7 | 89.6 | 5.87 |
SEM | 0.873 | 0.094 | 0.564 | 0.582 | 0.135 |
p-value | 0.953 | 0.552 | 0.809 | 0.563 | 0.860 |
Age (weeks) | |||||
23 | 84.66 A | 8.59 A | 52.36 C | 94.2 A | 7.38 A |
31 | 84.07 AB | 8.03 BC | 57.30 B | 90.0 BC | 5.69 BC |
39 | 80.75 C | 8.03 BC | 59.51 A | 89.5 BC | 6.01 B |
47 | 82.21 ABC | 7.77 CD | 59.65 A | 87.9 CD | 5.57 CD |
55 | 81.83 BC | 7.50 D | 60.64 A | 86.1 D | 5.23 D |
63 | 69.64 D | 8.44 AB | 61.06 A | 91.1 B | 5.50 CD |
SEM | 0.202 | 0.077 | 0.287 | 0.433 | 0.064 |
p-Value | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 |
Interaction p-value | 0.842 | 0.140 | 0.883 | 0.112 | 0.356 |
Shell (%) | Albumen (%) | Yolk (%) | Whole Egg Solids (g) | Yolk Solids (g) | Albumen Solids (g) | |
---|---|---|---|---|---|---|
Density (cm2) | ||||||
1342 | 9.68 | 63.6 | 26.8 | 25.1 | 49.2 | 12.4 |
897 | 9.72 | 63.5 | 26.8 | 26.0 | 49.3 | 12.3 |
671 | 9.62 | 63.5 | 26.9 | 23.8 | 49.3 | 12.4 |
535 | 9.75 | 63.4 | 26.9 | 24.4 | 49.2 | 12.1 |
445 | 9.52 | 63.8 | 26.7 | 25.0 | 49.3 | 12.2 |
SEM | 0.062 | 0.157 | 0.155 | 0.723 | 0.312 | 0.137 |
p-value | 0.102 | 0.423 | 0.921 | 0.512 | 0.757 | 0.167 |
Age (weeks) | ||||||
31 | 9.78 AB | 64.4 A | 25.8 C | 24.7 | 48.3 | 13.0 A |
39 | 9.88 A | 63.5 B | 25.6 B | 25.2 | 49.5 | 12.7 AB |
47 | 9.51 C | 53.3 B | 27.2 A | 25.5 | 50.3 | 12.0 C |
55 | 9.57 BC | 63.4 B | 27.1 AB | 25.0 | 49.7 | 12.3 BC |
63 | 9.54 C | 63.2 B | 27.3 A | 23.9 | 48.5 | 11.4 B |
SEM | 0.058 | 0.134 | 0.117 | 0.707 | 0.255 | 0.086 |
p-Value | <0.001 | <0.001 | <0.001 | 0.479 | 0.612 | <0.001 |
Interaction p-value | 0.293 | 0.080 | 0.291 | 0.665 | 0.390 | 0.463 |
1342 cm2 | 897 cm2 | 671 cm2 | 535 cm2 | 445 cm2 | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Week 23 | |||||||
CORT (pg/mL) | 470.7 | 657.2 | 428.6 | 562.5 | 562.5 | 130.5 | 0.818 |
H/L Ratio | 0.232 | 0.231 | 0.327 | 0.252 | 0.247 | 0.043 | 0.700 |
Week 39 | |||||||
CORT (pg/mL) | 370.6 | 387.1 | 423.0 | 672.1 | 458.5 | 85.1 | 0.117 |
H/L Ratio | 0.047 | 0.080 | 0.067 | 0.016 | 0.0.56 | 0.023 | 0.400 |
Hematocrit | 36.3 | 33.4 | 37.1 | 36.8 | 35.5 | 2.83 | 0.833 |
Hansen’s Test | 1.67 AB | 1.50 B | 2.40 AB | 2.29 AB | 3.17 A | 0.448 | 0.013 |
Latency to Feed (s) | 243.0 A | 219.3 AB | 181.6 AB | 130.1 B | 119.3 B | 32.8 | 0.002 |
Week 47 | |||||||
CORT (pg/mL) | 443.7 | 439.9 | 350.5 | 786.7 | 742.5 | 154.5 | 0.090 |
H/L Ratio | 0.213 | 0.157 | 0.131 | 0.209 | 0.132 | 0.055 | 0.594 |
Hematocrit | 30.8 | 30.1 | 34.8 | 30.0 | 32.4 | 2.33 | 0.654 |
Hansen’s Test | 1.33 B | 1.83 AB | 1.83 AB | 1.83 AB | 2.83 A | 0.322 | 0.008 |
Latency to Feed (s) | 353.3 | 319.7 | 213.5 | 298.2 | 459.3 | 74.3 | 0.452 |
Week 63 | |||||||
CORT (pg/mL) | 315.9 B | 472.9 AB | 357.9 AB | 542.1 AB | 734.6 A | 95.2 | 0.008 |
H/L Ratio | 0.038 B | 0.041 AB | 0.062 AB | 0.042 AB | 0.064 A | 0.007 | 0.031 |
Hematocrit | 27.7 AB | 27.1 B | 27.7 AB | 28.9 AB | 30.7 A | 0.896 | 0.022 |
Hansen’s Test | 1.67 AB | 1.33 B | 1.33 B | 1.83 AB | 2.67 A | 0.251 | 0.010 |
Latency to Feed (s) | 233.7 | 141.3 | 57.7 | 264 | 407.3 | 72.6 | 0.102 |
Catalase (CT-1) | 0.883 | 0.890 | 0.894 | 0.862 | 0.868 | 0.014 | 0.192 |
HSP 70 (CT-1) | 0.866 | 0.583 | 0.848 | 0.813 | 0.876 | 0.012 | 0.773 |
Glutathione Peroxidase (CT-1) | 0.847 | 0.845 | 0.88 | 0.812 | 0.854 | 0.019 | 0.777 |
Superoxide Dismutase (CT-1) | 0.852 | 0.865 | 0.886 | 0.824 | 0.876 | 0.012 | 0.972 |
1342 cm2 | 897 cm2 | 671 cm2 | 535 cm2 | 445 cm2 | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Bone Health | |||||||
Bone width (mm) | 6.82 | 6.79 | 7.01 | 6.96 | 6.95 | 0.101 | 0.216 |
Bone length (mm) | 113.7 | 113.4 | 114.8 | 114.1 | 114.2 | 0.829 | 0.551 |
Bone quality index | 84.6 | 83.3 | 81.1 | 83.0 | 80.8 | 1.83 | 0.178 |
Bending moment (N/mm) | 0.105 | 0.107 | 0.109 | 0.116 | 0.119 | 0.007 | 0.104 |
Peak force (N) | 14.7 | 15.2 | 14.2 | 16.1 | 16.3 | 0.673 | 0.080 |
Villus Health | |||||||
Villus height (µm) | 672.6 AB | 818.6 A | 746.4 AB | 706.6 AB | 533.5 B | 42.2 | 0.028 |
Villus tip width (µm) | 122.0 | 111.5 | 108.2 | 109 | 135.9 | 7.86 | 0.347 |
Villus bottom width (µm) | 152.2 | 131.3 | 130.8 | 144.7 | 165.5 | 8.85 | 0.183 |
Villus area (µm2) | 94,011 | 97,696 | 89,427 | 89,288 | 83,517 | 7483 | 0.228 |
Crypt depth (µm) | 119.4 | 123.0 | 138.1 | 104.8 | 112.9 | 6.52 | 0.177 |
Villus/crypt ratio | 6.03 | 7.76 | 6.34 | 7.13 | 5.36 | 0.537 | 0.289 |
Muscularis (µm) | 149.6 | 148.4 | 148.6 | 159.9 | 135.7 | 11.48 | 0.658 |
Gene Expression | |||||||
Claudin 1 (CT-1) | 0.650 | 0.687 | 0.688 | 0.645 | 0.686 | 0.008 | 0.417 |
Occludin (CT-1) | 0.620 | 0.651 | 0.656 | 0.644 | 0.655 | 0.010 | 0.094 |
Zona Occludin (CT-1) | 0.790 | 0.811 | 0.808 | 0.772 | 0.799 | 0.009 | 0.498 |
IL-1b (CT-1) | 0.641 | 0.679 | 0.707 | 0.605 | 0.684 | 0.013 | 0.920 |
IL-10 (CT-1) | 0.624 B | 0.666 AB | 0.675 AB | 0.639 AB | 0.690 A | 0.125 | 0.022 |
Tnf-a (CT-1) | 0.769 | 0.793 | 0.814 | 0.765 | 0.803 | 0.010 | 0.365 |
MUC2 (CT-1) | 0.879 | 0.907 | 0.919 | 0.863 | 0.901 | 0.013 | 0.989 |
1342 cm2 | 897 cm2 | 671 cm2 | 535 cm2 | 445 cm2 | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Week 31 | |||||||
Beak | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.161 |
Keel | 0.00 | 0.00 | 0.00 | 0.06 | 0.06 | 0.02 | 0.129 |
Toe | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.01 | 0.489 |
Foot | 0.06 | 0.11 | 0.22 | 0.17 | 0.17 | 0.09 | 0.351 |
Comb | 0.11 | 0.06 | 0.06 | 0.06 | 0.17 | 0.07 | 0.629 |
Feathers | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.01 | 0.161 |
Week 39 | |||||||
Beak | 1.00 | 0.80 | 0.90 | 0.90 | 0.10 | 0.94 | 0.505 |
Keel | 0.06 | 0.11 | 0.06 | 0.00 | 0.06 | 0.05 | 0.505 |
Toe | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.161 |
Foot | 0.28 | 0.28 | 0.17 | 0.17 | 0.33 | 0.12 | 1.000 |
Comb | 0.06 | 0.06 | 0.06 | 0.11 | 0.17 | 0.07 | 0.221 |
Feathers | 1.10 AB | 1.06 B | 1.10 AB | 1.50 A | 1.30 AB | 0.11 | 0.035 |
Week 47 | |||||||
Beak | 0.78 | 0.78 | 0.78 | 0.89 | 0.78 | 0.09 | 0.709 |
Keel | 0.11 | 0.11 | 0.11 | 0.11 | 0.22 | 0.09 | 0.368 |
Toe | 0.11 | 0.00 | 0.06 | 0.06 | 0.17 | 0.06 | 0.452 |
Foot | 0.50 | 0.33 | 0.17 | 0.28 | 0.28 | 0.11 | 0.206 |
Comb | 0.11 | 0.06 | 0.11 | 0.11 | 0.06 | 0.07 | 0.809 |
Feathers | 1.10 B | 1.00 B | 1.20 B | 1.40 AB | 1.83 A | 0.098 | 0.001 |
Week 55 | |||||||
Beak | 0.89 | 0.83 | 0.83 | 0.94 | 0.10 | 0.05 | 0.097 |
Keel | 0.11 | 0.17 | 0.11 | 0.28 | 0.28 | 0.10 | 0.187 |
Toe | 0.06 | 0.10 | 0.06 | 0.00 | 0.06 | 0.06 | 0.585 |
Foot | 0.44 | 0.17 | 0.22 | 0.17 | 0.28 | 0.12 | 0.417 |
Comb | 0.17 | 0.17 | 0.17 | 0.28 | 0.06 | 0.076 | 0.660 |
Feathers | 1.00 C | 1.22 BC | 1.33 BC | 1.67 AB | 2.28 A | 0.13 | 0.001 |
Week 63 | |||||||
Beak | 0.61 | 0.67 | 0.53 | 0.56 | 0.94 | 0.15 | 0.248 |
Keel | 0.39 | 0.31 | 0.27 | 0.39 | 0.61 | 0.16 | 0.296 |
Toe | 0.22 | 0.19 | 0.33 | 0.17 | 0.50 | 0.14 | 0.255 |
Foot | 0.11 | 0.22 | 0.07 | 0.06 | 0.28 | 0.11 | 0.678 |
Comb | 0.17 | 0.11 | 0.27 | 0.11 | 0.22 | 0.09 | 0.691 |
Feathers | 1.00 C | 1.06 C | 1.33 BC | 1.78 B | 2.56 A | 0.10 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alig, B.N.; Anderson, K.E.; Malheiros, D.M.; Harding, K.L.; Malheiros, R.D. Assessment of the Effects of Stocking Density on Laying Hens Raised in Colony Cages: Part II—Egg Production, Egg Quality, and Welfare Parameters. Poultry 2025, 4, 28. https://doi.org/10.3390/poultry4030028
Alig BN, Anderson KE, Malheiros DM, Harding KL, Malheiros RD. Assessment of the Effects of Stocking Density on Laying Hens Raised in Colony Cages: Part II—Egg Production, Egg Quality, and Welfare Parameters. Poultry. 2025; 4(3):28. https://doi.org/10.3390/poultry4030028
Chicago/Turabian StyleAlig, Benjamin N., Kenneth E. Anderson, Dimitri M. Malheiros, Kari L. Harding, and Ramon D. Malheiros. 2025. "Assessment of the Effects of Stocking Density on Laying Hens Raised in Colony Cages: Part II—Egg Production, Egg Quality, and Welfare Parameters" Poultry 4, no. 3: 28. https://doi.org/10.3390/poultry4030028
APA StyleAlig, B. N., Anderson, K. E., Malheiros, D. M., Harding, K. L., & Malheiros, R. D. (2025). Assessment of the Effects of Stocking Density on Laying Hens Raised in Colony Cages: Part II—Egg Production, Egg Quality, and Welfare Parameters. Poultry, 4(3), 28. https://doi.org/10.3390/poultry4030028